首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We compared differences in leaf properties, leaf gas exchange and photochemical properties between drought-deciduous and evergreen trees in tropical dry forests, where soil nutrients differed but rainfall was similar. Three canopy trees (Shorea siamensis Miq., Xylia xylocarpa (Roxb.) W. Theob. and Vitex peduncularis Wall. ex Schauer) in a drought-deciduous forest and a canopy tree (Hopea ferrea Lanessan) in an evergreen forest were selected. Soil nutrient availability is lower in the evergreen forest than in the deciduous forest. Compared with the evergreen tree, the deciduous trees had shorter leaf life spans, lower leaf masses per area, higher leaf mass-based nitrogen (N) contents, higher leaf mass-based photosynthetic rates (mass-based P(n)), higher leaf N-based P(n), higher daily maximum stomatal conductance (g(s)) and wider conduits in wood xylem. Mass-based P(n) decreased from the wet to the dry season for all species. Following onset of the dry season, daily maximum g(s) and sensitivity of g(s) to leaf-to-air vapor pressure deficit remained relatively unchanged in the deciduous trees, whereas both properties decreased in the evergreen tree during the dry season. Photochemical capacity and non-photochemical quenching (NPQ) of photosystem II (PSII) also remained relatively unchanged in the deciduous trees even after the onset of the dry season. In contrast, photochemical capacity decreased and NPQ increased in the evergreen tree during the dry season, indicating that the leaves coped with prolonged drought by down-regulating PSII. Thus, the drought-avoidant deciduous species were characterized by high N allocation for leaf carbon assimilation, high water use and photoinhibition avoidance, whereas the drought-tolerant evergreen was characterized by low N allocation for leaf carbon assimilation, conservative water use and photoinhibition tolerance.  相似文献   

2.
Intraspecific variability in morphological and ecophysiological leaf traits might be theorized to be present in declining populations,since they seem to be exposed to stress and plasticity could be advantageous.Here we focused on declining Persian oaks(Quercus brantii Lindl.var.persica(Jaub and Spach)Zohary)in the Zagros Mountains of western Iran,representing the most important tree species of this region.We selected trees with contrasting crown dieback,from healthy to severely defoliated,to investigate the relationships between canopy dieback and leaf morphology,water content and pigments.We also measured esterase and peroxidase,as enzymatic antioxidants and indicators of contrasting genotypes.Trees showing moderate to severe defoliation showed higher leaf mass area(LMA),reduced relative water content(RWC),and lower stomatal density(SD).Increasing LMA indicates a more sclerophyllic structure,according to drier conditions.We did not find significant differences in leaf pigments(chlorophyll a and b,and carotenoids)among crown dieback classes,suggesting that Persian oak trees are able to maintain accurate photochemical efficiency,while reduced RWC and SD suggest hydraulic limitations.Our results do not provide a consistent pattern as regards enzymatic antioxidant defense in Persian oak.Morphological leaf traits would be important drivers of future adaptive evolution in Persian oak,leading to smaller and thicker leaves,which have fitness benefits in dry environments.Nonetheless,drought responses may be critically affecting carbon uptake,as photosynthetic compounds are less effectively used in leaves with higher sclerophylly.  相似文献   

3.
Diurnal courses of gas exchange were measured over a 1-year period in fully expanded current-year leaves in the upper (sun-exposed, 18 m above ground) and the lower (shaded, 12 m above ground) canopy of Laurus azorica (Seub.) Franco, a major canopy species of the Canarian laurel forest in Tenerife, Canary Islands, Spain. Laurus azorica exhibited high leaf plasticity in gas exchange characteristics, with a maximum carbon assimilation rate (Amax) of shade leaves about 50% that of sun leaves. This difference reflects the high leaf area index (LAI) of the stand and the correspondingly sharp light attenuation with increasing canopy depth. In sun leaves, Amax peaked at about 11 micromol m-2 s-1 and maximum transpiration (E) was about 8 mmol m-2 s-1, which corresponded with a maximum stomatal conductance (gs) of about 650 mmol m-2 s-1. Mean maximum instantaneous water-use efficiency (WUE) was 1.5 mmol mol-1 and the mean maximum A/gs was 20-35 micromol mol-1. Mean minimum internal CO2 concentration (Ci) was 225 micromol mol-1. Although high air vapor pressure deficit (VPD) caused a small decrease in gs, it remained high enough to maintain relatively high A and E. These gas exchange characteristics indicate a non-conservative use of water, which is appropriate for a species subject to droughts that are mild or of short duration. In this respect, Laurus azorica differs from its congener, L. nobilis L., of the Mediterranean region and other shrubs growing in Mediterranean-type climates in California and Chile that have to withstand more severe or more prolonged droughts.  相似文献   

4.
Taneda H  Tateno M 《Tree physiology》2005,25(3):299-306
To confirm that freeze-thaw embolism is a primary stress for evergreen woody species in winter, hydraulic conductivity, photosynthesis and leaf water potential were measured during fall and winter in trees growing in a cool temperate zone (Nikko) and in a warm temperate zone (Tokyo). We examined two evergreen conifers that naturally occur in the cool temperate zone (Abies firma Siebold & Zucc. and Abies homolepis Siebold & Zucc.), and four evergreen broad-leaved woody species that are restricted to the warm temperate zone (Camellia japonica L., Cinnamomum camphora (L.) J. Presl, Ilex crenata Thunb. and Quercus myrsinaefolia Blume). In Tokyo, where no freeze-thaw cycles of xylem sap occurred, hydraulic conductivity, photosynthesis and water balance remained constant during the experimental period. In Nikko, where there were 38 daily freeze-thaw cycles by February, neither of the tracheid-bearing evergreen conifers showed xylem embolism or leaf water deficits. Similarly, the broad-leaved evergreen trees with small-diameter vessels did not exhibit severe embolism or water deficits and maintained CO(2) assimilation even in January. In contrast, the two broad-leaved evergreen trees with large-diameter vessels showed significantly reduced hydraulic conductivity and shoot die-back in winter. We conclude that freeze-thaw embolism restricts evergreen woody species with large-diameter vessels to the warm temperate zone, whereas other stresses limit the distribution of broad-leaved trees, that have small-diameter vessels, but which are restricted to the warm temperate zone.  相似文献   

5.
We extended the applicability of the ecosystem model BIOME-BGC to floodplain ecosystems to study effects of hydrological changes on Quercus robur L. stands. The extended model assesses floodplain peculiarities, i.e., seasonal flooding and water infiltration from the groundwater table. Our interest was the tradeoff between (a). maintaining regional applicability with respect to available model input information, (b). incorporating the necessary mechanistic detail and (c). keeping the computational effort at an acceptable level. An evaluation based on observed transpiration, timber volume, soil carbon and soil nitrogen content showed that the extended model produced unbiased results. We also investigated the impact of hydrological changes on our oak stands as a result of the completion of an artificial canal network in 1971, which has stopped regular springtime flooding. A comparison of the 11 years before versus the 11 years after 1971 demonstrated that the hydrological changes affected mainly the annual variation across years in leaf area index (LAI) and soil carbon and nitrogen sequestration, leading to stagnation of carbon and nitrogen stocks, but to an increase in the variance across years. However, carbon sequestration to timber was unaffected and exhibited no significant change in cross-year variation. Finally, we investigated how drawdown of the water table, a general problem in the region, affects modeled ecosystem behavior. We found a further amplification of cross-year LAI fluctuations, but the variance in soil carbon and nitrogen stocks decreased. Volume increment was unaffected, suggesting a stabilization of the ecosystem two decades after implementation of water management measures.  相似文献   

6.
7.
Kosugi Y  Matsuo N 《Tree physiology》2006,26(9):1173-1184
Seasonal fluctuations in leaf gas exchange parameters were investigated in three evergreen (Quercus glauca Thunb., Cinnamomum camphora Sieb. and Castanopsis cuspidata Schottky) and one deciduous (Quercus serrata Thunb.) co-occurring, dominant tree species in a temperate broad-leaved forest. Dark respiration rate (Rn), maximum carboxylation rate (Vcmax) and stomatal coefficient (m), the ratio of stomatal conductance to net assimilation rate after adjustment to the vapor pressure deficit and internal carbon dioxide (CO2) concentration, were derived inversely from instantaneous field gas exchange data (one-point method). The normalized values of Rn and Vcmax at the reference temperature of 25 degrees C (Rn25, Vcmax25) and their temperature dependencies (Delta Ha(Rn), Delta Ha(Vcmax)) were analyzed. Parameter Vcmax25 ranged from 24.0-40.3 micromol m(-2) s(-1) and Delta Ha(Vcmax) ranged from 29.1- 67.0 kJ mol(-1). Parameter Rn25 ranged from 0.6-1.4 micromol m(-2) s(-1) and Delta Ha(Rn) ranged from 47.4-95.4 kJ mol(-1). The stomatal coefficient ranged from 7.2-8.2. For the three evergreen trees, a single set of Vcmax25 and Rn25 parameters and temperature dependence curves produced satisfactory estimates of carbon uptake throughout the year, except during the period of simultaneous leaf fall and leaf expansion, which occurs in April and May. In the deciduous oak, declines in Vcmax25 were observed after summer, along with changes in Vcmax25 and Rn25 during the leaf expansion period. In all species, variation in m during periods of leaf expansion and drought should be considered in modeling studies. We conclude that the changes in normalized gas exchange parameters during periods of leaf expansion and drought need to be considered when modeling carbon uptake of evergreen broad-leaved species.  相似文献   

8.
Secondary xylem of woody plants has a large volumetric proportion of gas occupying spaces that would otherwise be filled with water. We examined whether these gas-filled voids have a mechanical role by either decreasing the fresh mass the tree must support (by replacing some of the water with gas) or by providing inexpensive filler to increase stem diameter (thereby increasing the second moment of area at the expense of the modulus of elasticity and modulus of rupture). Calculations from published data show that temperate softwood species (n = 26) average 18 and 50% gas by volume for sapwood and heartwood, respectively; temperate hardwood species (n = 31) average 26% gas by volume in both the sapwood and heartwood; and tropical species (n = 52) with mixed sapwood and heartwood have 18% gas by volume. In this paper, we develop equations to show how gas affects the mechanical behavior of tree stems, and describe model results to show how gas affects mechanical stability, based on mass and stem diameters for six 34-year-old Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) trees. For the same applied load, modeled stems in which the gas space was filled with water differed in their surface stresses by < 2% from modeled stems in the native state (partially gas-filled), indicating no practical benefit from a reduction in stem mass due to gas. A second modeling scenario compared the native state to stems in which gas was removed and stem diameters decreased (and material properties adjusted to concur with the increased wood density) to conserve mass. Removal of the gas-filled voids resulted in up to 41% higher surface stress for the same applied load, caused by a decrease in the second moment of area greater than the increase in modulus of elasticity. Trees with gas removed had higher modulus of rupture, but could withstand up to 14% lower maximum wind forces than trees in their native state, suggesting a biomechanical role for the gas if the model assumptions are valid. The gas content may, however, have evolved in response to pressures unrelated to biomechanics. We discuss some of its potential effects on sapwood physiology.  相似文献   

9.

The ecological literature has documented the effects of plant hybridization on phenotypic variation, and dominant, intermediate, or novel morphological, chemical and physiological traits in hybrids. It is important to understand the ecological consequences of hybridization by evaluating their impact on phenotypic expression of functional traits. We evaluated the relationship between genetic diversity of Quercus laurina and functional foliar traits along an oak diversity gradient. We selected five study sites that represent an oak diversity gradient where Q. laurina is present. Using chloroplast and nuclear microsatellites, we evaluated genetic diversity, measured functional foliar traits of Q. laurina in each site and assessed the effects of local climate variables on the oak community and functional traits. We found a greater abundance of Q. laurina in all study sites. We did not find a relationship between the number of accompanying red oak species and the population genetic diversity in Q. laurina, but higher genetic diversity was found in all study sites in comparison with European oak species. Sites with more oak species had more variation of foliar functional traits. Our results do not support the hypothesis that predicts higher levels of genetic diversity of Q. laurina in communities with greater oak diversity from the same section, but we demonstrated an increase in the foliar functional traits of Q. laurina associated with oak richness and climate variables. We highlight the need to consider environmental and ecological variables linkages as regulatory mechanisms of the phenotypic plasticity expressed in changes of some functional attributes of oaks.

  相似文献   

10.
Ogawa K  Takano Y 《Tree physiology》1997,17(6):415-420
Carbon dioxide exchange in fruits of Cinnamomum camphora Sieb. was followed over a growing season from July to December 1992. Dark respiration was exponentially related to temperature, with a Q(10) value near 2. Light dependence of photosynthetic CO(2) refixation, i.e., the ratio of gross photosynthesis to dark respiration, was approximated by a hyperbolic function. Seasonal variation in maximum CO(2) refixation capacity ranged between 52 and 174%, reaching a maximum in early August. Daily photosynthetic CO(2) refixation ranged between 17 and 51% over the growth period. We evaluated seasonal variation in translocation rate to the fruit on the basis of the seasonal rates of gross photosynthesis, dark respiration and increase in fruit dry weight, and used the results to develop a simple carbon flow model of fruit development. Seasonal changes in translocation rate paralleled those in fruit growth rate, with two peaks during the periods before and after September. Seed formation took place in the period between the two peaks. The relationship between fruit growth rate and translocation rate was approximated by a linear function. The carbon flow model estimated that, over the reproductive period, the amount of assimilate translocated to each fruit was 377.2 mg dry weight, of which 58.5% was accounted for by weight growth and 41.5% was consumed by net respiration. Carbon dioxide refixation accounted for 22.9% of the carbon balance of the fruit.  相似文献   

11.
Seasonal and environmentally induced variation in the type and frequency of leaf trichomes of Wigandia urens (Ruiz & Pavón) Kunth (Hydrophyllaceae) was studied. Depending on the microsite, W. urens plants had smooth leaves with glandular trichomes or bristly leaves with both glandular trichomes and urticant trichomes (stinging hairs). Trichome density (number of urticant trichomes per unit leaf area) was higher in the dry season than in the wet season, and was significantly correlated with both temperature (r = 0.353, P < 0.05) and photosynthetic active radiation (r = 0.313, P < 0.05). Plants established in sun-exposed areas had trichome densities three times higher than those of plants established in shaded areas during the dry season, and 28 times higher during the wet season. At both exposed and shaded sites, trichome densities of the youngest leaves of young plants were higher than those of the youngest leaves of mature plants. In smooth and bristly leaves, transpiration rates decreased with increasing temperature during the day. However, smooth leaves had higher transpiration rates than bristly leaves at both exposed and shaded sites. In laboratory studies, trichome density was significantly (P < 0.01) reduced when small sun-grown plants (0.20-0.30 m tall) were either shaded or irrigated. In larger plants, also, irrigation significantly (P < 0.01) reduced trichome density relative to that of unirrigated controls.  相似文献   

12.
Trees exposed to elevated CO2 partial pressure ([CO2]) generally show increased rates of photosynthesis and growth, but effects on leaf respiration are more variable. The causes of this variable response are unresolved. We grew 12-year-old sweetgum trees (Liquidambar styraciflua L.) in a Free-Air CO2 Enrichment (FACE) facility in ambient [CO2] (37/44 Pa daytime/nighttime) and elevated [CO2] (57/65 Pa daytime/nighttime) in native soil at Oak Ridge National Environmental Research Park. Nighttime respiration (R(N)) was measured on leaves in the upper and lower canopy in the second (1999) and third (2000) growing seasons of CO2 fumigation. Leaf respiration in the light (R(L)) was estimated by the technique of Brooks and Farquhar (1985) in the upper canopy during the third growing season. There were no significant short-term effects of elevated [CO2] on R(N) or long-term effects on R(N) or R(L), when expressed on an area, mass or nitrogen (N) basis. Upper-canopy leaves had 54% higher R(N) (area basis) than lower-canopy leaves, but this relationship was unaffected by CO2 growth treatment. In August 2000, R(L) was about 40% of R(N) in the upper canopy. Elevated [CO(2)] significantly increased the number of leaf mitochondria (62%), leaf mass per unit area (LMA; 9%), and leaf starch (31%) compared with leaves in ambient [CO(2)]. Upper-canopy leaves had a significantly higher number of mitochondria (73%), N (53%), LMA (38%), sugar (117%) and starch (23%) than lower-canopy leaves. Growth in elevated [CO2] did not affect the relationships (i.e., intercept and slope) between R(N) and the measured leaf characteristics. Although no factor explained more than 45% of the variation in R(N), leaf N and LMA were the best predictors for R(N). Therefore, the response of RN to CO2 treatment and canopy position was largely dependent on the magnitude of the effect of elevated [CO2] or canopy position on these characteristics. Because elevated [CO2] had little or no effect on N or LMA, there was no effect on R(N). Canopy position had large effects on these leaf characteristics, however, such that upper-canopy leaves exhibited higher R(N) than lower-canopy leaves. We conclude that elevated [CO2] does not directly impact leaf respiration in sweetgum and that barring changes in leaf nitrogen or leaf chemical composition, long-term effects of elevated [CO2] on respiration in this species will be minimal.  相似文献   

13.
以LAI-2000冠层分析仪的应用为基础,对上海园林几种主要常绿阔叶树木黄杨Buxus sinica、桂花Os-manthus fragrans、广玉兰Magnolia grandiflora和香樟Cinnamomum camphora单株植物的树高、枝下高、冠幅、基径/胸径、三维绿量等形态特征数据和叶面积指数(ILAI)进行测量分析。结果表明:4种植物的形态特征数据之间均有显著性正相关;黄杨受修剪影响,单株ILAI与形态特征数据无显著相关性,但叶总量与树高、三维绿量有极显著正相关;桂花和广玉兰单株ILAI与树高、三维绿量有极显著正相关;香樟随树木成长枝干横向生长的影响,单株ILAI与树高呈显著负相关,但其叶总量与形态特征数据呈极显著性正相关;平均单株ILAI灌木类大于乔木类,而平均单株叶总量却恰恰相反;反映出不同生活型的植物其树枝叶片的空间分布是有明显差异的。同时,根据上海植物园多年的单位叶面积生态效益数据,结合相关ILAI方程,建立了单株植物生态效益模型公式。  相似文献   

14.
Ishida A  Toma T  M 《Tree physiology》1999,19(2):117-124
We tested the hypothesis that, in tropical pioneer tree species, vertical leaf angle contributes to high carbon gain because it minimizes damage caused by high irradiances. Diurnal changes in leaf gas exchange and chlorophyll fluorescence were measured in east-facing (EL), west-facing (WL) leaves, and in leaves artificially held horizontal (HL) in the uppermost canopy of Macaranga conifera (Zoll.) Muell. Arg. Maximum values of net photosynthetic rate (P(n)) for EL and HL reached 12 &mgr;mol m(-2) s(-1), whereas maximum P(n) for WL was only 6 &mgr;mol m(-2) s(-1). Midday depressions of P(n) and stomatal conductance occurred at high photosynthetic photon flux densities (PPFD), especially for HL. Photosystem II quantum yield (DeltaF/F(m)') of HL for a given PPFD at the leaf surface was lower in the afternoon than in the morning. Values of DeltaF/F(m)' for HL measured at dusk were lower than those measured just before dawn, suggesting that HL suffered from high light and heat load. Variations in the morphology and physiology of the canopy leaves were associated with different light environments, and there was circumstantial evidence of a transitional point at a PPFD of about 20-30% of full sunlight. Maximum P(n) and nitrogen (N) content were higher in upper canopy leaves than in lower canopy leaves, and the differences were mainly associated with differences in lamina thickness. We conclude that the vertical leaf angle and thick lamina of the top canopy leaves contributed to enhance total carbon gain of the whole plant.  相似文献   

15.
Gas exchange techniques were used to investigate light-saturated carbon assimilation and its stomatal and non-stomatal limitations over two seasons in mature trees of five species in a closed deciduous forest. Stomatal and non-stomatal contributions to decreases in assimilation resulting from leaf age and drought were quantified relative to the maximum rates obtained early in the season at optimal soil water contents. Although carbon assimilation, stomatal conductance and photosynthetic capacity (V(cmax)) decreased with leaf age, decreases in V(cmax) accounted for about 75% of the leaf-age related reduction in light-saturated assimilation rates, with a secondary role for stomatal conductance (around 25%). However, when considered independently from leaf age, the drought response was dominated by stomatal limitations, accounting for about 75% of the total limitation. Some of the analytical difficulties associated with computing limitation partitioning are discussed, including path dependence, patchy stomatal closure and diffusion in the mesophyll. Although these considerations may introduce errors in our estimates, our analysis establishes some reasonable boundaries on relative limitations and shows differences between drought and non-drought years. Estimating seasonal limitations under natural conditions, as shown in this study, provides a useful basis for comparing limitation processes between years and species.  相似文献   

16.
Ishida A  Toma T  M 《Tree physiology》1999,19(7):467-473
Diurnal changes in gas exchange and chlorophyll fluorescence were measured in the top canopy leaves of the tropical rainforest tree species, Macaranga conifera (Zoll.) Muell. Arg. during a drought year. Maximum values of net photosynthetic rate (P(n), 10 &mgr;mol m(-2) s(-1)) and stomatal conductance (g(s), 0.2 mol m(-2) s(-1)) were found in east-facing leaves in early morning. After 1000 h, both P(n) and g(s) decreased. Minimum daytime values of P(n), g(s), and photosystem II (PSII) quantum yield (DeltaF/F(m)') were found in horizontally fixed leaves. At a given electron transport rate through PSII (ETR), P(n) was higher in early morning than at midday, suggesting a high rate of photorespiration at midday. We tested the hypothesis that the effect of low leaf temperature (T(leaf)) on P(n) is significant in the early morning, whereas the effect of low g(s) on P(n) predominates at midday. In the early morning, when T(leaf) was increased from 32 to 38 degrees C by artificial heating, P(n) at a given ETR decreased 29%, suggesting that the low T(leaf) was associated with a high P(n). When T(leaf) at midday was decreased from 37 to 32 degrees C by artificial cooling, P(n) increased 22%, but P(n) at a given ETR was higher in early morning than at midday, even at the same low T(leaf) (32 degrees C). This suggests that the rate of photorespiration was higher at midday than in early morning because low g(s) at midday caused a reduction in leaf intercellular CO(2) concentration. We conclude that low P(n) at midday was the result of both a reduction in the photochemical process and an increase in stomatal limitation.  相似文献   

17.
Seasonal differences in phenology between coniferous and deciduous tree species need to be considered when developing models to estimate CO(2) exchange in temperate forest ecosystems. Because seasonal variations in CO(2) flux in temperate forests are closely correlated with plant phenology, we quantified the phenology of forest species in a multilayered forest with patches of Scots pine (Pinus sylvestris L.) and oak (Quercus robur L.) in Brasschaat, Belgium. A scaling-up modeling approach was developed to simulate reflectance at the leaf and canopy scales over a one-year cycle. Chlorophyll concentration, water content, specific leaf area and leaf area index of the forest species were measured throughout an entire year (1997). Scaling-up from the leaf to canopy was achieved by linking the PROSPECT and SAIL models. The result is the annual progression of the fraction of absorbed photosynthetically active radiation (fAPAR) in a 1 km(2) forest area, which can be directly related to high-resolution, remotely sensed data.  相似文献   

18.
Seasonal ecophysiology, leaf structure and nitrogen were measured in saplings of early (Populus grandidentata Michx. and Prunus serotina J.F. Ehrh.), middle (Fraxinus americana L. and Carya tomentosa Nutt.) and late (Acer rubrum L. and Cornus florida L.) successional tree species during severe drought on adjacent open and understory sites in central Pennsylvania, USA. Area-based net photosynthesis (A) and leaf conductance to water vapor diffusion (g(wv)) varied by site and species and were highest in open growing plants and early successional species at both the open and understory sites. In response to the period of maximum drought, both sunfleck and sun leaves of the early successional species exhibited smaller decreases in A than leaves of the other species. Shaded understory leaves of all species were more susceptible to drought than sun leaves and had negative midday A values during the middle and later growing season. Shaded understory leaves also displayed a reduced photosynthetic light response during the peak drought period. Sun leaves were thicker and had a greater mass per area (LMA) and nitrogen (N) content than shaded leaves, and early and middle successional species had higher N contents and concentrations than late successional species. In both sunfleck and sun leaves, seasonal A was positively related to predawn leaf Psi, g(wv), LMA and N, and was negatively related to vapor pressure deficit, midday leaf Psi and internal CO(2). Although a significant amount of plasticity occurred in all species for most gas exchange and leaf structural parameters, middle successional species exhibited the largest degree of phenotypic plasticity between open and understory plants.  相似文献   

19.
SEM and light-microscopical observations, supported by chemical microanalysis with an EDXA system, revealed that light-saturated pixels observed in X-ray negatives of sessile oak (Quercus petraea Liebl.) wood were caused by inorganic deposits present inside multiseriate ray and axial parenchyma cells. Calcium oxalate crystals, silica grains and amorphous granules with varied mineral compositions have been identified. The wood strips of three out of six sampled trees contained measurable amounts of mineral inclusions which were quantified using image analysis. Based on the variations of mineral content observed between trees and within and between annual rings of the same tree, some hypotheses were formulated concerning the factors involved in the formation of inorganic deposits in oak wood. Their occurrence varies depending on the mineral concerned and seems to be controlled largely by a tree effect. The time of formation appears to coincide with a shifting of the oak wood’s functions as a result of heartwood formation processes (inter-annual scale) or changes in leaf phenology and climate (intra-annual scale). In addition, the technical consequences of their presence as well as their effects on wood density measurements through microdensitometry are discussed.  相似文献   

20.
We used a combination of eddy flux, canopy, soil and environmental measurements with an integrated biophysical model to analyze the seasonality of component carbon (C) fluxes and their contribution to ecosystem C exchange in a 50-year-old Scots pine forest (Pinus sylvestris L.) in eastern Finland (62 degrees 47' N, 30 degrees 58' E) over three climatically contrasting years (2000-2002). Eddy flux measurements showed that the growing Scots pine forest was a sink for CO2, with annual net C uptakes of 131, 210 and 258 g C m-2> year-1 in 2000, 2001 and 2002, respectively. The integrated process model reproduced the annual course of daily C flux above the forest canopy as measured by the eddy covariance method once the site-specific component parameters were estimated. The model explained 72, 66 and 68% of the variation in daily net C flux in 2000, 2001 and 2002, respectively. Modeled annual C loss by respiration was 565, 629 and 640 g C m-2 year-1, accounting for 77, 77 and 65% of annual gross C uptake, respectively. Carbon fluxes from the forest floor were the dominant contributors to forest ecosystem respiration, with the fractions of annual respiration from the forest floor, foliage and wood being 46-62, 27-44 and 9-10%, respectively. The wide range in daily net C uptake during the growing season was largely attributable to day-to-day fluctuations in incident quantum irradiance. During just a few days in early spring and late autumn, ecosystem net C exchange varied between source and sink as a result of large daily changes in temperature. The forest showed a greater reduction in gross C uptake by photosynthesis than in C loss by respiration during the dry summer of 2000, indicating that interannual variability in ecosystem net C uptake at this site was modified mostly by summer rainfall and vapor pressure deficit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号