首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study evaluates the influence of different silane coupling agents on the thermal and physical properties of epoxy-anhydride composite reinforced with basalt fiber. The silane coupling agents were selected by their functional groups so that they could have different chemical interactions with the epoxy and anhydride curing agents. The thermal and degradation behavior of the composites with different fiber contents were evaluated by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). Through the evaluation of T g and thermal degradation behavior of both systems, it was deduced that the silane coupling agents have a great influence on the thermal properties of the composites as well as interfacial improvement. Also, the tensile properties of the composites were systematically evaluated in order to further understand the effect of silane coupling agents on the interaction with basalt fiber and epoxy matrix.  相似文献   

2.
This study investigates the possibility of utilizing basalt chopped fiber in order to prepare a thermally stable fiber reinforced composite. Bi-component resin system using epoxy and benzoxazine monomer is proposed and its cure characteristic is evaluated by FT-IR and DSC. Copolymerization of epoxy resin upon curing with benzoxazine is carried out in the absence of a strong catalyst. Through the evaluation of T g of the epoxy-benzoxazine copolymer resin and its composite, it is clear that the incorporation of basalt fiber in composite has a great role and advantage. Also, this study systematically evaluates the apparent char yield and net char yield gain of the composites using TGA thermograms. Based on the results of DSC and TGA, it is advised that the favorable composite composition can be prepared from the range of 20 % to 50 % of epoxy content with 10 % of basalt fiber.  相似文献   

3.
Nanoparticles are gaining wider importance and increasing utility in many areas of engineering and technology. This investigative work is conducted to study the effect of incorporating basalt nano particles in composites with basalt/basalt and basalt/jute woven structures as reinforcement. The nanoparticles were developed from basalt, they were characterized and used for reinforcing composites of basalt and jute hybrid fabrics. The mechanical and thermo-mechanical properties of hybrid woven basalt reinforced epoxy composites were evaluated. Microscopic examination was carried out in order to analyze the internal structure and fractured surfaces. Interfacial characteristics, material morphology and failure was studied by use of Scanning Electron Microscope (SEM) and optical microscopy. Thermal stability was characterized by TGA. The results elaborated that the incorporation of basalt nanoparticles exhibited superior properties compared to the pure epoxy resin impregnated basalt fabric reinforced composites in terms of mechanical and thermal stability.  相似文献   

4.
Composites based on pure Basalt and Basalt/Jute fabrics were fabricated. The mechanical properties of the composites such as flexural modulus, tensile modulus and impact strength were measured depending upon weave, fiber contents and resin. Dynamic mechanical analysis of all composites were done. From the results it is found that pure basalt fiber combination maintains higher values in all mechanical tests. Thermo-gravimetric (TG/DTG) composites showed that thermal degradation temperatures of composites shifted to higher temperature regions compared to pure jute fabrics. Addition of basalt fiber improved the thermal stability of the composite considerably. Scanning electron microscopic images of tensile fractured composite samples illustrated that better fiber-matrix interfacial interaction occurred in hybrid composites. The thermal conductivity of composites are also investigated and thermal model is used to check their correlation.  相似文献   

5.
Based on the situ preparation of silica nanoparticles (SiO2) on the surface of Graphene nanoplatelets (GNPs) in the previous work, these unique three dimensional (3D) materials were introduced into epoxy resin to study the reinforcing and toughening synergy effect on the composites. Firstly, the tensile tests showed that Graphene/SiO2 hybrid materials attached with different size of SiO2 particles exhibited different reinforcing and toughening effect on the composites. With the increasing of the diameter of SiO2 particles, the toughness and strength properties of the composites firstly improved and then decreased, and when the average diameter was 0.14 μm, the elongation reached the max.. Meanwhile, the fractured surfaces presented on SEM images were consistent with the results of the tensile tests, which further explained the hybrid materials increased the interfacial adhesion between the fillers and matrix, leading to significant improvement in mechanical properties. Moreover, the DSC curves demonstrated that Graphene/SiO2 hybrid materials accelerated the curing process of epoxy resin due to the cross-link structure between fillers and matrix. Lastly, the crack propagation modes were built to clarify the synergy effect mechanism of reinforcing and toughening on nanoparticles/epoxy resin composites.  相似文献   

6.
Sansevieria (genus) cylindrica (species) belongs to Agavaceae family plant fiber first time used as a reinforcing agent in the epoxy system. Fibre extracted from leaves, fairly lesser density, porosity, higher strength to weight ratio (hereafter called SCF) and these fibers were alkali-treated and yet impregnated on the epoxy system using wet hand lay up technique in order to compare with untreated fiber on performance. DMA, TGA, DSC, FTIR, SEM, degradation temperature, flexural and tensile tests were performed for untreated and alkali-treated epoxy composites using different SCF volumes viz. 1 vol.%, 5 vol.%, 7 vol.% and 9 vol.%. Alkali treated fibre were found to have higher initial and final degradation temperatures and flexural and tensile strength. The removal of the amorphous hemi-cellulose on alkali treatment was played an instrumental in improving properties. A 3 °C increase in glass transition temperature and decomposition temperature were recorded respectively and over all treated SCF composites reinforced on the epoxy were shown significant results than untreated. Storage modulus and tan ?? were observed well at 9 vol.% treated SCF while flexural and tensile were increased by 35 and 13 % for SCF treated composites respectively.  相似文献   

7.
Polymer matrix composites (PMCs) owing to their outstanding properties such as high strength, low weight, high thermal stability and chemical resistance are broadly utilized in various industries. In the present work, the influence of silanized CaCO3 (S-CaCO3) with 3-aminopropyltrimethoxysilane (3-APTMS) coupling agent at different values (0, 1, 3 and 5 wt.% with respect to the matrix) on the mechanical behavior of basalt fibers (BF)/epoxy composites was examined. BF-reinforced composites were fabricated via hand lay-up technique. Experimental results from three-point bending and tensile tests showed that with the dispersion of 3 wt.% S-CaCO3, flexural strength, flexural modulus, tensile strength and tensile modulus enhanced by 28 %, 35 %, 20 % and 30 %, respectively. Microscopic examinations revealed that the development of the mechanical properties of fibrous composites with the incorporation of modified CaCO3 was related to enhancement in the load transfer between the nanocomposite matrix and BF as well as enhanced mechanical properties of the matrix part.  相似文献   

8.
In this study, we report a simple and efficient method to prepare three-dimensional graphene oxide (3DGO) network by freeze drying and investigate the effect of 3DGO network on thermal properties of epoxy composites. It was found that the 3DGO network not only improved thermal conductivity, thermal stability, glass transition temperature and storage modulus of epoxy composites, but also reduced the thermal expansion properties of epoxy composites. For instance, the thermal conductivity value of epoxy composite with only 1.3 wt% 3DGO is 0.62 Wm-1K-1, increased by 148 % in comparison with that of the neat epoxy (0.25 Wm-1K-1).  相似文献   

9.
Recently, carbon fiber composites have been widely used as structural reinforcement materials of buildings, replacing reinforcing bars or concrete. And the increase in use of super fibers such as aramid and high strength PE, which is aimed at improving the reinforcement properties, has resulted in a demand for a resin system with excellent mechanical and thermal properties. In this research, a fiber-reinforced composite has been produced by using the super fibers such as carbon fiber or aramid fiber, reinforcement resin and the silica hybrid compound containing epoxy group. This study was carried out to confirm the effect of the silica hybrid on mechanical properties, heat resistance and adhesion strength of a fiber-reinforced epoxy composite, which was produced by blending silica or introducing silica hybrid through covalent bonds. And the silica hybrid containing epoxy group, which may be introduced to the structure of fiber-reinforced epoxy composite through covalent bonds caused by reaction with a hardener, has been used, so that the heat resistance and adhesion strength could be improved.  相似文献   

10.
The effects of chemical treatment on the mechanical, morphological, and chemical resistance properties of uniaxial natural fabrics, Grewia tilifolia/epoxy composites, were studied. In order to enhance the interfacial bonding between the epoxy matrix and the Grewia tilifolia fabrics, two different types of treatment: alkali treatment (5 % NaOH) and (3-aminopropyl)-triethoxysilane coupling agent (CA), were used. The epoxy composites containing 0–15 wt% of Grewia tilifolia fabric were prepared by hand lay-up technique, at room temperature. The tensile and flexural properties of the untreated, alkali-treated and coupling agent treated Grewia tilifolia reinforced epoxy composites were determined as a function of fabric loading. The 9 % wt Grewia tilifolia fabric reinforced epoxy composites showed improved tensile and flexural modulii when compared to the neat epoxy matrix. Significant improvement in the mechanical properties was obtained when both alkali and coupling agent treated fabrics were used as reinforcement. Morphological studies demonstrated that better adhesion between the fabrics and the matrix was achieved especially when the alkali-treated and coupling agent treated Grewia tilifolia fabrics were used in the composites. For the water absorption and chemical resistance studies, various solvents, acids and alkalis were used on the epoxy composites. This study has shown that Grewia tilifolia fabric/epoxy composites are promising candidates for structural applications, where high strength and stiffness are required.  相似文献   

11.
To improve interfacial adhesion between carbon fiber and epoxy resin, the epoxy matrix is modified with N-(2-aminoethyl)-3-aminopropylmethyldimethoxysilane (YDH602) and N-(2-aminoethyl)-3-aminopropyltrimethoxysilane (YDH792), respectively. And the effect of matrix modification on the mechanical performance of carbon/epoxy composites is investigated in terms of tensile, flexural and interlaminar properties. The flexural properties indicate that the optimum concentration of silane coupling agents YDH602 and YDH792 for the matrix modification is approximately 0.5 wt% of the epoxy resin system, and the mechanical properties of the YDH792-modified epoxy composites is better than that of the YDH602-modified epoxy composites at the same concentration. Compared to unmodified epoxy composite, the incorporation of 0.5 wt% YDH792 results in an increase of 4, 44 and 42 % in tensile, flexural and interlaminar shear strength (ILSS) values of the carbon/epoxy composite, respectively, while the corresponding enhancement of tensile and flexural modulus is 3 and 15 %. These improvements in mechanical properties can be considered to be an indication of better fiber/matrix interfacial adhesion as confirmed by SEM micrographs of the fracture surface after interlaminar shear testing. The viscosity of the modified epoxy resin system can be reduced by incorporation of silane coupling agent YDH792, which is beneficial for fiber impregnation or wetting during liquid composite molding process.  相似文献   

12.
This study investigates the development of thermoset plastics from plant-based oils (e.g., linseed, soybean, cottonseed, oilseed radish, and peanut oils) using an optimal process of solvent-free epoxidation. The epoxidation of plant oils can be accomplished economically by reacting the double bonds of fatty-acids with hydrogen peroxide. During the solvent-free process catalyzed by the ion-exchange resin, we observed that the influence of several variables was important: the molar ratio of hydrogen peroxide to unsaturation, acetic acid to unsaturation, and temperature. The epoxidation of plant oils was determined from the liquid mixture and the composite matrix by thermal and spectroscopic analyses. Compounds with a higher double-bond (iodine) value showed higher oxirane oxygen percent and selectivity, and a higher hydroxyl value because of a greater possibility of attack by solutions causing side reactions. Lower iodine values indicated fewer epoxy groups and selectivity, and a lower hydroxyl value. Benzyl pyrazinium hexafluoroantimonate (BPH) yielded good thermal curing properties; as little as 1% added to the plastics produced light-weight composites. Epoxidized linseed oil promises the highest modulus and impact resistance due to the largest number of double bonds to contribute more epoxy groups and the large proportion of linolenic acids to produce epoxy groups rapidly.  相似文献   

13.
In recent years, composites based on glass fiber reinforced polymer have been widely used in order to meet increasing durability and safety regulations, particularly in the power cable, automotive and plane industry. In this paper, mechanical and electrical properties of high density polyethylene (HDPE) and HDPE containing glass fiber polymer composites were investigated and compared at different temperatures. Composite materials were prepared with the hot pressing method. Tensile strength, % elongation and the modulus of elasticity (or Young’s modulus) were determined for each sample at different temperatures. In addition to this, at different temperatures τ σ and τ E have mechanical and electrical lifetime respectively, corresponding to mechanical tension (σ) and electrical strength (E), and this was investigated for each sample. As compared to the mechanical and electrical properties of neat HDPE, HDPE/0.5 % glass fiber composites have been found to have better mechanical and electrical durability.  相似文献   

14.
We investigated the surface modification of jute fiber by oxygen plasma treatments. Jute fibers were treated in different plasma reactors (radio frequency “RF” and low frequency “LF” plasma reactors) using O2 for different plasma powers to increase the interface adhesion between jute fiber and polyester matrix. The influence of various plasma reactors on mechanical properties of jute fiber-reinforced polyester composites was reported. Tensile, flexure, short beam shear tests were used to determine the mechanical properties of the composites. The interlaminar shear strength increased from 11.5 MPa for the untreated jute fiber/polyester composite to 19.8 and 26.3 MPa for LF and RF oxygen plasma treated jute fiber/polyester composites, respectively. O2 plasma treatment also improved the tensile and flexural strengths of jute fiber/ polyester composites for both plasma systems. It is clear that O2 plasma treatment of jute fibers by using RF plasma system instead of using LF plasma system brings about greater improvement on the mechanical properties of jute/polyester composites.  相似文献   

15.
The graphene oxide (GO) sheets are chemically grafted with γ-etheroxygentrimethoxysilane (KH560) and liquid crystalline epoxy (LCE) is synthesized from 4,4′-bis(2-hydroxyhexoxy)biphenyl (BP2) and epichlorohydrin before being incorporated into epoxy matrix. Then we present a novel approach to the fabrication of advanced polymer composites from epoxy matrix by incorporation of two modifiers, which are grafted GO (g-GO) and LCE. The mechanical properties of epoxy composites are greatly improved by incorporating LCE/g-GO hybrid fillers. For instance, the addition of 3 wt% hybrid filler (2 wt% g-GO and 1 wt% LCE) into the epoxy matrix resulted in the increases in impact strength by 132.6 %, tensile strength by 27.6 % and flexural strength by 37.5 %. Moreover, LCE/g-GO hybrid fillers are effective to increase thermal decomposition temperature, glass transition temperature, and storage modulus by strong affinity between the fillers and epoxy matrix.  相似文献   

16.
In this study, we report the fabrication and evaluation of a hybrid multi-scale basalt fiber/epoxy composite laminate reinforced with layers of electrospun carbon nanotube/polyurethane (CNT/PU) nanofibers. Electrospun polyurethane mats containing 1, 3 and 5 wt% carbon nanotubes (CNTs) were interleaved between layers of basalt fibers laminated with epoxy through vacuum-assisted resin transfer molding (VARTM) process. The strength and stiffness of composites for each configuration were tested by tensile and flexural tests, and SEM analysis was conducted to observe the morphology of the composites. The results showed increase in tensile strength (4–13 %) and tensile modulus (6–20 %), and also increase in flexural strength (6.5–17.3 %) and stiffness of the hybrid composites with the increase of CNT content in PU nanofibers. The use of surfactant to disperse CNTs in the electrospun PU reinforcement resulted to the highest increase in both tensile and flexural properties, which is attributed to the homogeneous dispersion of CNTs in the PU nanofibers and the high surface area of the nanofibers themselves. Here, the use of multi-scale reinforcement fillers with good and homogeneous dispersion for epoxy-based laminates showed increased mechanical performance of the hybrid composite laminates.  相似文献   

17.
Fully biodegradable and environment-friendly green composite specimens were made using ramie fibers and soy protein concentrate (SPC) resin. SPC was used as continuous phase resin in green composites. The SPC resin was plasticized with glycerin. Precuring and curing processes for the resin were optimized to obtain required mechanical properties. Unidirectional green composites were prepared by combining 65 % (on weight basis) ramie fibers and SPC resin. The tensile strength and Young’s modulus of these composites were significantly higher compared to those of pure SPC resin. Tensile and flexural properties of the composite in the longitudinal direction were moderate and found to be significantly higher than those of three common wood varieties. In the transverse direction, however, their properties were comparable with those of wood specimens. Scanning electron microscope (SEM) micrographs of the tensile fracture surfaces of the green composite indicated good interfacial bonding between ramie fibers and SPC resin. Theoretical values for tensile strength and Young’s modulus, calculated using simple rule of mixture were higher than the experimentally obtained values. The main reasons for this discrepancy are loss of fiber alignment, voids and fiber compression due to resin shrinking during curing.  相似文献   

18.
Twenty first century has witnessed remarkable achievements in green technology in material science through the development of biocomposites. Oil palm fiber (OPF) extracted from the empty fruit bunches is proven as a good raw material for biocomposites. The cellulose content of OPF is in the range of 43%–65% and lignin content is in the range of 13%–25%. A compilation of the morphology, chemical constituents and properties of OPF as reported by various researchers are collected and presented in this paper. The suitability of OPF in various polymeric matrices such as natural rubber, polypropylene, polyvinyl chloride, phenol formaldehyde, polyurethane, epoxy, polyester, etc. to form biocomposites as reported by various researchers in the recent past is compiled. The properties of these composites viz., physical, mechanical, water sorption, thermal, degradation, electrical properties, etc. are summerised. Oil palm fiber loading in some polymeric matrices improved the strength of the resulting composites whereas less strength was observed in some cases. The composites became more hydrophilic upon addition of OPF. However treatments on fiber surface improved the composite properties. Alkali treatment on OPF is preferred for improving the fiber–matrix adhesion compared to other treatments. The effect of various treatments on the properties of OPF and that of resulting composites reported by various researchers is compiled in this paper. The thermal stability, dielectric constant, electrical conductivity, etc. of the composites improved upon incorporation of OPF. The strength properties reduced upon weathering/degradation. Sisal fiber was reported as a good combination with OPF in hybrid composites.  相似文献   

19.
Ni-coated short carbon fibers (Ni-SCFs) were prepared using an electrodeposition method. Short carbon fiber (SCF) reinforced epoxy composites were prepared by changing the fiber content (0.1–0.7 wt%). To investigate the effect of Ni-coated short carbon fibers on the mechanical and electrical properties of the composites, we prepared two kinds of reinforcements: the short carbon fibers treated by 400 °C (400 °C treated SCFs) and Ni-SCFs. Fracture characteristics of the composites revealed the Ni coatings and the epoxy matrix had a better interface, so that the results of tensile and bending strength were better in epoxy/Ni-SCFs composites than those in epoxy/400 °C treated SCFs composites. The 400 °C treated SCFs decreased the electrical resistivity of the epoxy composites, compared to the pure epoxy. However the epoxy/Ni-SCFs composites had lower electrical resistivity than epoxy/400 °C treated SCFs with the same fiber content.  相似文献   

20.
Cobaltous sulfate heptahydrate (CoSO4·7H2O) was incorporated as filler into diglycidyl ether of bisphenol A (DGEBA) based epoxy resin system, to prepare organic-inorganic polymer hybrid materials. Mechanical tensile studies and dynamic mechanical analysis (DMA) were carried out in order to study the static and dynamic mechanical properties of the prepared hybrid films. Mechanical tensile studies were carried out at room temperature, at a test speed of 30 mm/min. Highest tensile strength of 24.74±2.42 MPa was achieved for 4.44 wt% filler level (FL), along with an increase in the value of Young’s modulus. Storage modulus (E′), loss modulus (E″), damping factor (tan δ) were obtained by DMA studies. Glass transition temperature (Tg) was obtained for pure epoxy and filled epoxy, for various FLs varying from 0.28 wt% to 5.00 wt%. Pure epoxy showed highest Tg value compared to filled epoxy hybrids. Highest storage modulus of 9.5 GPa was obtained for 2.22 wt% FL, which also showed highest loss modulus peak. Parameters like effectiveness coefficient (C) and crosslink density were calculated from the storage modulus data. Loss modulus and tan δ curves were analyzed to study the energy dissipation properties of prepared hybrid films. Activation energy (Ea) value for glass transition was obtained from damping factor (tan δ), which showed highest Ea value of 630.5 kJmol-1, for 4.44 wt% FL. DMA studies for various FLs were carried out at different test frequencies in order to study the changes in dynamic mechanical properties of the prepared hybrid materials with respect to frequency  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号