首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Weed populations with resistance to glyphosate have evolved over the last 7 years, since the discovery of the first glyphosate‐resistant populations of Lolium rigidum in Australia. Four populations of L. rigidum from cropping, horticultural and viticultural areas in New South Wales and South Australia were tested for resistance to glyphosate by dose–response experiments. All populations required considerably more glyphosate to achieve 50% control compared with a known susceptible population, indicating they were resistant to glyphosate. Translocation of glyphosate within these resistant populations was examined by following the movement of radiolabelled glyphosate applied to a mature leaf. All resistant plants translocated significantly more herbicide to the tip of the treated leaf than did susceptible plants. Susceptible plants translocated twice as much herbicide to the stem meristematic portion of the plant compared with resistant plants. These different translocation patterns suggest an association between glyphosate resistance in L. rigidum and the ability of glyphosate to accumulate in the shoot meristem.  相似文献   

4.
5.
6.
7.
8.
9.
10.
In Shizuoka Prefecture, Japan, glyphosate‐resistant Lolium multiflorum is a serious problem on the levees of rice paddies and in wheat fields. The mechanism of resistance of this biotype was analyzed. Based on LD50, the resistant population was 2.8–5.0 times more resistant to glyphosate than the susceptible population. The 5‐enolpyruvyl‐shikimate‐3‐phosphate synthase (EPSPS) gene sequence of the resistant biotype did not show a non‐synonymous substitution at Pro106, and amplification of the gene was not observed in the resistant biotype. The metabolism and translocation of glyphosate were examined 4 days after application through the direct detection of glyphosate and its metabolite aminomethylphosphonic acid (AMPA) using liquid chromatograph‐tandem mass spectrometer (LC‐MS/MS). AMPA was not detected in either biotype in glyphosate‐treated leaves or the other plant parts. The respective absorption rates of the susceptible and resistant biotypes were 37.90 ± 3.63% and 41.09 ± 3.36%, respectively, which were not significantly different. The resistant biotype retained more glyphosate in a glyphosate‐treated leaf (91.36 ± 1.56% of absorbed glyphosate) and less in the untreated parts of shoots (5.90 ± 1.17%) and roots (2.76 ± 0.44%) compared with the susceptible biotype, 79.58 ± 3.73%, 15.77 ± 3.06% and 4.65 ± 0.89%, respectively. The results indicate that the resistance mechanism is neither the acquisition of a metabolic system nor limiting the absorption of glyphosate but limited translocation of the herbicide in the resistant biotype of L. multiflorum in Shizuoka Prefecture.  相似文献   

11.
Resistance to glyphosate and paraquat has evolved in some populations of Conyza spp. from California, USA. This study evaluated whether herbicide absorption and translocation were involved in the mechanism of resistance to both herbicides. Three lines of each species were used: glyphosate‐paraquat‐susceptible (GPS), glyphosate‐resistant (GR) and glyphosate‐paraquat‐resistant (GPR). Radiolabelled herbicide was applied to a fully expanded leaf, and absorption and movement out of the treated leaf were monitored for up to 24 h for paraquat and 72 h for glyphosate. Plants treated with paraquat were incubated in darkness for the first 16 h and then subjected to light conditions. More glyphosate was absorbed in C. bonariensis (52.9–58.3%) compared with C. canadensis (28.5–37.6%), but no differences in absorption were observed among lines within a species. However, in both species, the GR and GPR lines translocated less glyphosate out of the treated leaf when compared with their respective GPS lines. Paraquat absorption was similar among lines and across species (71.3–77.6%). Only a fraction of paraquat was translocated in the GPR lines (3% or less) when compared with their respective GPS or GR lines (20% or more) in both species. Taken together, these results indicate that reduced translocation is involved in the mechanism of resistance to glyphosate and paraquat in C. bonariensis and C. canadensis.  相似文献   

12.
13.
Recently, glyphosate‐resistant Italian ryegrass (Lolium multiflorum Lam.) was found on rice paddy levees in a western region of Shizuoka Prefecture, Japan. Naturalized populations of Italian ryegrass are frequently infected with fungal Epichloë endophytes. Endophytes often confer benefits to their host grasses. This study investigated the influence of five weed management treatments on glyphosate resistance and endophyte infection in Italian ryegrass that was growing on paddy levees where glyphosate‐resistant individuals were dominant. The weed management treatments were: (i) mowing once before the grass flowered; (ii) mowing once during flowering; (iii) mowing twice during flowering; (iv) glyphosate application before flowering; and (v) no treatment. The seeds were collected from the treatment plots in 2013 and 2014. The seeds were examined for endophyte infection and the seedlings that had been grown from the seeds were tested for the frequency of glyphosate resistance. The seedlings that had been derived from the glyphosate treatment showed higher frequencies of glyphosate resistance than those seedlings that had been derived from all the other treatments. Endophytes were found in all populations of the seeds from the paddy levees, with higher infection rates in the seeds that had been derived from the glyphosate treatment and the twice‐mowed treatment. There was a significant relationship between the endophyte infection frequency in the seeds and glyphosate resistance in the seedlings that had been grown from the same populations. The results indicate that where glyphosate herbicides are frequently used, selection for glyphosate‐resistant Italian ryegrass occurs, and along with this, the frequency of endophyte infection also increases.  相似文献   

14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号