首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Carbon (C) sequestration was studied in managed boreal forest stands and in wood products under current and changing climate in Finland. The C flows were simulated with a gap-type forest model interfaced with a wood product model. Sites in the simulations represented medium fertile southern and northern Finland sites, and stands were pure Scots pine and Norway spruce stands or mixtures of silver and pubescent birch.

Changing climate increased C sequestration clearly in northern Finland, but in southern Finland sequestration even decreased. Temperature is currently the major factor limiting tree growth in northern Finland. In southern Finland, the total average C balance over the 150 year period increased slightly in Scots pine stands and wood products, from 0.78 Mg C ha−1 per year to 0.84 Mg C ha−1 per year, while in birch stands and wood products the increase was larger, from 0.64 Mg C ha−1 per year to 0.92 Mg C ha−1 per year. In Norway spruce stands and wood products, the total average balance decreased substantially, from 0.96 Mg C ha−1 per year to 0.32 Mg C ha−1 per year. In northern Finland, the total average C balance of the 150 year period increased under changing climate, regardless of tree species: in Scots pine stands and wood products from 1.10 Mg C ha−1 per year to 1.42 Mg C ha−1 per year, in Norway spruce stands and wood products from 0.69 Mg C ha−1 per year to 0.99 Mg C ha−1 per year, and in birch stands and wood products from 0.43 Mg C ha−1 per year to 0.60 Mg C ha−1 per year.

C sequestration in unmanaged stands was larger than in managed systems, regardless of climate. However, wood products should be included in C sequestration assessments since 12–55% of the total 45–214 Mg C ha−1 after 150 years' simulation was in products, depending on tree species, climate and location. The largest C flow from managed system back into the atmosphere was from litter, 36–47% of the total flow, from vegetation 22–32%, from soil organic matter 25–30%. Emissions from the production process and burning of discarded products were 1–6% of the total flow, and emissions from landfills less than 1%.  相似文献   


2.
Changes in the Earth's atmosphere are expected to influence the growth, and therefore, carbon accumulation of European forests. We identify three major changes: (1) a rise in carbon dioxide concentration, (2) climate change, resulting in higher temperatures and changes in precipitation and (3) a decrease in nitrogen deposition. We adjusted and applied the hydrological model Watbal, the soil model SMART2 and the vegetation model SUMO2 to asses the effect of expected changes in the period 1990 up to 2070 on the carbon accumulation in trees and soils of 166 European forest plots. The models were parameterized using measured soil and vegetation parameters and site-specific changes in temperature, precipitation and nitrogen deposition. The carbon dioxide concentration was assumed to rise uniformly across Europe. The results were compared to a reference scenario consisting of a constant CO2 concentration and deposition scenario. The temperature and precipitation scenario was a repetition of the period between 1960 and 1990. All scenarios were compared to the reference scenario for biomass growth and carbon sequestration for both the soil and the trees.  相似文献   

3.
Carbon sequestered in biomass is not necessarily stored infinitely, but is exposed to human or natural disturbances. Storm is the most important natural disturbance agent in Swiss forests. Therefore, if forests are taken into account in the national carbon budget, the impact of windthrow on carbon pools and fluxes should be included. In this article the forest scenario model MASSIMO and the soil carbon model YASSO were applied to assess the effect of forest management and an increased storm activity on the carbon sequestration in Swiss forests. First, the soil model was adapted to Swiss conditions and validated. Second, carbon fluxes were assessed applying the two models under various forest management scenarios and storm frequencies. In particular, the influence of clearing after a storm event on the carbon budget was analyzed. The evaluation of the model results showed that the soil model reliably reproduces the amount of soil carbon at the test sites. The simulation results indicated that, within the simulated time period of 40 years, forest management has a strong influence on the carbon budget. However, forest soils only react slightly to changes in the above-ground biomass. The results also showed that a storm frequency increase of 30% has a small impact on the national carbon budget of forests. To develop effective mitigation strategies for forest management, however, longer time periods must be regarded.  相似文献   

4.
为了探讨森林碳汇能力、森林碳汇贮存量,该研究利用IPCC(政府间气候变化专门委员会)制定计算方法,通过对岛东林场2009年森林资源二类清查数据进行分析,得出目前岛东林场碳汇蓄积量约31.4万t。数据分析结果表明,当前岛东林场森林经营方式不能满足国家层面上以应对全球气候变化为目的的多功能森林经营要求,也不能满足海南国际旅游岛建设中对森林游憩资源开发需求,在这基础上提出对岛东林场人工林科学合理的近自然化改造模式。  相似文献   

5.
Through carbon offset programs, forest owners can be offered financial incentives to enhance the uptake and storage of carbon on their lands. The amount of carbon that can be claimed by an individual landowner will ultimately depend on multiple factors, including the productivity of the forest, the management history of the stand, and the program in which the landowner is participating. This project presents a modeling framework for forest carbon accounting which is driven by forest yield curves and carbon pool partitioning. Within this model the amount of creditable carbon generated from adjusting the rotation age of multiple forest stands can be estimated for 46 distinct North American forest types. The model also provides a comparison of total creditable carbon generated under three carbon accounting methodologies: the Department of Energy 1605b Registry, the Chicago Climate Exchange, and the Voluntary Carbon Standard. In our evaluation of a 5-year rotation extension across 102 unique modeling scenarios, we find large differences among the carbon accounting schemes. This has implications for both forest landowners and policymakers alike. In particular, methodologies to account for such issues as leakage, permanence, additionality, and baseline establishment, while potentially increasing the overall legitimacy of any forest carbon offset program, can reduce creditable carbon to the forest owner (by up to 70%). Regardless of the protocol used, we also note strong regional differences, with Pacific Northwest forests of fir, spruce, hemlock, alder and maple being the most effective at sequestering carbon on a per area basis.  相似文献   

6.
本研究以山东省各森林类型为统计单元,得出山东省现有森林碳储量为105.5Tg,占全国的3%,是全国单位面积碳储量平均水平的1.92倍(按土地面积计),各森林类型碳密度差异较大,介于9.23~46.59Mg.hm-2之间,密度大小与人为干扰程度有直接关系。并根据历年森林碳储量与碳密度变化情况,对未来18年山东省碳储量及碳密度变化情况进行了预测,至2020年,全省森林碳储量可达155.04Tg,比现在增长47%,至2030年达到199.08Tg,比2012年增长89%。  相似文献   

7.
岷江上游不同森林类型土壤有机碳含量及密度特征   总被引:1,自引:0,他引:1  
本文研究了岷江上游云杉人工林、紫果冷杉人工林、岷江冷杉人工幼龄林、高山栎天然次生林4种森林类型土壤有机碳含量及密度。结果表明:4种森林类型不同土层有机碳含量和有机碳密度均差异显著,都随土层深度增加而逐渐减小,且土壤有机碳集中分布在表层土(0~20 cm)中;4种森林类型土壤有机碳含量从高到低排序为:云杉人工林(5.896 g.kg-1)紫果冷杉人工林(5.479 g.kg-1)高山栎天然次生林(5.019 g.kg-1)岷江冷杉人工幼龄林(2.245 g.kg-1);土壤有机碳密度从高到低为:云杉人工林(0.03541 kg.m-2)高山栎天然次生林(0.03134 kg.m-2)紫果冷杉人工林(0.02474 kg.m-2)岷江冷杉人工幼龄林(0.01573 kg.m-2)。说明林分起源、树种组成、植物根系、地表枯落物和人类活动等因素影响着土壤有机碳含量及碳密度。  相似文献   

8.
Forest succession contributes to the global terrestrial carbon (C) sink, but changes in C sequestration in response to varied harvest intensities have been debated. The forests of the Central Appalachian region have been aggrading over the past 100 years following widespread clear-cutting that occurred in the early 1900s and these forests are now valuable timberlands. This study compared the history of ecosystem C storage in four watersheds that have been harvested at different frequencies and intensities since 1958. We compared NPP, NEP, and component ecosystem C fluxes (g C m−2 year−1) in response to the four different harvest histories (no harvest, clear-cutting, single tree selection cutting, and 43 cm diameter-limit cutting). Clear-cutting had short-term negative effects on NEP but harvest did not significantly impact long-term average annual C sequestration rates. Average plant C (g C m−2) since 1950 was about 33% lower in response to a clear-cut event than plant C in an un-harvested forest, suggesting that the C sequestration associated with clear-cutting practices would decline over time and result in lower C storage than diameter-limit cut, selective cut, or un-harvested forests. Total C stored over a 55-year period was stimulated ∼37% with diameter-limit cutting and selective cutting relative to un-harvested forests.  相似文献   

9.
碳汇一般是指从空气中清除二氧化碳的过程、活动、机制。在林业中主要是指植物吸收大气中的二氧化碳并将其固定在植被或土壤中,从而减少该气体在大气中的浓度。重庆市渝北区作为国家级开发区“两江新区”的重要组成部分,对区域内的森林碳汇量进行估算将提供重要参考与实践意义,本文应用目前比较成熟的森林碳汇量计算方法,在计算出森林生物量的基础上,针对渝北全区进行了碳汇量的计算。结果表明:碳汇总量已达到724301.01963t。  相似文献   

10.
Carbon sequestration is important in studying global carbon cycle and budget. Here, we used the National Forest Resource Inventory data for China collected from 2004 to 2008 and forest biomass and soil carbon storage data obtained from direct field measurements to estimate carbon (C) sequestration rate and benefit keeping C out of the atmosphere in forest ecosystems and their spatial distributions. Between 2004 and 2008, forests sequestered on average 0.36 Pg C yr?1 (1 Pg = 1015g), with 0.30 Pg C yr?1 in vegetation and 0.06 Pg C yr?1 in 0–1 meter soil. Under the different forest categories, total C sequestration rate ranged from 0.02 in bamboo forest to 0.11 Pg C yr?1 in broadleaf forest. The southwest region had highest C sequestration rate, 30% of total C sequestration, followed by the northeast and south central regions. The C sequestration in the forest ecosystem could offset about 21% of the annual C emissions in China over the same period, especially in provinces of Tibet, Guangxi, and Yunnan, and the benefit was similar to most Annex I countries. These results show that forests play an important role in reducing the increase in atmospheric carbon dioxide in China, and forest C sequestration are closely related to forest area, tree species composition, and site conditions.  相似文献   

11.
Carbon (C) accreditation of forest development projects is one approach for sequestering atmospheric CO2, under the provisions of the Kyoto protocol. The C sequestration potential of reforested mined land is not well known. The purpose of this work was to estimate and compare the ecosystem C content in forests established on surface, coal-mined and non-mined land. We used existing tree, litter, and soil C data for fourteen mined and eight adjacent, non-mined forests in the Midwestern and Appalachian coalfields to determine the C sequestration potential of mined land reclaimed prior to the passage of the Surface Mining Control and Reclamation Act (1977). We developed statistically significant and biologically reasonable models for ecosystem C across the spectrum of site quality and stand age. On average, the highest amount of ecosystem C on mined land was sequestered in pine stands (148 Mg ha−1), followed by hardwood (130 Mg ha−1) and mixed stands (118 Mg ha−1). Non-mined hardwood stands sequestered 210 Mg C ha−1, which was about 62% higher than the average of all mined stands. Our mined land response surface models of C sequestration as a function of site quality and age explained 59, 39, and 36% of the variation of ecosystem C in mixed, pine, and hardwood stands, respectively. In pine and mixed stands, ecosystem C increased exponentially with the increase of site quality, but decreased with age. In mined hardwood stands, ecosystem C increased asymptotically with age, but it was not affected by site quality. At rotation age (60 yr), ecosystem C in mined hardwood stands was less on high quality sites, but similar for low quality sites compared to non-mined hardwood stands. The overall results indicated that the higher the original forest site quality, the less likely C sequestration potential was restored, and the greater the disparity between pre- and post-mining C sequestration stocks.  相似文献   

12.
Soil organic carbon(SOC)mineralization is closely related to carbon source or sink of terrestrial ecosystem.Natural stands of Larix olgensis on the Jincang forest farm,Jilin Province were selected to investigate the dynamics of SOC mineralization and its correlations with other soil properties in a young forest and mid-aged forest at soil depths of 0–10,>10–20,>20–40 and>40–60 cm.The results showed that compared with a mid-aged forest,the SOC stock in the young forest was 32%higher.Potentially mineralizable soil carbon(C0)in the young forest was 1.1–2.5 g kg^-1,accounting for 5.5–8.1%of total SOC during the 105 days incubation period and 0.3–1.5 g kg^-1 in the mid-aged forest at different soil depths,occupying 2.8–3.4%of total SOC.There was a significant difference in C0 among the soil depths.The dynamics of the SOC mineralization was a good fit to a three-pool(labile,intermediate and stable)carbon decomposition kinetic model.The SOC decomposition rate for different stand ages and different soil depths reached high levels for the first 15 days.Correlation analysis revealed that the C0 was significantly positively related with SOC content,soil total N(TN)and readily available K(AK)concentration.The labile soil carbon pool was significantly related to SOC and TN concentration,and significantly negatively correlated with soil bulk density.The intermediate carbon pool was positively associated with TN and AK.The stable carbon pool had negative correlations with SOC,TN and AK.  相似文献   

13.
Understanding long-term changes in forest ecosystem carbon stocks under forest management practices such as timber harvesting is important for assessing the contribution of forests to the global carbon cycle. Harvesting effects are complicated by the amount, type, and condition of residue left on-site, the decomposition rate of this residue, the incorporation of residue into soil organic matter and the rate of new detritus input to the forest floor from regrowing vegetation. In an attempt to address these complexities, the forest succession model LINKAGES was used to assess the production of aboveground biomass, detritus, and soil carbon stocks in native Eucalyptus forests as influenced by five harvest management practices in New South Wales, Australia. The original decomposition sub-routines of LINKAGES were modified by adding components of the Rothamsted (RothC) soil organic matter turnover model. Simulation results using the new model were compared to data from long-term forest inventory plots. Good agreement was observed between simulated and measured above-ground biomass, but mixed results were obtained for basal area. Harvesting operations examined included removing trees for quota sawlogs (QSL, DBH >80 cm), integrated sawlogs (ISL, DBH >20 cm) and whole-tree harvesting in integrated sawlogs (WTH). We also examined the impact of different cutting cycles (20, 50 or 80 years) and intensities (removing 20, 50 or 80 m3). Generally medium and high intensities of shorter cutting cycles in sawlog harvesting systems produced considerably higher soil carbon values compared to no harvesting. On average, soil carbon was 2–9% lower in whole-tree harvest simulations whereas in sawlog harvest simulations soil carbon was 5–17% higher than in no harvesting.  相似文献   

14.
When included as part of a larger greenhouse gas (GHG) emissions reduction program, forest offsets may provide low-cost opportunities for GHG mitigation. One barrier to including forest offsets in climate policy is the risk of reversal, the intentional or unintentional release of carbon back to the atmosphere due to storms, fire, pests, land use decisions, and many other factors. To address this shortcoming, a variety of different strategies have emerged to minimize either the risk or the financial and environmental implications of reversal. These strategies range from management decisions made at the individual stand level to buffers and set-asides that function across entire trading programs. For such strategies to work, the actual risk and magnitude of potential reversals need to be clearly understood. In this paper we examine three factors that are likely to influence reversal risk: natural disturbances (such as storms, fire, and insect outbreaks), climate change, and landowner behavior. Although increases in atmospheric CO2 and to a lesser extent warming will likely bring benefits to some forest ecosystems, temperature stress may result in others. Furthermore, optimism based on experimental results of physiology and growth must be tempered with knowledge that future large-scale disturbances and extreme weather events are also likely to increase. At the individual project level, management strategies such as manipulation of forest structure, age, and composition can be used to influence carbon sequestration and reversal risk. Because some management strategies have the potential to maximize risk or carbon objectives at the expense of the other, policymakers should ensure that forest offset policies and programs do not provide the singular incentive to maximize carbon storage. Given the scale and magnitude of potential disturbance events in the future, however, management decisions at the individual project level may be insufficient to adequately address reversal risk; other, non-silvicultural strategies and policy mechanisms may be necessary. We conclude with a brief review of policy mechanisms that have been developed or proposed to help manage or mitigate reversal risk at both individual project and policy-wide scales.  相似文献   

15.
In this work the aim was to determine how carbon sequestration in the growing stock of trees in Finland is dependent on the forest management and increased production potential due to climate change. This was analysed for the period 2003–2053 using forest inventory data and the forestry model MELA. Four combinations of two climate change and two management scenarios were studied: current (CU) and gradually warming (CC) climate and forest management strategies corresponding to different rates of utilisation of the cutting potential, namely maximum sustainable removal (Sust) or maximum net present value (NPV) of wood production (Max). In this analysis of Finland, the initial amount of carbon in the growing stock was 765 Mt (2,802 Tg CO2). At the end of the simulation, the carbon in the growing stock of trees in Finland had increased to 894 Mt (3,275 Tg CO2) under CUSust, 906 Mt (3,321 Tg CO2) under CUMax, 1,060 Mt (3,885 Tg CO2) under CCSust and 1,026 Mt (3,758 Tg CO2) under CCMax. The results show that future development of carbon in the growing stock is not only dependent on climate change scenarios but also on forest management. For example, maximising the NPV of wood production without sustainability constraints results, over the short term, in a large amount of wood obtained in regeneration cuttings and a consequent decrease in the amount of carbon in growing stock. Over the longer term, this decrease in the carbon of growing stock in regenerated forests is compensated by the subsequent increase in fast-growing young forests. By comparison, no drastic short-term decrease in carbon stock was found in the Sust scenarios; only minor decreases were observed.  相似文献   

16.
17.
Wood products are considered to contribute to the mitigation of carbon dioxide emissions. A critical gap in the life cycle of wood products is to transfer the raw timber from the forest to the processing wood industry and, thus, the primary wood products. Therefore, often rough estimates are used for this step to obtain total forestry carbon balances. The objectives of this study were (1) to examine the fate of timber harvested in Thuringian state forests (central Germany), representing a large, intensively managed forested region, and (2) to quantify carbon stocks and the lifetime of primary wood products made from this timber. The analyses were based on the amount and assortments of actually sold timber, and production parameters of the companies that bought and processed this timber. In addition, for coniferous stands of a selected Thuringian forest district, we calculated potential effects of management, as expressed by different thinning regimes on wood products and their lifetimes. Total annual timber sale of soft- and hardwoods from Thuringian state forests (195,000 ha) increased from about 136,893 t C (~0.7 t C ha−1 year−1) in 1996 to 280,194 t C (~1.4 t C ha−1 year−1) in 2005. About 47% of annual total timber harvest went into short-lived wood products with a mean residence time (MRT) < 25 years. Thirty-one per cent of the total harvest went into wood products with an MRT of 25–43 years, and only 22% was used as construction wood and glued wood, products with the longest MRT (50 years). The average MRT of carbon in harvested wood products was 20 years. Thinning from above throughout the rotation of spruce forests would lead to an average MRT in harvested wood products of about 23 years, thinning from below of about 18 years. A comparison of our calculations with estimates that resulted from the products module of the CO2FIX model (Nabuurs et al. 2001) demonstrates the influence of regional differences in forest management and wood processing industry on the lifetime of harvested wood products. To our knowledge, the present study provides for the first time real carbon inputs of a defined forest management unit to the wood product sector by linking data on raw timber production, timber sales and wood processing. With this new approach and using this data, it should be possible to substantially improve the net-carbon balance of the entire forestry sector.  相似文献   

18.
Fast-growing woody species grown in dense, short-rotation plantations on land previously in agriculture offer potential economic benefits in products such as engineered construction material, boiler fuel, non-food-based biofuel feed stocks and other carbon (C)-based products and credits. However, information on the effects on major C pools of short-rotation culture is relatively sparse. In this study, Populus deltoides and P. deltoides × P. nigra hybrid clones were grown for 5 years at 1 m × 1 m spacing in plantations on a former pasture of high native fertility in the Missouri River floodplain in the lower Midwest U.S.A. Above- and below-ground biomass production, leaf area-based production efficiency, photosynthetic attributes and soil C dynamics were studied.  相似文献   

19.
We examined whether N-fertilization and soil origin of Douglas-fir [Psuedotsuga menziesii (Mirb.) Franco] stands in western Washington state could affect C sequestration in both the tree biomass and in soils, as well as the flux of dissolved organic carbon (DOC) through the soil profile. This study utilized four forest sites that were initially established between 1972 and 1980 as part of Regional Forest Nutrition Research Project (RFNRP). Two of the soils were derived from coarse-textured glacial outwash and two from finer-textured volcanic-source material, primarily tephra, both common soil types for forestry in the region. Between 1972 and 1996 fertilized sites received either three or four additions of 224 kg N ha−1 as urea (672–896 kg N ha−1 total). Due to enhanced tree growth, the N-fertilized sites (161 Mg C ha−1) had an average of 20% more C in the tree biomass compared to unfertilized sites (135 Mg C ha−1). Overall, N-fertilized soils (260 Mg C ha−1) had 48% more soil C compared to unfertilized soils (175 Mg C ha−1). The finer-textured volcanic-origin soils (348 Mg C ha−1) had 299% more C than glacial outwash soils (87.2 Mg C ha−1), independent of N-fertilization. Soil-solution DOC collected by lysimeters also appeared to be higher in N-fertilized, upper soil horizons compared to unfertilized controls but it was unclear what fraction of the difference was lost from decomposition or contributed to deep-profile soil C by leaching and adsorption. When soil, understory vegetation and live-tree C compartments are pooled and compared by treatment, N-fertilized plots had an average of 110 Mg C ha−1 more than unfertilized controls. These results indicate these sites generally responded to N-fertilization with increased C sequestration, but differences in stand and soil response to N-fertilization might be partially explained by soil origin and texture.  相似文献   

20.
中国森林系统对全球碳平衡的作用与地位   总被引:2,自引:0,他引:2  
结合林业系统的远景规划,提出了“20 a 20 a”的林业建设模式。根据该模式,从2004年开始,经过20 a的造林工作,我国森林覆盖率将达到25%,再经过20 a将达到30%。剔除每年2×108m3的木材采伐量,在第1个20a期间,平均年消耗大气C折合CO22.24×108t,占1996年我国CO2排放量的27.8%;以森林覆盖率25%计算,在第2个20 a期间,平均年消耗大气C折合CO26.31×108t,占1996年我国CO2排放量的78.3%。将每年2×108m3的木材采伐量计算在内,则消耗的CO2分别为8.32×108t和12.36×108t,约占1996年CO2排放量的103%和153%。在“20 a 20 a”模式下,我国森林系统将成为巨大的碳汇。这一方面可使我国的生态环境得到优化,实现国民经济的可持续发展,另一方面可减轻我国在碳排放问题上所受到的国际压力,有利于拓宽我国的经济发展空间。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号