首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Multi-cohort management(MCM) that retains a range of stand structures(age and size class) has been proposed to emulate natural disturbance and improve management in the Nearctic boreal forest.Although MCM forests contain both single-and multi-aged stands of mixed tree sizes,little is known about how variable stand structure affects associated fauna and biodiversity.Here,we examine the relationship between ground beetle(Coleoptera,Carabidae) communities and stand characteristics across a range of forest structure(=cohort classes).Given that MCM classes are defined by the distribution of their tree–stem diameters,we ask whether parameters associated with these distributions(Weibull) could explain observed variation in carabid communities,and if so,how this compares to traditional habitat variables such as stand age,foliage complexity or volume of downed woody debris.We sampled carabids using weekly pitfall collections and compared these with structural habitat variables across a range of cohort classes(stand structure and age since disturbance) in 18 sites of upland mixed boreal forests from central Canada.Results showed that richness and diversity of carabid communities were similar among cohort classes.Weibull parameters from the diameter distribution of all stems were the strongest predictors of variation in carabid communities among sites,but vertical foliage complexity,understory thickness,and percentage of deciduous composition were also significant.The abundance of several carabid forest specialists was strongly correlated with tree canopy height,the presence of large trees,and high vertical foliage complexity.Our results demonstrate that variable forest structure,as expected under MCM,may be useful in retaining the natural range of ground beetle species across the central Nearctic boreal forest.  相似文献   

2.
Twenty-three secondary forest communities with different structure were selected in Mao'er Mountain National Park of Heilongjiang Province, China to study the relationship between diversity of forest plant species and environmental gradient. The forest plant species diversity was analyzed by the diversity index, and the environmental factors was quantified by the method of Whittaker's quantification of environmental gradient. Meanwhile, β-diversity indexes of communities were calculated with similar measurements. The results showed that the Shannon-wiener diversity index of forest plant species increased with the increase of the environmental gradient, and the β-diversity indexes of communities showed a liner increase along with the change of environmental gradient.  相似文献   

3.
Soil fauna can sensitively respond to alterations in soil environment induced by land-use changes.However,little is known about the impact of urban land-use changes on earthworm communities.In this study,three land-use types(i.e.,forest,nursery and abandoned lands)were chosen to identify differences in diversity,abundance and biomass of earthworm community in Kunming City.Urban land-use had a pronounced difference in species composition,evenness and diversity of earthworm communities.Forest land had the highest density,biomass and diversity of the earthworm communities.Total abundance was dominated by endogeic species in nursery land(70%)and abandoned land(80%),whereas in the forest land,the earthworm community comprised epigeic,endogeic and anecic species.Temporal changes in earthworm density and biomass were also significantly affected by land-use change.Total density and biomass of earthworms in the forest and nursery lands were highest in September,but highest in the abandoned land in October.The influence of soil physicochemical properties on the earthworm density and biomass also varied with land-use types.Soil temperature significantly affected earthworm density and biomass in the three land-use types.Soil pH was positively correlated with earthworm biomass in the forest land,but negatively associated with earthworm density in the abandoned land.Soil organic matter was positively correlated only with density and biomass of earthworms in the nursery and abandoned lands.Our results suggest that the species composition,abundance and biomass of earthworm communities can be determined by the modification of soil properties associated with urban land-use type.  相似文献   

4.
The study was conducted at Zengena forest, a fragmented remnant montane forest in northwestern Ethiopia, which surrounds Lake Zengena. The purpose was to assess the species composition, diversity and the regeneration status of woody plants. A total of 27 plots of 20 m × 20 m were sampled along the line transects laid down the altitudinal gradient from the edge of the forest encompassing the lake to the edge of the lake in eight aspects. In each plot, woody species were counted and the diameter at breast height and the height of trees and shrubs were measured. A total of 50 woody species belonging to 31 families were found, of which 17(34%) were trees, 7(14%) trees or shrubs, 23(46%) shrubs and 3(6%) lianas. The overall Shannon-Wiener diversity and evenness indices of woody species were 2.74 and 0.7, respectively. Clausena anisata had the highest relative density(23.5%), Rapanea rhododendroides the highest relative frequency(6.5%) and Prunus africana the highest relative dominance(45%) and importance value index(IVI, 51.6). The total basal area and density of woody plants were 22.3 m2?ha-1 and 2,202 individuals?ha-1, respectively. The population structure showed variations among woody plants and revealed varied regeneration patterns of different species. The importance value index and population structure revealed that some species are threatened and need prioritization for conservation measures. The results suggest that remnant forest patches in the highlands of northern Ethiopia host several woody plant species that are almost disappearing in other areas due to deforestation.  相似文献   

5.
Cunninghamia lanceolata(Lamb.) Hook. is economically the most important tree species in southern China and has been cultivated in plantations on a large scale. This species is widely used in construction, furniture, utensils and shipbuilding. Soil fertility of C. lanceolata stands affects soil structure, porosity and nutrient availability, which causes changes in fauna activity. During January to February 2008,an ice storm caused extensive damage to C. lanceolata stands.Despite the environmental importance of soil fauna, basic information on the distribution and diversity of soil fauna in C.lanceolata stands after ice storm damage is lacking. To assess the response of soil fauna diversity and distribution to forest gaps following the ice storm, five small gaps(each 30–40 m~2),five large gaps(each 80–100 m~2) and five canopy cover plots were selected within a 2-ha C. lanceolata stand. Soil samples were collected from 0 to 10 cm depth in March 2011 to measure soil fauna diversity and abundance. The abundance and community composition of the soil fauna varied with gap size. In canopy cover sites, the number of individuals was 2.0 and 5.2 times greater than in the small gaps and large gaps.Three taxa(Nematoda, Oribatida and Insecta) of soil invertebrates occurred commonly, and Nematoda dominated the communities in all three habitat types. The Shannon–Wiener diversity index, Margalef diversity index, and Pielou evenness index were high in the small gaps, indicating that they harbored the most species, with the most even distribution, and the highest diversity. Our results indicated that gap size apparently affected abundance and community composition of the soil fauna.  相似文献   

6.
Shifting agriculture, fire, and over exploitation of wood and copal resin are the major causes of Guibourtia copallifera Benn. vulnerability in the south-west of Burkina Faso. Conservation of endangered species requires a thorough understanding of the dynamics of small populations. In the present study, we investigated the diversity and the dynamics of G. copallifera communities in two different types of land use history, a protected area (stated forest of Comoé-Leraba) and an unprotected area (the woodlands of Tourni and Timba). A total of 17 rectangular plots (50 m × 20 m) were sampled in both protected and unprotected areas. All woody species were systematically identified, measured and classified into diameter and height classes. In the two different types of land use, the dynamics of G. copallifera’s communities were good, and the diversities were similar and low with high β diversity.  相似文献   

7.
Forest gaps are important in forest dynamics and management, but little is known about how soil fauna influence the degradation of recalcitrant litter components in different-sized forest gaps. This investigation uses litterbags with two different mesh sizes (0.04 and 3 mm) to control the meso- and microfauna entering the bags to quantify the contribution of soil fauna to the degradation of recalcitrant components (including condensed tannins, total phenol, lignin and cellulose) during litter decomposition. The experiment was conducted in seven different forest gap sizes in Pinus massoniana plantations over 1 year. One closed-canopy site (CC) and forest gap sizes of 100, 225, 400, 625, 900, 1225 and 1600 m^2 were created in a P. massoniana plantation in the Sichuan basin of China;the CC was treated as the control. Cinnamomum camphora foliage from local native trees was used in all forest gap experiments. We found the following:(1) Gap size had significant effects on the degradation rates (E) of condensed tannins and lignin and on the contributions of soil fauna;medium-sized gaps also presented high degradation rates. Soil fauna obviously contributed to the degradation of recalcitrant foliar litter components in medium-sized gaps.(2) The highest contribution to degradation (40.98%) was recorded for lignin, and the lowest contribution (0.29%) was recorded for condensed tannins. The results indicate that medium-sized gaps (900 m^2) were conducive to the degradation of recalcitrant litter components by soil fauna.  相似文献   

8.
The effects of extraction fluids from the leaf litter from different dominant tree species on the functional characteristics of the soil microbial community were studied to understand how changes in soil quality and synergism between plants and soil contribute to the process of forest succession. Leaf litter from dominant tree species at different stages of succession were collected and extracted with sterile deionized water. After treating the soil of abandoned land with the different extraction fluids,we analyzed changes in carbon utilization of the soil microbial community in Biolog Eco Plates, then considered these results with those of our previous study on forest vegetation succession in the Malan forest. The leaf litter enhanced the metabolic capacity and functional diversity of the soil microbes, especially in the following combinations:the leaf litter of Quercus liaotungensis–Pinus tabulaeformis, P. tabulaeformis–Betula platyphylla, Q. liaotungensis and P. tabulaeformiss. Second, when litter from onespecies evaluated, the species enhanced metabolism and diversity in the order of their successional relationship: B.Platyphylla \ P. tabulaeformis \ Q. liaotungensis. After soils were treated with different leaf litters at 25 C for7 days, the sorting pattern of the PCA values, based on the similarity of carbon source utilization by the soil microbes,corresponded to the successional pattern on the basis of the similarity of community composition of forest plants.Thus, changes in soil properties caused by leaf litter from different dominant trees probably play a unique role in the successional pattern of a forest community. We thus propose a successional mechanism that underlies the natural succession process within the Malan forest region. When the dominant forest species of the climax successional stage develops during the early successional stages, its forest litter probably alters soil properties such that the soil becomes unsuitable for the gradual growth and regeneration of the original dominant tree species but promotes the growth and establishment of later-invasive plants. In this way, the originally dominant species is replaced by the newly dominant tree species during forest succession.  相似文献   

9.
Trees on sand dunes are more sensitive to environmental changes because sandy soils have extremely low water holding capacity and nutrient availability. We investigated the dynamics of soil respiration(Rs) for secondary natural Litsea forest and plantations of casuarina,pine, acacia and eucalyptus. Results show that significant diurnal variations of Rsoccurred in autumn for the eucalyptus species and in summer for the pine species, with higher mean soil respiration at night. However, significant seasonal variations of Rswere found in all five forest stands. Rschanged exponentially with soil temperatures at the 10-cm depth; the models explain 43.3–77.0% of Rs variations. Positive relationships between seasonal Rsand soil moisture varied with stands. The correlations were significant only in the secondary forest, and the eucalyptus and pine plantations. The temperature sensitivity parameter(Q10 value) of Rsranged from 1.64 in casuarina plantation to 2.32 the in secondary forest; annual Rswas highest in the secondary forest and lowest in the pine plantation. The results indicate that soil temperatures and moisture are the primary environmental controls of soil respiration and mainly act through a direct influence on roots and microbial activity. Differences in root biomass, quality of litter,and soil properties(pH, total N, available P, and exchangeable Mg) were also significant factors.  相似文献   

10.
The Afromontane forests of Ethiopia have been under a serious degradation threat. Assessment of floristic diversity and species composition in Biteyu forest of Gurage mountain chain in the central Ethiopia was conducted to examine the pattern of forest structure. Thirty plots of 30 m×30 m were used to record the vegetation and environmental data using systematic sampling technique. The local name, plant scientific names, DBH, height,species abundance and percentage canopy cover of plant species were recorded. Shannon diversity index and Sorensen's coefficients was used for comparison among communities and similar forests in the country. Threats to the forest biodiversity in Biteyu were determined by counting cattle interference and wood stumps as disturbance indicators. Relative Euclidean Distance measures by using Ward's method(linkage) was applied for cluster analysis. Environmental variables were also recorded in each plot. Woody species population structure, basal area and importance value index were analyzed using spreadsheet programs. Data on species distribution and environmental variables in the forest were analyzed by canonical correspondence analysis. A total of 190 species in 154 genera under 73 families were identified. Twenty species were found to be endemic taxa to the Flora Area. Only three plant community types were identified from the cluster analysis due to the high human influence. The Sorensen's coefficient showed the resemblance of the Biteyu forest with other Dry Evergreen Afromontane forests in the country. Moreover, altitude and slope strongly affect the species composition and structure of Biteyu forest. Given the high anthropogenic influence, high endemism, high dependence of the local community on the forest resources, forest conservation and restoration measures should be done by stakeholders.  相似文献   

11.
The dynamics of litter nitrogen (N) and phosphorus (P) release could be affected by soil fauna and environmental conditions. The objective of the present study was to investigate the effects of soil fauna on the dynamics of N and P during foliar litter decomposition in three types of ecosystems (i.e., montane forest, ecotone, and dry valley) along an elevation gradient. A field experiment using litterbags with two different mesh sizes (0.04 and 3 mm) was conducted from November 2013 to October 2014. Nitrogen and P release rates in decomposing foliar litter from fir (Abies faxoniana) and birch (Betula albosinensis) in montane forest, oak (Quercus baronii) and cypress (Cupressus chengiana) in ecotone, and cypress and clovershrub (Campylotropis macrocarpa) in dry valley were investigated in the upper reaches of the Yangtze River. Soil fauna strongly affected N and P release across different decomposition periods and ecosystem types. The average release rate of N mediated by soil fauna across the entire year was higher in the dry valley (15.6–37.3%) than in the montane forest (0.5–6.4%) and the ecotone (- 3.7–4.9%). The effects of soil fauna on P release rate were manifest in both the montane forest and the dry valley. Moreover, the impacts of soil fauna can vary substantially among different decomposition periods. Our results indicated that soil fauna can significantly affect N and P release during litter decomposition. The N release rate mediated by fauna was likely to be more sensitive to the effects of plant species (i.e., initial litter chemical traits), while the P release rate mediated by soil fauna might be subject to the effects of local-scale environmental factors (e.g., temperature) to a greater extent.  相似文献   

12.
《林业研究》2021,32(4)
We determined the response of tree community structure to logging disturbance and topography,and the patterns of tree-habitat associations in Tano Offin Forest Reserve,Ghana.We sampled trees in 27 20 m× 20 m plots randomly and equally distributed in three topographic habitats(slope,valley,and hilltop) in each of two forests:logged and unlogged.Two topographic features,altitude and degree of slope,were measured and related with species composition.Overall,there were significant effects of logging and topographic habitat and their interaction on species diversity and composition,with the unlogged forest and valley habitat supporting higher diversity.Tree diversity varied among the topographic habitats in the logged but not in the unlogged forest.There were topographic effects on abundance of individual species but not on tree community abundance and basal area.Logging and its interaction with topographic habitat showed significant effects on tree abundance and basal area.Some species were associated with specific topographic habitats or a combination in the logged and unlogged forests.However,the patterns of habitat associations of the species differed between the logged and unlogged forests.  相似文献   

13.
We conducted a study in Komto Forest in East Wollega Zone, Oromia National Regional State, West Ethiopia for determining vegetation structure and regeneration status in this forest. We systematically sampled 53 quadrats (20 m × 20 m) along line transects radiating from the peak of Komto Mountain in eight directions. Vegetation parameters such as DBH, height, seedling and sapling density of woody species, and location and altitude of each quadrat were recorded. In total, 103 woody plant species of 87 genera and 45 families were identified. Analysis of selected tree species revealed different population structures. Generally, the forest was dominated by small trees and shrubs characteristic of secondary regeneration. Observations on the regeneration of the forest indicated that there are woody species that require urgent conservation measures. Based on the results of this study, we recommend detailed ecological studies of various environmental factors such as soil type and properties, and ethnobotanical studies to explore indigenous knowledge on uses of plants.  相似文献   

14.
Dynamical patterns of mineral elements during decomposition processes were investigated for seven common canopy species in a subtropical evergreen broad-leaved forest by means of litterbag technique over 2 years. The species studied are representative for the vegetation in the study area and differed significantly in chemical qualities of their litter. No significant relationships were found between decomposition rate (percentage dry mass remaining and decomposition constant k) and initial element cuncentrations.However, there were significant correlations betweeu the percentage of dry mass remaining and the mineral element concentrations in the remaining litter for most cases. The rank of the element mobility in decomposition process was as follows: Na = K 〉 Mg ≥ Ca 〉 N ≥ Mn ≥ Zn ≥ P 〉 Cu 〉〉 Al 〉〉 Fe. Concentrations of K and Na decreased in all species as decomposition proceeded. Calcium and Mg also decreased in concentrntion but with a temporal increase in the initial phase of decomposition, while the concentrations of other elements (Zn, Cu, AL and Fei increased for all species with exception of Mn which revealed a different pattern in different species. In most species, microelements (Cu, Al, and Fe) significantly increased in absolute amounts at the end of the litterbag incubation, which could be ascribed to a lange extent to the mechanism of abiotic fixation to humic substances rather than biological immobilization.  相似文献   

15.
The composition and structure of five natural secondary forests in Shenzhen were studied based on data of plots and were compared with Hong Kong zonal forest, so as to detect their succession stage and species diversity level. According to succession process of subtropical forest and ecological characteristics of dominant species, the authors speculate that five communities are at different stages. Sinosideroxylon community dominated by heliophilous evergreen broad-leaved tree (Sinosideroxylon wightianum) and conifer tree (Pinus massoniana) is at the third stage. Itea Acronychia community dominated by two evergreen broad-leaved heliophytes (Itea chinensis and Acronychia pedunculata) is at the fourth stage. The others, i.e., Schefflera,Sterculia and Cleistocalyx Sterculia community are at the fifth stage where some mesophytes are dominant but heliophytes have a weighed percentage of importance value. Due to succession stage and different forest management and conservation models, the species diversity of five communities is significantly lower than that of Endospermum community in Hong Kong. The values of Shannon-Wiener index and Pielous evenness index of five communities are 2.04-2.953 and 64.2%-74% respectively, but those of the Endospermum community are 4.74 and 79% respectively. The current situation of these communities suggests that the necessary measures should be taken to protect and restore the communities.  相似文献   

16.
To understand the decomposition characteristics of Pinus massoniana foliar litter and the degradation of its refractory compounds in plantations under five canopy densities,a litter bag experiment over a decomposition time of 392 days was carried out.The results show that canopy density significantly affected decomposition rates of litter and degradation rate of lignin and cellulose.Litter decomposition rates decreased significantly with decreasing canopy density.Both lignin and cellulose degradation rates were lower with canopy densities of 0.62 and 0.74 as compared with the three other densities.Lignin and cellulose losses were more rapid in the first 118 days.Soil fauna had significant impacts on litter decomposition and the degradation of refractory compounds.Canopy density had significant effects on factors such as soil properties and soil fauna community structure,which could be conducive to the decomposition of litter and the degradation of litter recalcitrant components.Canopy density between 0.6 and 0.7 might be a favorable management practice promoting litter decomposition and beneficial for the sustainable development of P.massoniana plantations.  相似文献   

17.
The competition and dynamics of dominant trees species in the forest ecotone between the broad-leaved/Korean pine (Pinus koraiensis) mixed forest and the spruce-fir forest (also known as dark conifer forest) in Changbai Mountain, Jilin Province in Northeast China were studied by using Lotka-Volterra model, based on the data from twenty-eight sample plots with area of 20 mx90 m for each one. Results showed that under natural condition, differentiation of communities followed two directions: one would be Spruce (Picea jezoensis and few P. koraiensis) and fir (Abies nephrolepis) co-dominant conifer forest, and at the equilibrium fir was absolutely preponderant (77.1% of relative dominance (RD)); the other would be the conifer and broad-leaved mixed forest, and at equilibrium, the broad-leaved tree species was 50% of RD in the broad-leaved/Korean pine mixed forest and 66% of RD in the broad-leaved and spruce-fir mixed forest. The study demonstrated that both broad-leaved/Korean pine mixed forest and dark conifer forest were climax community, the ecotone had transitional characteristics, and the diversification of the forest communities suggested that the direction of succession was affected by local habitat.  相似文献   

18.
In a survey of the Bore–Anferara–Wadera forest to study the vegetation structure and regeneration status of woody plant species, 112 quadrats were systematically sampled along altitudinal transects to collect vegetation data. Nested sample plots of 30 m × 30 m and 5 m × 5 m were laid for collecting data on abundance and some variables of tree and shrub size. The regeneration status of woody species was assessed by counting all seedlings within the main sample plot. Woody plant species taller than or equal to 3 m were counted and their height and DBH measured. Density, frequency, basal area and importance value(IV) of woody plant species were computed. A total of 136 vascular plant species belonging to119 genera and 63 families were recorded. The overall Shannon—Wiener diversity value was 3.84 and evenness was 0.78. Total density of trees and shrubs with DBH >2 cm was 1047 ha-1. Size class distribution of woody species across different DBH and height classes indicated a relatively high proportion of individuals at lower classes,suggesting impacts of past anthropogenic disturbances.Analysis of population structure and regeneration status of the forest revealed various patterns of population dynamics where some species were represented by only a few mature plants, suggesting that they are on the verge of local extinction and that immediate conservation measures should be taken. The results highlight the need for joint management and conservation measures by the government, local people and other stakeholders to abate the rapid rate of deforestation and promote sustainable utilization of the forest resources in this forest in southern Ethiopia.  相似文献   

19.
Two types of sampling plots of seabuckthorn (Hippophae rhamnoides) communities were investigated in Pengyang County of Ningxia region by a typical sampling method to study the characteristics of community structure and biodiversity. Composition and dominant species of each community were analyzed by the importance value of species as an index. The number of individuals and the importance value, as well as Sorensen’s similarity coefficient, Shannon-Wiener diversity index, Pielou’s evenness index and Simpson’s dominance index, were used as indices to compare characteristics of community structure, similarity and biodiversity between plantations and natural forests of seabuckthorn. The results indicate that the importance values of species of natural seabuckthorn communities were dispersed and the difference between dominant species was not statistically significant. Diversity indices of natural seabuckthorn communities reflected by species richness and evenness were higher than that of plantations. Com-munity structure of natural seabuckthorn forests is more complex. We propose that natural forest can be used as sample to guide se-lection of plant species in silviculture in order to improve biodiversity of plantation.  相似文献   

20.
In this study, we investigated how tree species affect N mineralization in connection to some soil properties and seconder metabolite levels of litter, in the soil of the oldest native forest communities. In the oldest pure communities of Pinus nigra(PN), Fagus orientalis(FO), and Abies bornmuelleriana(AB) in the mountain range of Mount Uluda?, Bursa, Turkey, annual net yield and N mineralization in the 0–5-and 5–20-cm soil layers were determined in a field incubation study over 1 year. Sampling...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号