首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Microbial community responses to alternative management may be indicative of soil quality change. In this study, soils were collected from research plots over 2 years and from commercial grower fields over 1 year. Treatments at the sites included 1-9 years of either winter cover cropping or winter fallow practices. Soils were assayed for microbial fatty acid methyl esters (FAMEs), direct count microscopy and Biolog substrate utilization potentials to assess management and environmental influences on soil communities. The strongest influence was season. Soils in early spring (prior to termination of the cover crop) utilized fewer carboxylic acids and generally were enriched in eukaryotic FAMEs, whereas proportionally more bacterial FAMEs were detected in soils at canopy closure and harvest of the summer vegetable crop. Within a season, community FAME and Biolog patterns were related to field properties. FAME profiles from grower fields in early spring and harvest were correlated significantly with soil texture, cation exchange capacity, and carbon content. Changes in community structure and Biolog potential occurred in some soils in response to winter cover crops, although effects were not observed until cover crop incorporation. Greater amounts of fungal and protozoan FAME markers were detected in some cover-cropped soils compared to winter fallow soils. Cover crop residues increased FAME diversity at one research station and Biolog diversity at two research stations and the grower fields. Although seasonal and field-dependent factors are major determinants of microbial community structure, shifts can occur as soil physical and chemical properties change in response to alternative practices, as demonstrated by this study.  相似文献   

2.
Microbial communities drive soil organic matter (SOM) decomposition through the production of a variety of extracellular enzymes. Climate change impact on soil microbial communities and soil enzymatic activities can therefore strongly affect SOM turnover, and thereby determine the fate of ecosystems and their role as carbon sinks or sources.To simulate projected impacts of climate change on Swiss Jura subalpine grassland soils, an altitudinal soil transplantation experiment was set up in October 2009. On the fourth year of this experiment, we measured microbial biomass (MB), microbial community structure (MCS), and soil extracellular enzymatic activities (EEA) of nine hydrolytic and oxidative extracellular enzymes in the transplanted soils on a seasonal basis.We found a strong sampling date effect and a smaller but significant effect of the climate manipulation (soil transplantation) on EEA. Overall EEA was higher in winter and spring but enzymes linked to N and P cycles showed higher potential activities in autumn, suggesting that other factors than soil microclimate controlled their pool size, such as substrate availability. The climate warming manipulation decreased EEA in most cases, with oxidative enzymes more concerned than hydrolytic enzymes. In contrast to EEA, soil MB was more affected by the climate manipulation than by the seasons. Transplanting soils to lower altitudes caused a significant decrease in soil MB, but did not affect soil MCS. Conversely, a clear shift in soil MCS was observed between winter and summer. Mass-specific soil EEA (EEA normalized by MB) showed a systematic seasonal trend, with a higher ratio in winter than in summer, suggesting that the seasonal shift in MCS is accompanied by a change in their activities. Surprisingly, we observed a significant decrease in soil organic carbon (SOC) concentration after four years of soil transplantation, as compared to the control site, which could not be linked to any microbial data.We conclude that medium term (four years) warming and decreased precipitation strongly affected MB and EEA but not MCS in subalpine grassland soils, and that those shifts cannot be readily linked to the dynamics of soil carbon concentration under climate change.  相似文献   

3.
Microbial communities vary across the landscape in forest soils, but prediction of their biomass and composition is a difficult challenge due to the large numbers of variables that influence their community structures. Here we examine the use of artificial neural network (ANN) models for extraction of patterns among soil chemical variables and microbial community structures in forest soils from three regions of the Atlantic Forest of Brazil. At each location, variations in soil chemical properties and FAME profiles of microbial community structures were mapped at 20 × 20 m intervals within 10 ha parcels. Geostatistical analyses showed that spatial variability in soil physical and chemical variables could be mapped at scale distances of 20 m, but that FAME profiles representing the microbial communities were highly variable and had no spatial dependence at the same scale in most cases. RDA analysis showed that FAME signatures representing different microbial groups were positively associated with soil pH, OM, P and base cations concentrations, whereas microbial biomass was negatively associated with the same environmental factors. In contrast, ANN models revealed clear relationships between microbial community structures at each parcel location, and generated verifiable predictions of variations in FAME profiles in relation to soil pH, texture, and the relative abundances of base cations. The results suggest that ANN modeling provides a useful approach for describing the relationships between microbial community structures and soil properties in tropical forest soils that were not able to be captured using geostatistical and RDA analyses.  相似文献   

4.
Summary Three mollisols, typical of the Palouse winter wheat region of eastern Washington and northern Idaho, were analyzed for microbial biomass, total C and total N after 10 years of combined tillage and rotation treatments. Treatments included till, no-till and three different cereal-legume rotations. All crop phases in each rotation were sampled in the same year. Microbial biomass was monitored from April to October, using a respiratory-response method. Microbial biomass, total C and total N were highest under no-till surface soils (0–5 cm), with minimal differences for tillage or depth below 5 cm. Microbial biomass differences among rotations were not large, owing to the relative homogeneity of the treatments. A rotation with two legume crops had the highest total C and N. Microbial biomass was significantly higher in no-till surface soils where the current crop had been preceded by a high-residue crop. The opposite was true for the tilled plots. There was little change in microbial biomass over the seasons until October, when fresh crop residues and rains had a strong stimulatory effect. The seasonal pattern of biomass in no-till surface soils reflected the dry summer/winter rainfall climate of the region. The results of this study show that numerous factors affect soil microbial biomass and that cropping history and seasonal changes must be taken into account when microbial biomass data are compared.Scientific paper no. 7634  相似文献   

5.
Harvester ants (Messor spp.) function as an essential link between aboveground resources and below-ground biota such as the microbial community. We examined changes in soil microbial biomass and functional diversity resulting from harvester ant (Messor spp.) activity in the Negev Desert, Israel. Abiotic and biotic soil parameters were recorded during two seasons—wet and dry—also representing food availability periods for the ants (low and high seed availability, respectively). Soil samples were collected monthly from the 0- to 10- and 10- to 20-cm soil layers: (1) near the nest entrance, (2) under chaff piles, and (3) at a 2-m radius from the nest entrance (control). Harvester ant activity increased the percentage of organic matter, total soluble nitrogen, and microbial activity in nest-modified soils in comparison to the control soils. Higher CO2 evolution was recorded in the low-seed season in ant nest soils than in the control soils. During the high-seed season, higher carbon dioxide evolution was recorded only at the nest entrance locations. There were no differences in microbial biomass between the low- and high-seed seasons, but highest microbial biomass was found under chaff in low-seed season and in nest soils in high-seed season. Microbial functional diversity was higher in nest-modified soils than in the control soils. This study suggests that the effect of harvester ant nests on soil fertility is due to increased microbial biomass and microbial activity in ant nest-modified soils.  相似文献   

6.
Seasonal dynamics of soil microbial biomass in coastal sand dune forest   总被引:4,自引:0,他引:4  
Sand dunes are a typical landscape in the coast of western Taiwan, where Casuarina forests were established decades ago to stabilize sand dunes and protect the inland vegetation. Study of microbial biomass in such an ecosystem may give insights into the role of microbes in soil fertility and nutrient cycling. We established our study sites in two topographic units based on elevation and drainage types: upland and lowland. The study lasted for 2 years, and soil samples were collected every 3 months. Microbial biomass C (Cmic) and N (Nmic) were high in a shallow humic layer that rested on top of the soil (1222–1319 mg kg−1 for Cmic and 245–276 mg kg−1 for Nmic) and declined sharply to only one-tenth of the above values in the underlying surface soil (0–10 cm depth). Microbial biomass Cmic and Nmic in humic and surface soil were not significantly different between upland and lowland sites. In the upland soils, the mean Cmic was highest in autumn for both the humic and surface soil, and lowest in spring and summer for the humic layer and summer for the surface soil layer. In the lowland soils, the Cmic was highest in winter for both humic and surface soil, and lowest in spring and autumn for the humic layer and spring and summer for surface soil. Strong fluctuations of Cmic and Nmic were associated with the soil moisture prior to sampling, which appeared to control the size of microbial biomass in this environment. Temperature had little effect on the dynamics of soil microbial biomass in the sand dune forest ecosystem.  相似文献   

7.
 Fatty acid methyl ester (FAME) profiles, together with Biolog substrate utilization patterns, were used in conjunction with measurements of other soil chemical and microbiological properties to describe differences in soil microbial communities induced by increased salinity and alkalinity in grass/legume pastures at three sites in SE South Australia. Total ester-linked FAMEs (EL-FAMEs) and phospholipid-linked FAMEs (PL-FAMEs), were also compared for their ability to detect differences between the soil microbial communities. The level of salinity and alkalinity in affected areas of the pastures showed seasonal variation, being greater in summer than in winter. At the time of sampling for the chemical and microbiological measurements (winter) only the affected soil at site 1 was significantly saline. The affected soils at all three sites had lower organic C and total N concentrations than the corresponding non-affected soils. At site 1 microbial biomass, CO2-C respiration and the rate of cellulose decomposition was also lower in the affected soil compared to the non-affected soil. Biomarker fatty acids present in both the EL- and PL-FAME profiles indicated a lower ratio of fungal to bacterial fatty acids in the saline affected soil at site 1. Analysis of Biolog substrate utilization patterns indicated that the bacterial community in the affected soil at site 1 utilized fewer carbon substrates and had lower functional diversity than the corresponding community in the non-affected soil. In contrast, increased alkalinity, of major importance at sites 2 and 3, had no effect on microbial biomass, the rate of cellulose decomposition or functional diversity but was associated with significant differences in the relative amounts of several fatty acids in the PL-FAME profiles indicative of a shift towards a bacterial dominated community. Despite differences in the number and relative amounts of fatty acids detected, principal component analysis of the EL- and PL-FAME profiles were equally capable of separating the affected and non-affected soils at all three sites. Redundancy analysis of the FAME data showed that organic C, microbial biomass, electrical conductivity and bicarbonate-extractable P were significantly correlated with variation in the EL-FAME profiles, whereas pH, electrical conductivity, NH4-N, CO2-C respiration and the microbial quotient were significantly correlated with variation in the PL-FAME profiles. Redundancy analysis of the Biolog data indicated that cation exchange capacity and bicarbonate-extractable K were significantly correlated with the variation in Biolog substrate utilization patterns. Received: 8 March 2000  相似文献   

8.
Degradation and binding of atrazine in surface and subsurface soils   总被引:1,自引:0,他引:1  
Understanding the dissipation rates of chemicals in unsaturated and saturated zones of subsurface soils will help determine if reductions of concentrations to acceptable levels will occur. Chemical properties and microbial biomass and activity were determined for the surface (0-15 cm), lower root (50-105 cm), and vadose (175-220 cm) zones in a Huntington silty clay loam (Fluventic Hapludoll) collected from an agricultural field near Piketon, OH. The rates of sorption, mineralization, and transformation (formation of bound residues and metabolites) of atrazine were determined. Microbial activity was estimated from the mineralization of (14)C-benzoate. We observed decreased levels of nutrients (total organic carbon, N, and P) and microbial biomass with depth, while activity as measured with benzoate metabolism was higher in the vadose zone than in either the surface or the root zones. Sorption coefficients (K(f)) declined from 8.17 in the surface to 3.31 in the vadose zone. Sorption was positively correlated with organic C content. Rates of atrazine mineralization and bound residues formation were, respectively, 12-2.3-fold lower in the vadose than in the surface soil. Estimated half-lives of atrazine ranged from 77 to 101 days in the surface soil, but increased to over 900 days in the subsurface soils. The decreased dissipation of atrazine with increasing depth in the profile is the result of decreased microbial activity toward atrazine, measured either as total biomass or as populations of atrazine-degrading microorganisms. The combination of reduced dissipation and low sorption indicates that there is potential for atrazine movement in the subsurface soils.  相似文献   

9.
耕作对土壤生物碳动态变化的影响   总被引:20,自引:2,他引:20  
本文讨论了耕作方法对作玉米地土壤生物碳动态变化的影响。实验证明,传统耕法、短期免耕和长期免耕处理中的不同点位,土壤生物碳量分布有系统的差异。  相似文献   

10.
Changes in the biomass and structure of soil microbial communities have the potential to impact ecosystems via interactions with plants and weathering minerals. Previous studies of forested long-term (1000s - 100,000s of years) chronosequences suggest that surface microbial communities change with soil age. However, significant gaps remain in our understanding of long-term soil microbial community dynamics, especially for non-forested ecosystems and in subsurface soil horizons. We investigated soil chemistry, aboveground plant productivity, and soil microbial communities across a grassland chronosequence (65,000-226,000 yrs old) located near Santa Cruz, CA. Aboveground net primary productivity (ANPP) initially increased to a maximum and then decreased for the older soils. We used polar lipid fatty acids (PLFA) to investigate microbial communities including both surface (<0.1 m) and subsurface (≥0.2 m) soil horizons. PLFAs characteristic of Gram-positive bacteria and actinobacteria increased as a fraction of the microbial community with depth while the fungal fraction decreased relative to the surface. Differences among microbial communities from each chronosequence soil were found primarily in the subsurface where older subsurface soils had smaller microbial community biomass, a higher proportion of fungi, and a different community structure than the younger subsurface soil. Subsurface microbial community shifts in biomass and community structure correlated with, and were likely driven by, decreasing soil P availability and Ca concentrations, respectively. Trends in soil chemistry as a function of soil age led to the separation of the biological (≤1 m depth) and geochemical (>1 m) cycles in the old, slowly eroding landscape we investigated, indicating that this separation, commonly observed in tropical and subtropical ecosystems, can also occur in temperate climates. This study is the first to investigate subsurface microbial communities in a long-term chronosequence. Our results highlight connections between soil chemistry and both the aboveground and belowground parts of an ecosystem.  相似文献   

11.
Soil samples collected from a long-term (19-year) experimental field with seven treatments were analyzed for fatty acids methyl esters (FAMEs) to determine fertilization regime effects on microbial community structure in sandy loam soils. The amounts of FAMEs in bacteria, actinomycetes, and fungi were highest with the two organic manure (OM)-fertilized treatments (OM and 1/2 OMN – half OM plus half mineral fertilizer), lowest with the NK treatment, and fell in the middle levels with three mineral P-fertilized treatments (NPK, NP and PK) and the control with no fertilizer (CK), with the exception of fungi which showed no significant difference among the five treatments without OM fertilization. Principal component analysis of FAME patterns indicated that NPK was not significantly different from CK, but the two manure-containing treatments and the P-deficiency treatment (NK) were significantly different from CK and NPK. Redundancy analysis plot showed that FAME amounts significantly correlated to soil organic C and total N contents, while soil available P and total P contents, which were greatly decreased by the NK treatment, also had positive and substantial effects on soil microbial FAMEs. The results demonstrated the importance of P fertilization as well as organic manure in maintaining soil microbial biomass and impacting community structure.  相似文献   

12.
The sensitivity of creeping bentgrass (Agrostis palustris Huds.) to the extreme heat found in the southeastern United States has led to the development of new greens-management methods. The purpose of this study was to examine the effects of subsurface aeration and growth regulator applications on soil microbial communities and mycorrhizal colonization rates in a creeping bentgrass putting green. Two cultivars (Crenshaw and Penncross), a growth regulator (trinexapac-ethyl), and subsurface aeration were evaluated in cool and warm seasons. Total bacterial counts were higher in whole (unsieved) soils than in sieved soils, indicating a richer rhizosphere soil environment. Mycorrhizal infection rates were higher in trinexapac-ethyl (TE) treated plants. High levels of hyphal colonization and relatively low arbuscule and vesicle occurrence were observed. Principal components analysis of whole-soil fatty acid methyl ester (FAME) profiles indicated that warm-season microbial populations in whole and sieved soils had similar constituents, but the populations differed in the cool season. FAME profiles did not indicate that subsurface aeration and TE application affected soil microbial community structure. This is the first reported study investigating the influences of subsurface aeration and TE application on soil microorganisms in a turfgrass putting green soil.  相似文献   

13.
 The effects of intense grazing, seasonal drought, and fire on soil microbial diversity (substrate utilization) and activity in a northern Chihuahuan Desert grassland were measured in summer 1997, winter 1998, and spring 1998. Intense livestock grazing was initiated in winter 1995, burning occurred in August 1994, and drought stresses were imposed from October 1994 to June 1997. Microbial diversity was inferred from the carbon substrate utilization patterns in both gram (+) and gram (–) Biolog plates. Microbial activity was estimated by the activity of selected enzymes. Neither microbial diversity nor activity was affected by grazing. The interaction of intense grazing and stress sub-treatments only occurred in spring for one set of diversity measurements. The maximum microbial diversity and activity occurred in the winter-drought-stress sub-plots in summer and spring. Burning reduced microbial diversity and most enzyme activities as compared to the control in summer and spring. Microbial diversity was also lower in summer-drought-stress sub-plots than in the control in summer and spring. Microbial diversity was highest in summer, intermediate in winter, and lowest in spring. Microbial activity was generally higher in summer and lower in winter. It was concluded that substrate availability was the most important factor affecting the diversity and activity of soil microorganisms within a season. Soil moisture was not the factor causing differences in microbial diversity and activity among the stress treatments, but it was a predictor for some microbial responses under a particular stress. Received: 12 August 1999  相似文献   

14.
Many biotic and abiotic factors influence recovery of soil communities following prolonged disturbance. We investigated the role of soil texture in the recovery of soil microbial community structure and changes in microbial stress, as indexed by phospholipid fatty acid (PLFA) profiles, using two chronosequences of grasslands restored from 0 to 19 years on silty clay loam and loamy fine sand soils in Nebraska, USA. All restorations were formerly cultivated fields seeded to native warm-season grasses through the USDA’s Conservation Reserve Program. Increases in many PLFA concentrations occurred across the silty clay loam chronosequence including total PLFA biomass, richness, fungi, arbuscular mycorrhizal fungi, Gram-positive bacteria, Gram-negative bacteria, and actinomycetes. Ratios of saturated:monounsaturated and iso:anteiso PLFAs decreased across the silty clay loam chronosequence indicating reduction in nutrient stress of the microbial community as grassland established. Multivariate analysis of entire PLFA profiles across the silty clay loam chronosequence showed recovery of microbial community structure on the trajectory toward native prairie. Conversely, no microbial groups exhibited a directional change across the loamy fine sand chronosequence. Changes in soil structure were also only observed across the silty clay loam chronosequence. Aggregate mean weighted diameter (MWD) exhibited an exponential rise to maximum resulting from an exponential rise to maximum in the proportion of large macroaggregates (>2000 μm) and exponential decay in microaggregates (<250 μm and >53 μm) and the silt and clay fraction (<53 μm). Across both chronosequences, MWD was highly correlated with total PLFA biomass and the biomass of many microbial groups. Strong correlations between many PLFA groups and the MWD of aggregates underscore the interdependence between the recovery of soil microbial communities and soil structure that may explain more variation than time for some soils (i.e., loamy fine sand). This study demonstrates that soil microbial responses to grassland restoration are modulated by soil texture with implications for estimating the true capacity of restoration efforts to rehabilitate ecosystem functions.  相似文献   

15.
Microbial mineralization and immobilization of nutrients strongly influence soil fertility. We studied microbial biomass stoichiometry, microbial community composition, and microbial use of carbon (C) and phosphorus (P) derived from glucose-6-phosphate in the A and B horizons of two temperate Cambisols with contrasting P availability. In a first incubation experiment, C, nitrogen (N) and P were added to the soils in a full factorial design. Microbial biomass C, N and P concentrations were analyzed by the fumigation-extraction method and microbial community composition was analyzed by a community fingerprinting method (automated ribosomal intergenic spacer analysis, ARISA). In a second experiment, we compared microbial use of C and P from glucose-6-phosphate by adding 14C or 33P labeled glucose-6-phosphate to soil. In the first incubation experiment, the microbial biomass increased up to 30-fold due to addition of C, indicating that microbial growth was mainly C limited. Microbial biomass C:N:P stoichiometry changed more strongly due to element addition in the P-poor soils, than in the P-rich soils. The microbial community composition analysis showed that element additions led to stronger changes in the microbial community in the P-poor than in the P-rich soils. Therefore, the changed microbial biomass stoichiometry in the P-poor soils was likely caused by a shift in the microbial community composition. The total recovery of 14C derived from glucose-6-phosphate in the soil microbial biomass and in the respired CO2 ranged between 28.2 and 37.1% 66 h after addition of the tracer, while the recovery of 33P in the soil microbial biomass was 1.4–6.1%. This indicates that even in the P-poor soils microorganisms mineralized organic P and took up more C than P from the organic compound. Thus, microbial mineralization of organic P was driven by microbial need for C rather than for P. In conclusion, our experiments showed that (i) the microbial biomass stoichiometry in the P-poor soils was more susceptible to additions of C, N and P than in the P-rich soils and that (ii) even in the P-poor soils, microorganisms were C-limited and the mineralization of organic P was mainly driven by microbial C demand.  相似文献   

16.
Viable microorganisms, soil respiration, and available N, Ca, Mg, Na, K, and P contents were determined in samples of five different forest soils collected in spring, summer, autumn, and winter. Viable microorganisms and soil respiration were positively correlated and showed a clear seasonal trend. The soils exhibited high microbial population values in spring and autumn and low values in summer and winter; total respiration values were largely higher in autumn than in the other seasons. Seasonal variations in available Ca, Na, and K contents were much more marked than those found for available N, Mg, and P. Available N and K and the microbial population showed similar seasonal trends whereas available Ca, Mg, Na, and P did not exhibit a distinguishable and uniform seasonal pattern. The quantities of available nutrients in soils followed the order Ca>K=Na>Mg>P>N. Soils developed over basic rocks showed higher values of both microbial density and microbial activity than those in soils developed over acid rocks. All the variables analysed were clearly related to the type of soil but varied with the date of sampling; a significant seasonal effect on the microbial population, microbial activity and available nutrients was detected in all the soils studied.  相似文献   

17.
Enzyme activities along a climatic transect in the Judean Desert   总被引:4,自引:0,他引:4  
Xiangzhen Li  Pariente Sarah   《CATENA》2003,53(4):349-363
Soil enzymes have an important influence on nutrient cycling. We examined spatial and temporal patterns in dehydrogenase, arylsulfatase, alkaline and acid phosphatase activities, and their relationships with organic carbon and microbial biomass nitrogen at three sites in Israel representing different climatic regions: Mediterranean (humid), mildly arid and arid. The sites were selected along a climatic transect from the Judean Mountains in the west to the Dead Sea in the east of Israel. With increasing aridity, soil organic carbon, soil microbial biomass nitrogen, dehydrogenase, phosphatase and different pools of arylsulfatase activities decreased significantly. A sharp change in enzyme activities existed between 260- and 120-mm mean annual rainfall. The arylsulfatase activity of the microbial biomass in the 0–2- and 5–10-cm soil layers usually accounted for more than 50% of the total activity, and the fraction of total activity in the 0–2-cm soil layer of the arid sites was significantly greater than that of the humid site. Dehydrogenase and total and microbial biomass arylsulfatase activities were sensitive indicators of the climatic change along the transect. At the humid and mildly arid sites, the activities of dehydrogenase were less in the winter than in the summer and spring, whereas total and microbial biomass arylsulfatase activities were less in both summer and winter. At the arid site, lower values were observed in the summer at 0–2-cm soil depth. At all sites, lower alkaline phosphatase activities at 0–2 cm were observed in the summer, but there were no significant seasonal differences in acid phosphatase activities. These different seasonal patterns of enzyme activities are attributed to the enzyme source, and specific seasonal soil moisture and temperature conditions at the studied sites. The low dehydrogenase and microbial biomass arylsulfatase activities in the winter at the humid and mildly arid sites are explained by the cold and wet soil conditions, and the low enzyme activity in the summer at the arid site is attributed to the dry and hot soil conditions.  相似文献   

18.
Soil microbial communities mediate the decomposition of soil organic matter (SOM). The amount of carbon (C) that is respired leaves the soil as CO2 (soil respiration) and causes one of the greatest fluxes in the global carbon cycle. How soil microbial communities will respond to global warming, however, is not well understood. To elucidate the effect of warming on the microbial community we analyzed soil from the soil warming experiment Achenkirch, Austria. Soil of a mature spruce forest was warmed by 4 °C during snow-free seasons since 2004. Repeated soil sampling from control and warmed plots took place from 2008 until 2010. We monitored microbial biomass C and nitrogen (N). Microbial community composition was assessed by phospholipid fatty acid analysis (PLFA) and by quantitative real time polymerase chain reaction (qPCR) of ribosomal RNA genes. Microbial metabolic activity was estimated by soil respiration to biomass ratios and RNA to DNA ratios. Soil warming did not affect microbial biomass, nor did warming affect the abundances of most microbial groups. Warming significantly enhanced microbial metabolic activity in terms of soil respiration per amount of microbial biomass C. Microbial stress biomarkers were elevated in warmed plots. In summary, the 4 °C increase in soil temperature during the snow-free season had no influence on microbial community composition and biomass but strongly increased microbial metabolic activity and hence reduced carbon use efficiency.  相似文献   

19.
《Applied soil ecology》2007,35(1):79-93
Microbial diversity in soils is considered important for maintaining sustainability of agricultural production systems. However, the links between microbial diversity and ecosystem processes are not well understood. This study was designed to gain better understanding of the effects of short-term management practices on the microbial community and how changes in the microbial community affect key soil processes. The effects of different forms of nitrogen (N) on soil biology and N dynamics was determined in two soils with organic and conventional management histories that varied in soil microbial properties but had the same fertility. The soils were amended with equal amounts of N (100 kg ha−1) in organic (lupin, Lupinus angustifolius L.) and mineral form (urea), respectively. Over a 91-day period, microbial biomass C and N, dehydrogenase enzyme activity, community structure of pseudomondas (sensu stricto), actinomycetes and α proteobacteria (by denaturing gradient gel electrophoresis (DGGE) following PCR amplification of 16S rDNA fragments) and N mineralisation were measured. Lupin amendment resulted in a two- to five-fold increase in microbial biomass and enzyme activity, while these parameters did not differ significantly between the urea and control treatments. The PCR–DGGE analysis showed that the addition of mineral and organic compounds had an influence on the microbial community composition in the short term (up to 10 days) but the effects were not sustained over the 91-day incubation period. Microbial community structure was strongly influenced by the presence or lack of substrate, while the type of amendment (organic or mineral) had an effect on microbial biomass size and activity. These findings show that the addition of green manures improved soil biology by increasing microbial biomass and activity irrespective of management history, that no direct relationship existed among microbial structure, enzyme activity and N mineralisation, and that microbial community structure (by PCR–DGGE) was more strongly influenced by inherent soil and environmental factors than by short-term management practices.  相似文献   

20.
铅锌银尾矿区土壤微生物活性及其群落功能多样性研究   总被引:49,自引:13,他引:49       下载免费PDF全文
通过对浙江省天台铅锌银尾矿区土壤微生物活性指标以及微生物群落功能多样性研究 ,结果表明 ,尾矿污染区土壤几种重金属含量比非矿区土壤有明显的增加。尾矿区土壤微生物特征发生了显著的变化 ,微生物生物量和可培养细菌数量显著降低 ,但土壤基础呼吸和微生物代谢商 (qCO2 )值却明显升高。Bi olog测试结果显示 ,随着重金属污染程度的加剧其土壤微生物群落结构发生了相应变化 ,尾矿区土壤微生物群落代谢剖面 (AWCD)及群落丰富度、多样性指数均显著低于非矿区土壤 ,且供试土壤间均达极显著水平差异 (p <0 .0 1) ,表明尾矿区重金属污染引起了土壤微生物群落功能多样性的下降 ,减少了能利用有关碳源底物的微生物数量、降低了微生物对单一碳源底物的利用能力  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号