首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Sensitive and accurate testing for trace amounts of biotechnology-derived DNA from plant material is the prerequisite for detection of 1% or 0.5% genetically modified ingredients in food products or raw materials thereof. Compared to ELISA detection of expressed proteins, real-time PCR (RT-PCR) amplification has easier sample preparation and detection limits are lower. Of the different methods of DNA preparation CTAB method with high flexibility in starting material and generation of sufficient DNA with relevant quality was chosen. Previous RT-PCR data generated with the SYBR green detection method showed that the method is highly sensitive to sample matrices and genomic DNA content influencing the interpretation of results. Therefore, this paper describes a real-time DNA quantification based on the TaqMan probe method, indicating high accuracy and sensitivity with detection limits of lower than 18 copies per sample applicable and comparable to highly purified plasmid standards as well as complex matrices of genomic DNA samples. The results were evaluated with ValiData for homology of variance, linearity, accuracy of the standard curve, and standard deviation.  相似文献   

2.
An innovative covalent microsphere immunoassay, based on the usage of fluorescent beads coupled to a specific antibody, was developed for the quantification of the endotoxin Cry1Ab present in MON810 and Bt11 genetically modified (GM) maize lines. In particular, a specific protocol was developed to assess the presence of Cry1Ab in a very broad range of GM maize concentrations, from 0.1 to 100% [weight of genetically modified organism (GMO)/weight]. Test linearity was achieved in the range of values from 0.1 to 3%, whereas fluorescence signal increased following a nonlinear model, reaching a plateau at 25%. The limits of detection and quantification were equal to 0.018 and 0.054%, respectively. The present study describes the first application of quantitative high-throughput immunoassays in GMO analysis.  相似文献   

3.
A fast and quantitative method was developed to detect transgenic "Maximizer" maize "event 176" (Novartis) and "Roundup Ready" soybean (Monsanto) in food by real-time quantitative PCR. The use of the ABI Prism 7700 sequence detection system allowed the determination of the amplified product accumulation through a fluorogenic probe (TaqMan). Fluorescent dyes were chosen in such a way as to coamplify total and transgenic DNA in the same tube. Using real-time quantitative PCR, 2 pg of transgenic or total DNA per gram of starting sample was detected in 3 h after DNA extraction and the relative amounts of "Maximizer" maize and "Roundup Ready" soybean in some representative food products were quantified.  相似文献   

4.
To fulfill labeling and traceability requirement of genetically modified (GM) maize for trade and regulation, it is essential to develop an event-specific detection method for monitoring the presence of transgenes. In pursuit of this purpose, we systematically optimized and established a combined event- and construct-specific multiplex polymerase chain reaction (mPCR) technique for simultaneous detection of 8 GM maize lines. Altogether 9 sets of primers were designed, including six that were event-specific for Event176, Bt11, TC1507, NK603, MON863, and Mon810; two that were construct-specific for T25 and GA21, and one for an endogenous zein gene. The transgene in each GM maize line and the endogenous zein gene could be clearly detected and distinguished according to the different sizes of PCR amplicons. The limit of detection (LOD) was approximately 0.25% (v/v), although the detection can be as sensitive as 0.1% as demonstrated by the International Seed Testing Association (ISTA) proficiency test. This study further improves the current PCR-based detection method for GM maize. The method can be used in an easy, sensitive, and cost and time effective way for the identification and quality screening of a specific GM maize line.  相似文献   

5.
Multiplex PCR procedures were developed for simultaneously detecting multiple target sequences in genetically modified (GM) soybean (Roundup Ready), maize (event 176, Bt11, Mon810, T14/25), and canola (GT73, HCN92/28, MS8/RF3, Oxy 235). Internal control targets (invertase gene in corn, lectin and beta-actin genes in soybean, and cruciferin gene in canola) were included as appropriate to assess the efficiency of all reactions, thereby eliminating any false negatives. Primer combinations that allowed the identification of specific lines were used. In one system of identification, simultaneous amplification profiling (SAP), rather than target specific detection, was used for the identification of four GM maize lines. SAP is simple and has the potential to identify both approved and nonapproved GM lines. The template concentration was identified as a critical factor affecting efficient multiplex PCRs. In canola, 75 ng of DNA template was more effective than 50 ng of DNA for the simultaneous amplification of all targets in a reaction volume of 25 microL. Reliable identification of GM canola was achieved at a DNA concentration of 3 ng/microL, and at 0.1% for GM soybean, indicating high levels of sensitivity. Nonspecific amplification was utilized in this study as a tool for specific and reliable identification of one line of GM maize. The primer cry1A 4-3' (antisense primer) recognizes two sites on the DNA template extracted from GM transgenic maize containing event 176 (European corn borer resistant), resulting in the amplification of products of 152 bp (expected) and 485 bp (unexpected). The latter fragment was sequenced and confirmed to be Cry1A specific. The systems described herein represent simple, accurate, and sensitive GMO detection methods in which only one reaction is necessary to detect multiple GM target sequences that can be reliably used for the identification of specific lines of GMOs.  相似文献   

6.
We have applied the ligation detection reaction (LDR) combined with a universal array approach to the detection and quantitation of the polymerase chain reaction (PCR) amplified cry1A(b) gene from Bt-176 transgenic maize. We demonstrated excellent specificity and high sensitivity. Down to 0.5 fmol (nearly 60 pg) of PCR amplified transgenic material was unequivocally detected with excellent linearity within the 0.1-2.0% range with respect to wild-type maize. We suggest the feasibility of extending the LDR/universal array format to detect in parallel several transgenic sequences that are being developed for food applications.  相似文献   

7.
In this study, we developed a novel multiplex polymerase chain reaction (PCR) method for simultaneous detection of up to eight events of genetically modified (GM) maize within a single reaction. The eight detection primer pairs designed to be construct specific for eight respective GM events (i.e., Bt11, Event176, GA21, MON810, MON863, NK603, T25, and TC1507) and a primer pair for an endogenous reference gene, ssIIb, were included in the nonaplex(9plex) PCR system, and its amplified products could be distinguished by agarose gel and capillary electrophoreses based on their different lengths. The optimal condition enabled us to reliably amplify two fragments corresponding to a construct specific sequence and a taxon specific ssIIb in each of the eight events of GM maize and all of nine fragments in a simulated GM mixture containing as little as 0.25% (w/w) each of eight events of GM maize. These results indicate that this multiplex PCR method could be an effective qualitative detection method for screening GM maize.  相似文献   

8.
As more and more genetically modified (GM) crops are approved for commercialization and planting, the development of quick and on-spot methods for GM crops and their derivates is required. Herein, we established the polymerase chain reaction and agarose gel electrophoresis-free system for the identification of seven GM maize events (DAS-59122-7, T25, BT176, TC1507, MON810, BT11, and MON863) employing a loop-mediated isothermal amplification (LAMP) technique. The LAMP assay was performed using a set of four specific primers at 60-65 °C in less than 40 min, and the results were observed by direct visual observation. In these developed assays, the specificity targeted at each GM maize event based on the event-specific sequence was well confirmed, and the limits of detection were as low as four copies of maize haploid genomic DNA with an exception of 40 copies for MON810 assay. Furthermore, these developed assays were successfully used to test six practical samples with different GM maize events and contents (ranged from 0.0 to 2.0%). All of the results indicated that the established event-specific visual LAMP assays are more convenient, rapid, and low-cost for GM maize routine analysis.  相似文献   

9.
The coexistence of genetically modified (GM) and non-GM crops is an important economic and political issue in the European Union. We examined the GM content in non-GM maize crops in Spain in 2005. Both the standing crop and the harvest were tested, and the %GM DNA was quantified by real-time polymerase chain reaction. We compared the level of GM as a function of distance from known GM source fields in a 1.2 km2 landscape. The distribution of GM was compared to predictions from previous studies, and good agreement was found. Control and monitoring of adventitious GM presence in non-GM crops can only be achieved by fit-for-purpose sampling and testing schemes. We used a GM dispersal function to simulate non-GM crops in the studied zone and tested the accuracy of five different sampling schemes. Random sampling was found to be the most accurate and least susceptible to bias by GM spatial structure or gradients. Simulations showed that to achieve greater than 95% confidence in a GM labeling decision of a harvest (when treated as a single marketed lot), 34 samples would be needed when the harvest was outside 50% of the GM threshold value. The number of samples required increased rapidly as the harvest approached the GM threshold, implying that accurate labeling when the harvest is within +/-17% of the threshold may not be possible with high confidence.  相似文献   

10.
In this work, four different fluorescent intercalating dyes are compared for the ultrasensitive CGE-LIF detection of DNA from transgenic maize in flours. The fluorescent intercalating dyes compared are YOPRO-1, SYBR-Green-I, Ethidium bromide (EthBr), and EnhanCE. For all the four dyes optimum concentrations are established, and efficient separations of DNA fragments ranging in size from 80 to 1000 bp are obtained. The comparative study demonstrates that SYBR-Green-I and YOPRO-1 provide better limits of detection (LODs) than EnhanCE or EthBr (i.e., LODs are, respectively, 700, 1000, 11300, and 97400 zmol, calculated for a 200-bp DNA fragment). Separations using YOPRO-1 are faster than those using SYBR-Green-I (30 min vs 47 min for the analysis of the 80-1000 bp DNA fragments). Also, separations using YOPRO-1 are more efficient than those using SYBR-Green-I (e.g., 2.4 x 10(6) plates/m vs 1.6 x 10(6) plates/m, respectively, calculated for the 200-bp fragment). Also, buffer depletion and cost per analysis are worse with SYBR-Green-I than with YOPRO-1. Therefore, YOPRO-1 was selected as the preferred intercalating dye. Using this fluorescent compound, analysis time reproducibility for the CGE-LIF separation of the DNA fragments is determined to be better than 1.7% (% RSD, n = 10) within the same day, and better than 1.9% (% RSD, n = 30) for three different days. Moreover, the fluorescence signal obtained using this dye is shown to vary linearly with the DNA concentration in the range studied, i.e., 1-500 ng/microL. It is demonstrated that by using this method 0.01% of transgenic maize can be detected in flour by direct injection of the PCR-amplified sample.  相似文献   

11.
In this paper, the possibilities of capillary gel electrophoresis (CGE) to detect transgenic maize in flours are shown. The method is based on the extraction and amplification by the polymerase chain reaction (PCR) of a specific DNA fragment from transgenic maize and its subsequent analysis by CGE with UV detection or laser-induced fluorescence (LIF). Some useful considerations regarding the optimization of DNA extraction and amplification conditions are given. Also, a comparison is established between the two CGE protocols for DNA detection based on ultraviolet absorption (CGE-UV) and LIF (CGE-LIF). The requirements, advantages, and limitations of both CGE methods are discussed. To our knowledge, this is the first paper on the use of CGE-LIF to detect transgenic food.  相似文献   

12.
Fungi of the genus Fusarium are common fungal contaminants of maize and are also known to produce mycotoxins. Maize that has been genetically modified to express a Bt endotoxin has been used to study the effect of insect resistance on fungal infection of maize grains by Fusarium species and their related mycotoxins. Maize grain from Bt hybrids and near-isogenic traditional hybrids was collected in France and Spain from the 1999 crop, which was grown under natural conditions. According to the ergosterol level, the fungal biomass formed on Bt maize grain was 4-18 times lower than that on isogenic maize. Fumonisin B(1) grain concentrations ranged from 0.05 to 0.3 ppm for Bt maize and from 0.4 to 9 ppm for isogenic maize. Moderate to low concentrations of trichothecenes and zearalenone were measured on transgenic as well as on non-transgenic maize. Nevertheless, significant differences were obtained in certain regions. The protection of maize plants against insect damage (European corn borer and pink stem borer) through the use of Bt technology seems to be a way to reduce the contamination of maize by Fusarium species and the resultant fumonisins in maize grain grown in France and Spain.  相似文献   

13.
We have developed a new immunoassay method to detect genetically modified (GM) maize and rape containing phosphinothricin-N-acetyltransferase (PAT). PAT encoded by Bialaphos resistance gene (bar) was highly expressed in soluble form in Escherichia coli BL21(DE3) and purified to homogeneity by Ni2+ affinity chromatography. A simple and efficient extraction and purification procedure of PAT from GM maize and rape was developed by means of the immunoaffinity column (IAC) as a cleanup tool. Purified polyclonal antibodies against PAT was produced and coupled covalently to CNBr-activated Sepharose 4B. Both the binding conditions and elution protocols were optimized. The IAC was successfully employed to isolate and purify the PAT from the various tissues of GM maize (Bt11 and Bt176) and rapes (MS1/RF1 and MS8/RF3). Enzyme linked immunosorbent assay (ELISA) procedures were established further on to measure the PAT protein. GM maize cannot be differentiated from non-GM maize by ELISA. But IAC-ELISA allowed 0.5% GMOs to be detected in MS1/RF1 and MS8/RF3 and 10% GMOs to be detected in Bt11 and Bt176, which makes this method an acceptable method to access PAT protein in GM rapes and maize.  相似文献   

14.
Qualitative and quantitative analytical methods were developed for the new event of genetically modified (GM) maize, MON863. One specific primer pair was designed for the qualitative polymerase chain reaction (PCR) method. The specificity and sensitivity of the designed primers were confirmed. PCR was performed on genomic DNAs extracted from MON863, other GM events, and cereal crops. Single PCR product was obtained from MON863 by the designed primer pair. Eight test samples including GM maize MON863 were prepared at 0.01 approximately 10% levels and analyzed by PCR. Limit of detection of the method was 0.01% for GM maize MON863. On the other hand, another specific primer pair and probe were also designed for quantitative method using a real-time polymerase chain reaction. As a reference molecule, a plasmid was constructed from a taxon-specific DNA sequence for maize, a universal sequence for a cauliflower mosaic virus (CaMV) 35S promoter used in most genetically modified organisms, and a construct-specific DNA sequence for the MON863 event. Six test samples of 0.1, 0.5, 1.0, 3.0, 5.0 and 10.0% of GM maize MON863 were quantitated for the validation of this method. At the 3.0% level, the bias (mean vs true value) for MON863 was 3.0%, and its relative standard deviation was 5.5%. Limit of quantitation of the method was 0.5%. These results show that the developed PCR methods can be used to qualitatively and quantitatively detect GM maize MON863.  相似文献   

15.
Immunoblotting assays using commercial antibodies were established to investigate the unexpected persistence of the immunoactive Cry1Ab protein in the bovine gastrointestinal tract (GIT) previously suggested by enzyme-linked immunosorbent assay (ELISA). Samples of two different feeding experiments in cattle were analyzed with both ELISA and immunoblotting methods. Whereas results obtained by ELISA suggested that the concentration of the Cry1Ab protein increased during the GIT passage, the immunoblotting assays revealed a significant degradation of the protein in the bovine GIT. Samples showing a positive signal in the ELISA consisted of fragmented Cry1Ab protein of approximately 17 and 34 kDa size. Two independent sets of gastrointestinal samples revealed the apparent discrepancy between the results obtained by ELISA and immunoblotting, suggesting that the antibody used in the ELISA reacts with fragmented yet immunoactive epitopes of the Cry1Ab protein. It was concluded that Cry1Ab protein is degraded during digestion in cattle. To avoid misinterpretation, samples tested positive for Cry1Ab protein by ELISA should be reassessed by another technique.  相似文献   

16.
The event-specific real-time detection and quantification of Roundup Ready soybean (RRS) using an ABI PRISM 7700 sequence detection system with light upon extension (LUX) primer was developed in this study. The event-specific primers were designed, targeting the junction of the RRS 5' integration site and the endogenous gene lectin1. Then, a standard reference plasmid was constructed that carried both of the targeted sequences for quantitative analysis. The detection limit of the LUX real-time PCR system was 0.05 ng of 100% RRS genomic DNA, which was equal to 20.5 copies. The range of quantification was from 0.1 to 100%. The sensitivity and range of quantification successfully met the requirement of the labeling rules in the European Union and Taiwan.  相似文献   

17.
Polymerase Chain Reaction (PCR) techniques are increasingly used for the detection of genetically modified (GM) crops in foods. In this paper, recombinant DNAs introduced into the seven lines of GM maize, such as Event 176, Bt11, T25, MON810, GA21, DLL25, and MON802, are sequenced. On the basis of the obtained sequence, 14 primer pairs for the detection of the segments, such as promoter, terminator regions, and construct genes, were designed. To confirm the specificities of the designed primer pairs, PCR was performed on genomic DNAs extracted from GM and non-GM maize, GM and non-GM soy, and other cereal crops. Because the presence of the corresponding DNA segments was specifically detected in GM crops by the designed primer pairs, it was concluded that this method is useful for fast and easy screening of GM crops including unauthorized ones.  相似文献   

18.
In 2005 it was reported that the genetically modified (GM) maize strain or "event" called Bt10 had been distributed inadvertently in the United States over the previous 4 years. In order to ensure that grain for food and feed production did not contain trace amounts of Bt10 maize and complied with the applicable regulation, highly sensitive and specific detection of Bt10 maize was required. Accordingly, we developed a novel qualitative PCR system for specific detection of Bt10 maize. Moreover, we amply evaluated the performance characteristics of two PCR systems, our own and the one provided by the developer of Bt10, Syngenta Co. Ltd. It was confirmed that both of the qualitative PCR systems can specifically detect Bt10 maize, and the results of a single-laboratory examination suggested that the limit of detection was approximately less than 0.05% for both methods. To evaluate the reproducibility of the methods, we organized an interlaboratory study with the participation of 6 laboratories and analysis of 240 blind test samples. In this paper, we report, for the first time, the statistical analysis of the qualitative PCR data obtained from the interlaboratory study. The results of this analysis also revealed that there was no significant difference in the sensitivity between the two aforementioned methods and that the limit of detection of both the methods was less than 0.05%. Thus, we conclude that both of the methods are equally suitable for correct identification and sensitive detection of the unapproved GM maize Bt10 event in test samples.  相似文献   

19.
To meet the labeling and traceability requirement of genetically modified (GM) maize and their products for trade and regulation, it is essential to develop a specific detection method for monitoring the presence of GM content. In this work, six GM maize lines, including GA21, Bt11, NK603, Bt176, Mir604, and Mon810, were simultaneously detected by universal primer-multiplex-polymerase chain reaction (UP-M-PCR), and the amplicons for the six event-specific genes as well as the endogenous Ivr gene were successfully separated by the method of capillary electrophoresis-laser-induced fluorescence (CE-LIF). The UP-M-PCR method overcame the disadvantages in conventional M-PCR, such as complex manipulation, lower sensitivity, amplification disparity resulting from different primers, etc., and in combination with CE-LIF, it obtained a high sensitivity of 0.1 ng for both single and mixed DNA samples. The established method can be widely used for the qualitative identification of the GM maize lines.  相似文献   

20.
Because of the genetically modified organisms (GMOs) labeling policies issued in many countries and areas, polymerase chain reaction (PCR) methods were developed for the execution of GMO labeling policies, such as screening, gene specific, construct specific, and event specific PCR detection methods, which have become a mainstay of GMOs detection. The event specific PCR detection method is the primary trend in GMOs detection because of its high specificity based on the flanking sequence of the exogenous integrant. This genetically modified maize, MON863, contains a Cry3Bb1 coding sequence that produces a protein with enhanced insecticidal activity against the coleopteran pest, corn rootworm. In this study, the 5'-integration junction sequence between the host plant DNA and the integrated gene construct of the genetically modified maize MON863 was revealed by means of thermal asymmetric interlaced-PCR, and the specific PCR primers and TaqMan probe were designed based upon the revealed 5'-integration junction sequence; the conventional qualitative PCR and quantitative TaqMan real-time PCR detection methods employing these primers and probes were successfully developed. In conventional qualitative PCR assay, the limit of detection (LOD) was 0.1% for MON863 in 100 ng of maize genomic DNA for one reaction. In the quantitative TaqMan real-time PCR assay, the LOD and the limit of quantification were eight and 80 haploid genome copies, respectively. In addition, three mixed maize samples with known MON863 contents were detected using the established real-time PCR systems, and the ideal results indicated that the established event specific real-time PCR detection systems were reliable, sensitive, and accurate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号