首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objective of this study was to measure apparent total tract digestibility (ATTD) of Ca and P as well as reproductive performance in late gestation and lactating sows supplemented with a novel phytase and to compare the response to phytase supplementation between late gestation and lactating sows. A total of 45 late gestation sows and 45 lactating sows were used in experiments 1 and 2, respectively, in a completely randomized design. The sows were provided with a control diet or the control diet supplemented with 187.5 or 375 FYT phytase/kg feed for 10 days. The diets were prepared according to the formulas in use for production but without any inorganic P supplement. Titanium dioxide was included at 3 g/kg feed as an indigestible marker. Each dietary treatment was replicated with 15 sows individually housed in farrowing stalls. The sows were allowed to adapt to the experimental diets for 5 days before a 5-d fecal collection by grab sampling, and the performance of the sows and their litters were measured until weaning. The results showed that the ATTD of Ca increased linearly (P < 0.001), while the ATTD of P increased both linearly and quadratically (P < 0.01) with increasing supplementation of phytase in both late gestation and lactating sows. There was no significant effect of phytase on the ATTD of dry matter, crude protein, and gross energy, and the performance of the sows and their progenies. The phytase added at 187.5 and 375 FYT/kg feed released 0.07% and 0.10% digested P, respectively, in late gestation sows, which compared with 0.09% and 0.12% digested P in lactating sows. In conclusion, a novel phytase at 187.5–375 FYT/kg feed could release 0.07–0.12% digestible P for sows. It appeared that using the P digestibility values of feed ingredients listed by NRC to formulate a diet for sows might overestimate dietary P supply and a greater response to phytase supplementation could be expected in lactating sows than in late gestation sows.  相似文献   

2.
Fermentation of cereal grains may degrade myo-inositol 1,2,3,4,5,6-hexakis (dihydrogen phosphate) (InsP6) thereby increasing nutrient digestibility. Effects of chemical acidification or fermentation with Limosilactobacillus (L.) reuteri with or without phytase of high β-glucan hull-less barley grain on apparent ileal digestibility (AID) and apparent total tract digestibility (ATTD) of nutrients and gross energy (GE), standardized ileal digestibility (SID) of crude protein (CP) and amino acids (AAs), and standardized total tract digestibility (STTD) of P were assessed in growing pigs. Pigs were fed four mash barley-based diets balanced for water content: 1) unfermented barley (Control); 2) chemically acidified barley (ACD) with lactic acid and acidic acid (0.019 L/kg barley grain at a ratio of 4:1 [vol/vol]); 3) barley fermented with L. reuteri TMW 1.656 (Fermented without phytase); and 4) barley fermented with L. reuteri TMW 1.656 and phytase (Fermented with phytase; 500 FYT/kg barley grain). The acidification and fermentation treatments occurred for 24 h at 37 °C in a water bath. The four diets were fed to eight ileal-cannulated barrows (initial body weight [BW], 17.4 kg) for four 11-d periods in a double 4 × 4 Latin square. Barley grain InsP6 content of Control, ACD, Fermented without phytase, or Fermented with phytase was 1.12%, 0.59%, 0.52% dry matter (DM), or not detectable, respectively. Diet ATTD of DM, CP, Ca, and GE, digestible energy (DE), predicted net energy (NE) value, and urinary excretion of P were greater (P < 0.05) for ACD than Control. Diet ATTD of DM, CP, Ca, GE, DE and predicted NE value, urinary excretion of P was greater (P < 0.05), and diet AID of Ca and ATTD and STTD of P tended to be greater (P < 0.10) for Fermented without phytase than Control. Diet ATTD of GE was lower (P < 0.05) and diet ATTD and STTD of P, AID and ATTD of Ca was greater (P < 0.05) for Fermented with phytase than Fermented without phytase. Acidification or fermentation with/without phytase did not affect diet SID of CP and AA. In conclusion, ACD or Fermented without phytase partially degraded InsP6 in barley grain and increased diet ATTD of DM, CP, and GE, but not SID of CP and most AA in growing pigs. Fermentation with phytase entirely degraded InsP6 in barley grain and maximized P and Ca digestibility, thereby reducing the need to provide inorganic dietary P to meet P requirements of growing pigs.  相似文献   

3.
Three experiments were conducted to evaluate the effect of supplementing phytase and xylanase on nutrient digestibility and performance of growing pigs fed wheat-based diets. In Exp. 1, 10 diets were fed to 60 pigs from 20 to 60 kg of BW to determine the effect of combining phytase and xylanase on apparent total tract digestibility (ATTD) of nutrients and growth performance. The 10 diets included a positive control diet (PC; 0.23% available P; 0.60% Ca) and a negative control diet (NC; 0.16% available P; 0.50% Ca) supplemented with phytase at 0, 250, and 500 fytase units (FTU)/kg and xylanase at 0, 2,000, and 4,000 xylanase units (XU)/kg in a 3 x 3 factorial arrangement. In Exp. 2, 6 ileally cannulated barrows (initial BW = 35.1 kg) were fed 4 wheat-based diets in a 4 x 4 Latin square design, with 2 added columns to determine the effect of combining phytase and xylanase on apparent ileal digestibility (AID) of nutrients. The 4 diets were NC (same as that used in Exp. 1) or NC supplemented with phytase at 500 FTU/kg, xylanase at 4,000 XU/kg, or phytase at 500 FTU/kg plus xylanase at 4,000 XU/kg. In Exp. 3, 36 barrows (initial BW = 55.5 kg) were fed 4 diets based on prepelleted (at 80 degrees C) and crumpled wheat for 2 wk to determine the effect of phytase supplementation on ATTD of nutrients. The 4 diets fed were a PC (0.22% available P; 0.54% Ca) and a NC (0.13% available P; 0.43% Ca) alone or with phytase at 500 or 1,000 FTU/kg. All diets in the 3 experiments contained Cr(2)O(3) as an indigestible marker. No synergistic interactions were detected between phytase and xylanase on any of the response criteria measured in Exp. 1 or 2. There were no dietary effects on growth performance in Exp. 1. In Exp. 1, phytase at 250 FTU/kg increased the ATTD of P and Ca by 51 and 11% at 20 kg of BW or by 54 and 10% at 60 kg of BW, respectively, but increasing the level of phytase to 500 FTU/kg only increased (P < 0.05) ATTD of P at 20 kg of BW. In Exp. 2, phytase at 500 FTU/kg increased (P < 0.05) the AID of P and Ca by 21 and 12%, respectively. In Exp. 3, phytase at 500 FTU/kg improved (P < 0.05) ATTD of P by 36%, but had no further effect at 1,000 FTU/kg. Xylanase at 4,000 XU/kg improved (P < 0.05) AID of Lys, Leu, Phe, Thr, Gly, and Ser in Exp. 2. In conclusion, phytase and xylanase improved P and AA digestibilities, respectively, but no interaction between the 2 enzymes was noted.  相似文献   

4.
An experiment was conducted to test the hypothesis that inclusion of hybrid rye in diets containing corn and soybean meal (SBM) without or with microbial phytase improves the apparent total tract digestibility (ATTD) and the standardized total tract digestibility (STTD) of P because of the intrinsic phytase activity in hybrid rye. Forty-eight growing barrows (initial body weight: 39.5 ± 7.7 kg) were allotted to six diets. A basal diet containing corn and SBM; a rye-based diet; and a diet containing corn, SBM, and rye were formulated. Each diet was formulated without and with microbial phytase (500 units/kg of diet) for a total of six diets. Fecal samples were collected for 4 d following a 5-d adaptation period according to the marker-to-marker procedure. Results indicated that no interactions between diets and concentration of phytase were observed for any of the response criteria measured. The ATTD and STTD of P and the ATTD of Ca differed (P < 0.05) among diets, but regardless of diet, the concentration of P in feces was reduced (P < 0.05) by adding microbial phytase to the diets. As a consequence, microbial phytase increased (P < 0.05) ATTD and STTD of P, and the ATTD of Ca was also increased (P < 0.05) by the use of microbial phytase. Measured values for the ATTD and STTD of P in the diets containing corn, SBM, and hybrid rye without or with phytase were greater (P < 0.05) than values that were predicted based on the ATTD and STTD of P for the corn–SBM and the hybrid rye diet. The observation that STTD predicted from the individual ingredients underestimated the STTD of P in the mixed diet indicates that the intrinsic phytase in hybrid rye resulted in increased digestibility of the P in the corn and SBM included in the corn–SBM–hybrid rye diet. In conclusion, microbial phytase increased the ATTD and STTD of P and the ATTD of Ca regardless of feed ingredients used in diets fed to pigs. In addition, the intrinsic phytase from hybrid rye increased the ATTD and STTD of P in corn and SBM.  相似文献   

5.
A study was conducted to evaluate the effects of phytase supplementation on growth performance, phosphorus availability, and bone mineralization in broilers. Three hundred fifty Cobb × Cobb 500 slow-feathering male broilers were placed in steel battery cages into 7 treatments with 10 replications of 5 chicks each. The treatments were: a positive control (PC) diet [0.42% nonphytate phosphorus (nPP)], 4 diets containing increases in nPP from dicalcium phosphate (0.14, 0.20, 0.26, and 0.32%), and 2 phytase supplemental levels [500 and 1,000 phytase units ( FYT)/kg] on the diet having 0.14% nPP. All diets contained 0.8% calcium. Growth performance and bone data were regressed against the 4 diets having increased nPP. The equations generated were replaced by the corresponding performance obtained with 2 phytase levels to estimate their nPP bioequivalence. An overall reduction in performance and bone mineralization was observed associated with a reduction in nPP. Linear fits provided the best adjustments for all responses with the exceptions of BW gain (BWG) and feed intake (FI). Adding phytase to the 0.14% nPP diet improved growth performance and bone mineralization (P < 0.001). Average bioequivalence nPP for each phytase level was dependent on the evaluated response with lowest and highest values at 500 FYT supplementation of 0.077 and 0.145 for toe P and femur Ca, respectively, whereas lowest and highest values at 1,000 FYT of 0.143 and 0.194 for BWG and toe ash. Averaging all values for 500 and 1,000 FYT provided estimations of 0.100 and 0.166 nPP, respectively.  相似文献   

6.
The capacity of a novel consensus bacterial 6-phytase variant (PhyG) to entirely replace dietary inorganic phosphorus (Pi) source in grower pigs fed diets with reduction of calcium (Ca), net energy (NE), and digestible amino acids (AA) was evaluated, using growth performance and apparent total tract digestibility (ATTD) of nutrients as outcome measures. A total of 352 mixed-sex pigs (initial BW 23.4 kg) were randomized to 4 treatments, 8 pigs/pen, and 11 pens/treatment. Diets were corn-soybean meal-based and formulated by phase (grower 1, 25 to 50 and grower 2, 50 to 75 kg BW). The positive control diet (PC) provided adequate nutrients and a negative control diet (NC) was formulated without Pi (1.2 g/kg ATTD P) and reduced in Ca (-0.12 to -0.13 percentage points), NE (-32 kcal/kg), and digestible essential AA (-0.004 to -0.026 percentage points) vs. PC. Two further treatments comprised the NC plus 500 or 1,000 FTU/kg of PhyG. Data were analyzed by ANOVA, mean contrasts and orthogonal polynomial regression. Nutrient reductions in the NC reduced (P < 0.05) average daily gain (ADG) during grower 1 and overall (73 to 136 d of age), increased (P < 0.05) feed conversion ratio (FCR) during grower 1 and overall and tended to reduce (P < 0.1) average daily feed intake (ADFI) during grower 2 and overall, vs. PC. Phytase supplementation improved (P < 0.05) FCR during grower 1, ADG during grower 2 and overall, ATTD of DM and P, and tended to improve DE (P = 0.053) in a linear dose-dependent manner. PhyG at 1,000 FTU/kg resulted in growth performance (all measures, all phases) equivalent to PC. The findings demonstrate that PhyG at 1,000 FTU/kg totally replaced Pi in complex grower pig diets containing industrial co-products, compensated a full nutrient matrix reduction and maintained performance.  相似文献   

7.
We have recently expressed a new phytase enzyme in a yeast system. Three experiments with a total of 140 weanling crossbred pigs were conducted to examine the efficacy of this enzyme in improving the bioavailability of phytate-P in corn-soybean meal diets to young pigs. Experiment 1 compared the efficacy of this new phytase with a commercially available phytase (Natuphos, BASF) for 4 wk at an inclusion level of 1,200 U/kg of diet. Experiment 2 compared the responses of pigs to four doses of the new phytase supplementation (300, 600, 900, and 1,200 U/kg of diet) for 4 wk. Experiment 3 compared the efficacy of this new phytase and Natuphos at a marginally optimal dose (700 U/kg of diet) for 5 wk. A group of pigs were fed the P-deficient basal diet as a negative control in Exp. 1, and a group of pigs were fed the basal diet plus .17 or .22% inorganic P as a positive control in all experiments. In Exp. 1, pigs fed the two sources of phytase had similar ADG (564 vs 567 g), gain/feed (.597 vs .589), plasma inorganic P concentrations (8.9 vs 8.4 mg/dL), and mobility scores (4.25 vs 4.46) that were higher (P < .05) than those of the negative control. In Exp. 2, plasma inorganic P concentration was a fairly linear response to the phytase dose (r > .83) at wk 1 and 2. Overall ADG of pigs also tended to increase with the phytase dose (P = .15). In Exp. 3, pigs fed the two sources of phytase had ADG (483 vs 506 g) similar to that of the positive control (508 g). These two groups also had similar plasma inorganic P concentrations (7.7 vs 7.4 mg/dL) that were lower (P < .05) than those of the positive control group (9.7 mg/dL). There was no significant effect of dietary treatments on ADFI in all three experiments. In conclusion, our new phytase was as effective as Natuphos, at the inclusion level of 700 or 1,200 U/kg of a P-deficient, corn-soybean meal diet, in improving phytate-P utilization by young pigs.  相似文献   

8.
Four experiments were conducted with weanling pigs fitted with a simple T-cannula at the distal ileum, to determine the effect of phytase supplementation to four diets on the apparent ileal digestibilities (AID) of CP and AA, and the apparent total-tract digestibilities (ATTD) of CP and DE. Phytase (Natuphos, DSM Food Specialties, Delft, The Netherlands) was supplemented at rates of 0, 500 or 1,000 FTU/kg to the four diets. A 20% CP (as-fed basis) corn-soybean meal diet was used in Exp. 1; a 20% CP wheat-soybean meal diet in Exp. 2; a 20% CP wheat-soybean meal-canola meal diet in Exp. 3; and a 19% CP barley-peas-canola meal diet in Exp. 4. In each experiment, six barrows, fitted with a simple T-cannula at the distal ileum, were fed the basal plus phytase-supplemented diets according to a repeated 3 x 3 Latin square design. Each experimental period comprised 14 d. The piglets were at fed 0800 and 2000 daily, equal amounts for each meal, at a daily rate of at least 2.4 times the maintenance requirement for ME. Feces were collected from 0800 on d 8 until 0800 on d 12 of each experimental period. Ileal digesta were collected from 0800 to 2000 on d 12, 13, and 14. Chromic oxide was used as the digestibility marker. The average initial and final BW (average of all experiments) were 7.9 and 16.5 kg, respectively. Phytase supplementation did not improve the AID of CP and AA in Exp. 1, 2, and 4; however, there were improvements (P < 0.05) or tendencies (P < 0.10) toward improvements in the AID of CP and AA or the ATTD of CP and the content of DE with phytase supplementation in Exp. 3. These results suggest that the AA response factor to microbial phytase supplementation depends on diet composition.  相似文献   

9.
The overall objective of the studies reported here was to evaluate the growth and nutrient utilization responses of pigs to dietary supplementation of phytate- or nonstarch polysaccharide-degrading enzymes. In Exp. 1, growth performance and nutrient digestibility responses of forty-eight 10-kg pigs to dietary supplementation of phytase or a cocktail of xylanase, amylase, and protease (XAP) alone or in combination were evaluated. The growth response of one hundred fifty 23-kg pigs to dietary supplementation of phytase or xylanase individually or in combination was studied in Exp. 2 in a 6-wk growth trial, whereas Exp. 3 investigated the nutrient digestibility and nutrient retention responses of thirty 24-kg pigs to dietary supplementation of the same enzymes used in Exp. 2. In Exp. 1, the pigs were used in a 28-d feeding trial. They were blocked by BW and sex and allocated to 6 dietary treatments. The treatments were a positive control (PC) diet; a negative control (NC) diet marginally deficient in P and DE; NC with phytase added at 500 or 1,000 phytase units (FTU)/kg; NC with xylanase at 2,500 units (U)/kg, amylase at 400 U/kg, and protease at 4,000 U/kg; and NC with a combination of phytase added at 500 FTU/kg and XAP as above. In Exp. 2 and 3, the 5 dietary treatments were positive control (PC), negative control (NC), NC plus 500 FTU of phytase/kg, NC plus 4,000 U of xylanase/kg, and NC plus phytase and xylanase. In Exp. 1, low levels of nonphytate P and DE in the NC diet depressed (P < 0.05) ADG of the pigs by 16%, but phytase linearly increased (P < 0.05) ADG by up to 24% compared with NC. The cocktail of XAP alone had no effect on ADG of pigs, but the combination of XAP and phytase increased (P < 0.05) ADG by 17% compared with the NC treatment. There was a linear increase (P < 0.01) in Ca and P digestibility in response to phytase. In Exp. 2, ADG was 7% greater in PC than NC (P < 0.05); there were no effects of enzyme addition on any response. In Exp. 3, addition of phytase alone or in combination with xylanase improved (P < 0.05) P digestibility. Phosphorus excretion was greatest (P < 0.01) in the PC and lowest (P < 0.05) in the diet with the combination of phytase and xylanase. The combination of phytase and xylanase improved P retention (P < 0.01) above the NC diet to a level similar to the PC diet. In conclusion, a combination of phytase and carbohydrases improved ADG in 10-kg but not 23-kg pigs, but was efficient in improving P digestibility in pigs of all ages.  相似文献   

10.
The effects of phytase on phosphorus (P) digestibility are well established. However, there are few studies that report P balance, particularly when phytase is used in diets that have adequate or deficient P. The main objective of the study was to determine the effect of dietary P levels and exogenous phytase on P balance in growing pigs. The first part of the experiment was a 14-d metabolism study conducted with 80 barrows (initial body weight 18.5 ± 0.5 kg) with a 2 × 5 factorial arrangement of treatments and main effects of available P (0.13% available P, low P [Low-P] diet; 0.35% available P, adequate P [Adeq-P] diet) and phytase (0, 250, 500, 2,500, and 12,500 U/kg). A portion of the pigs (n = 24) fed the Low-P diet, with 0, 500, 2,500, 12,500 U/kg phytase, and those fed the Adeq-P diet, with 0 and 12,500 U/kg phytase, remained on test diets for another 4 d, and tissues were collected for determination of bone characteristics and tissue P concentration. There was a P × phytase interaction for P retention that was accounted for by a lack of response to phytase in pigs fed the Adeq-P diet. Retention of P was greater with incremental levels of phytase in pigs fed Low-P diets as compared to those fed Adeq-P diets (P level × phytase, P < 0.01), but calcium (Ca) retention was greater in pigs fed Adeq-P diets (P level × phytase P < 0.01). Apparent total tract digestibility (ATTD) of P was improved by phytase (P < 0.001) and was greater in pigs fed Adeq-P diets as compared to those fed Low-P diets (P = 0.006). Metatarsal bone ash (quadratic, P = 0.01) and strength (linear, P = 0.03) was increased by phytase addition to the Low-P diets. There were no phytase or dietary P effects on P concentrations of the heart, kidney, liver, muscle, and spleen. These results suggest that as compared to the effects in an Adeq-P diet, adding phytase to a Low-P diet was more effective at reducing the P and Ca excretion and restoring average daily gain (ADG). The P released by phytase is absorbed and contributes to improved bone growth, greater rates of tissue accretion, and increased body weight, but does not change tissue P concentrations. There is, however, a threshold for P retention, beyond which it is excreted in the urine.  相似文献   

11.
We conduct this study to investigate the effects of corn-wheat-soybean meal (SBM)-based diet supplemented with high-dosing Trichoderma reesei phytase on the growth performance, nutrient digestibility, carcass traits, faecal gas emission and meat quality in growing-finishing pigs (29.71–110.58 kg live weight; 70-day-old to 166-day-old). A total of 56 crossbred pigs [(Landrace × Yorkshire) × Duroc] were used in 96-day experiment with a completely randomized block design. The growing period was from day 0 to 42, and the finishing period was from day 43 to 96. Pigs were randomly allocated to one of two treatments with seven replicate pens and four pigs (two barrows and two gilts) per pen and fed corn-wheat-SBM-based nutrient adequate basal diet or the basal diet supplemented with 1500 FTU/kg diet Trichoderma reesei phytase. One phytase unit (FTU) was defined as the amount of enzyme that catalyses the release of one micromole phosphate from phytate per minute at 37°C and pH 5.5. Dietary supplement with Trichoderma reesei phytase had increased body weight on day 96 and average daily gain in days 0–96. Moreover, high apparent total tract digestibility (ATTD) of phosphorus (P) was observed in pigs fed with Trichoderma reesei phytase. However, the carcass traits, faecal gas emission and meat quality of pigs were unaffected by Trichoderma reesei phytase supplementation. In conclusion, supplementation of high-dosing Trichoderma reesei phytase (1500 FTU/kg diet) in the corn-wheat-SBM-based nutrient adequate basal diet increased body weight and the ATTD of P, while no adverse effects were observed on the production characteristics.  相似文献   

12.
An experiment was conducted to test the hypothesis that the apparent total tract digestibility (ATTD) and the standardized total tract digestibility (STTD) of P in fermented soybean meal (FSBM) are greater than in conventional soybean meal (SBM-CV) when fed to growing pigs. Four diets were formulated to contain FSBM or SBM-CV and either 0 or 800 units/kg of microbial phytase. The only sources of P in these diets were FSBM and SBM-CV. A P-free diet to estimate basal endogenous losses of P was also formulated. Thirty barrows (initial BW: 14.0 ± 2.3 kg) were placed in metabolism cages and allotted to 5 diets in a randomized complete block design with 6 pigs per diet. Feces were collected for 5 d after a 5-d adaptation period. All samples of ingredients, diets, and feces were analyzed for P, and values for ATTD and STTD of P were calculated. Results indicated that the basal endogenous P losses were 187 mg/kg of DMI. As phytase was added to the diet, the ATTD and STTD of P increased (P < 0.01) from 60.9 to 67.5% and from 65.5 to 71.9%, respectively, in pigs fed FSMB. Likewise, addition of phytase to SBM-CV increased (P < 0.01) the ATTD and STTD of P from 41.6 to 66.2% and from 46.1 to 71.4%, respectively. The ATTD and STTD of P were greater (P < 0.01) in FSBM than in SBM-CV when no phytase was used, but that was not observed when phytase was added to the diet (soybean meal × phytase interaction, P < 0.01). In conclusion, the ATTD and STTD of P in FSBM was greater than SBM-CV when no microbial phytase was added, but when phytase was added to the diets, no differences between FSBM and SBM-CV were observed in the ATTD and STTD of P.  相似文献   

13.
The objective of this study was to determine the functional location and disappearance of activity of a supplemental Escherichia coli AppA2 phytase and its impact on digesta P and Ca concentrations in the gastrointestinal tract of pigs. In Exp. 1, 18 pigs (8.3 +/- 0.2 kg of BW) were allotted to 3 groups (n = 6 each) and fed a low-P (0.4%) corn-soybean meal, basal diet (BD), BD + phytase [500 units (U)/kg of feed], or BD + inorganic P (iP, 0.1%) for 4 wk. In Exp. 2, 30 pigs (14.5 +/- 0.2 kg of BW) were allotted to 3 groups (n = 10 each) and fed BD, BD + 500 U of phytase/kg of feed, or BD + 2,000 U of phytase/kg of feed for 2 wk. Five or six pigs from each treatment group were killed at the end of both experiments to assay for digesta phytase activity and soluble P concentration in 6 segments of the digestive tract and digesta total P and Ca concentrations in stomach and colon. Compared with pigs fed BD, pigs fed BD + 500 U of phytase/kg of feed in Exp. 1 and BD + 2,000 U of phytase/kg of feed in Exp. 2 had greater (P < 0.05) phytase activities in the digesta of the stomach and upper jejunum (2 m aborally from the duodenum). No phytase activity was detected in the digesta of the lower jejunum (2.12 m cranial to the ileocecal junction) or ileum from any of the treatment groups in either trial. Concentrations of digesta-soluble P peaked in the upper jejunum of pigs fed BD in Exp. 1 and 2, but showed gradual decreases between the stomach and the upper jejunum of pigs fed BD + phytase or BD + iP. In both experiments, pigs fed only BD had greater (P < 0.05) colonic digesta phytase activity and soluble P concentrations than those fed phytase. In Exp. 2, total colonic digesta P or Ca concentrations, or both, of pigs displayed a phytase-dose-dependent reduction (P < 0.05). In conclusion, supplemental dietary AppA2 mainly functioned in the stomach and was associated with a reduced phytase activity in colonic digesta of weanling pigs.  相似文献   

14.
Consensus phytase is a new biosynthetic, heat-stable enzyme derived from the sequences of multiple homologous phytases. Two experiments were conducted to determine its effectiveness, relative to inorganic P and a mutant enzyme of Escherichia coli phytase (Mutant-EP), in improving dietary phytate-P availability to pigs. In Exp. 1, 36 pigs (3 wk old, 7.00 +/- 0.24 kg of BW) were fed a low-P corn-soybean meal basal diet plus consensus phytase at 0, 250, 500, 750, 1,000, or 1,250 U/kg of feed for 5 wk. Plasma inorganic P concentration, plasma alkaline phosphatase activity, bone strength, and overall ADG and gain:feed ratio of pigs were improved (P < 0.05) by consensus phytase in both linear (R2 = 0.20 to 0.70) and quadratic (R2 = 0.30 to 0.70) dose-dependent fashions. In Exp. 2, 36 pigs (4 wk old, 9.61 +/- 0.52 kg BW) were fed the basal diet + inorganic P at 0.1 or 0.2%, consensus phytase at 750 or 450 U/kg of feed, Mutant-EP at 450 U/kg of feed, or 225 U consensus + 225 U Mutant-EP/kg of feed. Pigs fed 750 U of consensus phytase or 450 U of Mutant-EP/kg feed had plasma inorganic concentrations and bone strength that fell between those of pigs fed 0.1 or 0.2% inorganic P. These two measures were 16 to 29% lower (P < 0.05) in pigs fed 450 U of consensus phytase/kg of feed than those of pigs fed 0.2% inorganic P. Plasma inorganic P concentrations were 14 to 29% higher (P < 0.05) in pigs fed Mutant-EP vs. consensus phytase at 450 U/kg at wk 2 and 3. In conclusion, the experimental consensus phytase effectively releases phytate P from the corn-soy diet for weanling pigs. The inorganic P equivalent of 750 U of consensus phytase/kg of feed may fall between 0.1 and 0.2%, but this requires further determination.  相似文献   

15.
Two studies were conducted to determine the effect of diets containing low-phytate barley or supplemented with phytase on P balance and excretion in grower pigs. In Exp. 1, eight 32-kg barrows were assigned to a repeated, 4 x 4 Latin square design and fed 4 diets that contained 96% barley: normal-phytate hulled barley (HB), low-phytate hulled barley (LPHB), normal-phytate hull-less barley (HLB), and low-phytate hull-less barley (LPHLB). The barley cultivars contained 0.16, 0.05, 0.24, and 0.03% phytate, respectively. Inorganic P (iP) was added to the HB and HLB diets to meet the 1998 National Research Council recommendation of available P (aP, 0.23%), whereas LPHB and LPHLB contained sufficient aP. The diets were fed at 2.5 times the maintenance requirement for ME. The apparent total tract digestibilities (ATTD) of P did not differ between the hulled and hull-less barley diets, but P retention (%) and excretion were greater in pigs fed the hull-less barley diets (P < 0.05). The ATTD of P was greater and P excretion was 35% lower in pigs fed the low-phytate compared with the normal-phytate diets (P < 0.001). The amount of P retained (g/d) was greater (P < 0.001) in pigs fed low-phytate barley, reflecting an ATTD of P of 65 and 49% for low-phytate and normal-phytate barley, respectively (P < 0.001). In Exp. 2, eight 21-kg barrows were assigned to a repeated, 4 x 4 Latin square design and fed 4 diets based on barley and soybean meal (SBM): HB-SBM, HB-SBM + iP, HB-SBM + phytase, and LPHB-SBM. The HB-SBM and HB-SBM + phytase diets were deficient in aP, whereas the HB-SBM + iP and LPHB-SBM diets had adequate aP. The feeding regimen was similar to that of Exp. 1. Adding iP to the HB-SBM diet did not affect the ATTD but increased the amount of P retained (g/d) and excreted (P < 0.001). The ATTD and amount of P retained (g/d) did not differ among pigs fed the HB-SBM + iP, HB-SBM + phytase, and LPHB-SBM diets. However, pigs fed the HB-SBM + phytase and LPHB-SBM diets excreted 32 and 29% less P, respectively, than pigs fed the HB-SBM + iP diet (P < 0.05), confirming that low-phytate barley is as effective as supplemental phytase in improving P digestibility and utilization and decreasing P excretion in grower pigs.  相似文献   

16.
A total of 150 weanling pigs [(Yorkshire × Landrace) × Duroc] with an average BW of 7.22 ± 0.80 kg (21 d of age) were used in a 28-d trial to determine the effects of dietary fructan and mannan oligosaccharides on growth performance, nutrient digestibility, blood profile, and diarrhea score in weanling pigs. Pigs were allotted randomly to 1 of 5 dietary treatments: 1) negative control (NC), basal diet; 2) positive control (PC), NC + 0.01% apramycin (165 mg/kg); 3) NC + 0.1% fructan (FC); 4) NC + 0.1% mannan oligosaccharide source (MO); and 5) NC + 0.05% fructan + 0.05% mannan oligosaccharide source (FM). There were 3 replications per treatment with 10 pigs per pen (5 barrows and 5 gilts). From d 0 to 14, ADG and ADFI of pigs fed the PC, MO, and FM diets were greater (P < 0.05) than pigs fed the NC diet. From d 15 to 28, there were no differences (P > 0.05) in ADG, ADFI, and G:F. During the overall period (d 0 to 28), pigs fed the MO diet had a greater ADG than pigs fed the NC diet (P < 0.05). Pigs fed the PC and MO diets increased ADFI (P < 0.05) compared with pigs fed the NC diet. However, no differences were detected among dietary treatments in G:F during the overall experimental period. On d 14, the apparent total tract digestibility (ATTD) of DM and N in pigs fed the PC, MO, and FM diets was greater (P < 0.05) than pigs fed the NC diet. The ATTD of DM increased (P < 0.05) in pigs fed the MO and FM diets compared with pigs fed the FC diet. However, at the end of the experiment, pigs fed the FM diet had a greater (P < 0.05) ATTD of DM compared with pigs fed the NC diet. Additionally, there were no differences in IgG, red blood cells, white blood cells, and lymphocyte counts among dietary treatments on d 0, 14, or 28. The diarrhea score in pigs fed the MO diet was reduced (P < 0.05) compared with pigs fed the NC diet. In conclusion, mannan oligosaccharides have a beneficial effect on growth performance and nutrient digestibility in weanling pigs. Furthermore, mannan oligosaccharides can decrease diarrhea score in weanling pigs.  相似文献   

17.
The efficacy of an Escherichia coli-derived phytase preparation   总被引:1,自引:0,他引:1  
Five experiments were conducted to evaluate the effect of an Escherichia coli-derived phytase on phytate-P use and growth performance by young pigs. The first experiment involved time course, pH dependence, and phytase activity studies to investigate the in vitro release of P from corn, soybean meal, and an inorganic P-unsupplemented corn-soybean meal negative control diet. In Exp. 2, which was designed to determine the efficacy of the E. coli-derived vs. fungal phytase-added diets at 0, 250, 500, 750, 1,000, or 1,250 FTU/kg (as-fed basis; one phytase unit or FTU is defined as the quantity of enzyme required to liberate 1 micromol of inorganic P/min, at pH 5.5, from an excess of 15 microM sodium phytate at 37 approximately C) and a positive control diet, eight individually penned 10-kg pigs per diet (12 diets, 96 pigs) were used in a 28-d growth study. The third experiment was a 10-d nutrient balance study involving six 13-kg pigs per diet (four diets, 24 pigs) in individual metabolism crates. In Exp. 4, eight pens (four pigs per pen) of 19-kg pigs per treatment were used in a 42-d growth performance study to examine the effect of adding the E. coli-derived phytase to corn-soybean diets at 0, 500, or 1,000 FTU/kg (as-fed basis) and a positive control (four diets, 128 pigs). In Exp. 5, six 19-kg pigs per treatment were used in a 10-d nutrient balance study to investigate the effects of the E. coli-derived phytase added to diets at 0, 250, 500, 750, or 1,000 FTU/kg (as-fed basis) and a positive control diet (six diets, 36 pigs). The in vitro study showed that the E. coli-derived phytase has an optimal activity and pH range of 2 to 4.5. Inorganic phosphate release was greatest for soybean meal, least for corn, and intermediate for the negative control diet. Dietary supplementation with graded amounts of E. coli-derived phytase resulted in linear increases (P < 0.05) in weight gain, feed efficiency, and plasma Ca and P concentrations in 10-kg pigs in Exp. 2. Phytase also increased P digestibility and retention in the 13-kg pigs in Exp. 3. In Exp. 4, dietary supplementation with E. coli-derived phytase resulted in linear increases (P < 0.05) in weight gain and feed efficiency of 19-kg pigs. Supplementation of the diets of 19-kg pigs with the E. coli-derived phytase also improved Ca and P digestibility and retention in Exp. 5. In the current study, the new E. coli-derived phytase was efficacious in hydrolyzing phytate-P, both in vitro and in vivo, in young pigs.  相似文献   

18.
The results of three experiments, focused on the determination of endogenous ileal flow (EIF) of amino acids (AA) and nitrogen (N) (Exp. 1), apparent ileal digestibility (AID) of AA and N (Exp. 2), and apparent total tract digestibility (ATTD) of dry matter (DM), organic matter (OM), N, calcium (Ca) and phosphorus (P) (Exps. 2 and 3), were used to compare chromic oxide (Cr2O3) and acid‐insoluble ash (AIA) as digestibility markers. In Exps. 1 and 2, a total of six gilts fitted with T‐cannula in terminal ileum, and in Exp. 3, a total of 24 pregnant sows were used. In Exps. 1 and 2, the pigs were assigned into four dietary treatments according to 4 × 6 crossover design (Exp. 1; diets with 0%, 4%, 8% and 12% of casein; Exp. 2 basal diet with different levels of phytase). In Exp. 3, the sows were assigned to four dietary treatments (basal diet with different levels of phytase) of six sows. In Exps. 1 and 2 ileal digesta and in Exps. 2 and 3 faeces were collected for the determination of EIF, AID and ATTD. Differences in EIF of AA determined by Cr2O3 and AIA ranged (p ? 0.05) from ?4.62 to 4.54%. The lowest EIF was for methionine and the greatest one for proline, determined by both markers. Apparent ileal digestibility determined by Cr2O3 was slightly greater (p ? 0.05) in comparison with AIA. Differences ranged from 1.88% (Arg) to 7.08% (Gly). The greatest AID was for arginine and the lowest one for glycine, determined by both Cr2O3 and AIA. Similarly for ATTD of DM, OM, N, Ca and P, there were no differences in digestibility determined by Cr2O3 and AIA. Both, Cr2O3 and AIA, are suitable and comparable markers for digestibility studies in pigs.  相似文献   

19.
Two experiments were conducted to investigate the concept that the addition of corn expressing an Escherichia coli-derived gene (corn-based phytase; CBP) to a P-deficient diet would improve growth performance and P utilization in pigs. An E. coli-derived microbial phytase (expressed in Pichia pastoris) sprayed onto a wheat carrier (Quantum) was included for comparison. In Exp. 1, forty-eight 10-kg pigs were blocked by BW into 6 blocks and allotted to 8 dietary treatments such that the BW among dietary treatments was similar and given free access to feed for 28 d. The dietary treatments were a negative control (NC) with no inorganic P supplementation; NC + 2, 4, or 6 g of monosodium phosphate/kg; NC + 16,500, 33,000, or 49,500 phytase units (FTU) of CBP/kg; and NC + 16,500 FTU of Quantum/kg. In Exp. 2, twenty-four 13-kg barrows were assigned to the NC, NC + 16,500 or 33,000 FTU of CBP/kg, or NC + 16,500 FTU of Quantum/kg, in a nutrient- and energy-balance study consisting of 5 d of adjustment and 5-d collection periods. The total collection method was used to determine nutrient and energy balance. Addition of CBP to the low-P NC diet linearly increased (P < 0.01) ADG, G:F, and plasma P concentration of pigs during the 28-d study. There was no difference in ADG, G:F, or plasma P concentration between pigs fed the CBP or Quantum phytase at 16,500 FTU/kg. Weight gain, G:F, and plasma P concentration of pigs increased (P < 0.01) with monosodium phosphate supplementation, confirming P deficiency of the NC diet. Linear improvements (P < 0.05) in DM digestibility and energy retention were observed with CBP supplementation of the NC diet. Although there were linear (P < 0.01) and quadratic (P < 0.05) increases in N digestibility, N retention was unaffected by CBP supplementation of the NC diet in growing pigs. Phosphorus and Ca digestibilities and retentions improved linearly and quadratically (P < 0.01) with the addition of CBP to the NC diet. There was no difference in digestive utilization of P or Ca between pigs fed CBP and Quantum phytase at 16,500 FTU/kg. The data showed that the addition of a corn expressing an E. coli-derived gene to a P-deficient diet improved growth performance and indices of P utilization in pigs, and corn expressing phytase was as efficacious as Quantum phytase when supplemented in P-deficient diets for weanling pigs.  相似文献   

20.
Dietary phytase supplementation improves bioavailabilities of phytate-bound minerals such as P, Ca, and Zn to pigs, but its effect on Fe utilization is not clear. The efficacy of phytase in releasing phytate-bound Fe and P from soybean meal in vitro and in improving dietary Fe bioavailability for hemoglobin repletion in young, anemic pigs was examined. In Exp. 1, soybean meal was incubated at 37 degrees C for 4 h with either 0, 400, 800, or 1,200 units (U) of phytase/kg, and the released Fe and P concentrations were determined. In Exp. 2, 12 anemic, 21-d-old pigs were fed either a strict vegetarian, high-phytate (1.34%) basal diet alone, or the diet supplemented with 50 mg Fe/kg diet (ferrous sulfate) or phytase at 1,200 U/kg diet (Natuphos, BASF, Mt. Olive, NJ) for 4 wk. In Exp. 3, 20 anemic, 28-d-old pigs were fed either a basal diet with a moderately high phytate concentration (1.18%) and some animal protein or the diet supplemented with 70 mg Fe/kg diet, or with one of two types of phytase (Natuphos or a new phytase developed in our laboratory, 1,200 U/kg diet) for 5 wk. In Exp. 2 and 3, diets supplemented with phytase contained no inorganic P. In Exp. 1, free P concentrations in the supernatant increased in a phytase dose-dependent fashion (P<.05), whereas free Fe concentrations only increased at the dose of 1,200 U/kg (P<.10). In Exp. 2 and 3, dietary phytase increased hemoglobin concentrations and packed cell volumes over the unsupplemented group; these two measures, including growth performance, were not significantly different than those obtained with dietary supplemental Fe. In conclusion, both sources of phytase effectively degraded phytate in corn-soy diets and subsequently released phytate-bound Fe from the diets for hemoglobin repletion in young, anemic pigs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号