首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
针对复种作物生长季节的特殊性,研究复种大豆田土壤温度在0~100cm深度土壤剖面的分布、日变化,生育阶段的动态及灌水对土壤温度的影响。结果表明,土壤温度受大气温度昼夜变化影响的土层临界深度为40cm,0~40cm土壤温度以24h为周期呈准正弦曲线波动,其振动变化幅度随土壤深度增加趋于平缓;土壤温度日变化呈上升和下降2个变化阶段,升温速率明显大于降温速率;适宜的灌水定额具有提高土壤温度的效果,360mm灌溉定额处理土壤温度最高,小灌溉定额和大灌溉定额均不利于提高土壤温度;土壤温度在大豆生殖生长阶段内宽行温度始终高于窄行但温差随生育期推移趋于一致,且土壤温度随时间推移呈逐渐下降趋势。  相似文献   

2.
2004-2008年丽水市土壤温度的微气象特征   总被引:1,自引:0,他引:1  
利用2004-2008年丽水市国家气象观测站0~320cm共9层土壤温度资料,分析该地土壤温度时空分布的微气象特征及其影响机制。结果表明,土壤温度的日变化和年变化特征相似,都呈单峰分布。土壤温度随土壤深度的增加变化幅度减小,峰值出现时间呈滞后,位相变化明显,而深层土壤相对稳定少变。土壤温度随深度的变化差异显著,主要表现为2种极限型和2种过渡型。不同天气条件下土壤温度的变化强度为多云雨天晴天阴天。降水对土壤温度的影响先增大后减小。日照与土壤温度变化成正比,风速和蒸发与土壤温度变化成反比。  相似文献   

3.
日光温室土壤温度变化特征和预报模型研究   总被引:1,自引:0,他引:1  
贾红  徐为根  彭明艳  孙磊 《安徽农业科学》2011,(11):6471-6473,6482
[目的]研究日光温室内土壤温度变化规律及其预报模型。[方法]利用徐州地区标准日光温室内外气温和温室内多层次土壤温度观测资料,分析了温室内各层土壤温度的年变化和日变化,并对温室内土壤温度的预报模型进行了模拟和检验。[结果]温室内土壤温度年变化和日变化均呈单峰曲线,下层温度变化振幅小于上层。温室内各层土壤温度(最高值、最低值和平均值)与当日温室外同类型气温的相关性最为密切。以当日和前一日温室外日平均气温、日最高气温、日最低气温为预报因子,建立了温室内同类型不同层次土壤温度预报模型。温室内各层日平均温度的模拟效果优于对应层的最高温度的模拟效果,劣于对应层日最低温度的模拟效果;下层土壤日最高温度和日平均温度的模拟效果优于上层;实测土壤温度在15~30℃模拟效果较好,其他温度段模拟值较实测值偏低。[结论]该研究为日光温室内植物的生长发育环境提供理论依据。  相似文献   

4.
 【目的】针对以往研究在土壤温度观测和不同耕作条件下土壤温度效应规律上的不足,研究了华北平原不同耕作方式冬小麦田土壤温度日变化及其对气温的响应特征。【方法】试验于河北省栾城县设置翻耕、旋耕和秸秆覆盖免耕处理,采用热脉冲-时域反射技术,连续监测2004-2005年冬小麦生育期土壤温度和气温。【结果】各层次土壤温度日变化随气温呈正弦函数变化;土壤温度日变化随土壤深度呈“锥形”;2.5~80 cm土壤深度每增加5 cm,土壤温度随气温的变化滞后1.2 h左右;不同耕作方式土壤日最高和最低温度均具有显著差异,秸秆覆盖度是其主要影响因素之一;免耕在冬小麦活动期,显著降低了2.5 cm土层土壤最高温度0.66~4.85℃,而在越冬期提高最低温度0.64~0.87℃;冬小麦生长前期(出苗-拔节)免耕较其他处理显著降低了2.5 cm土层土壤温度日变化幅度,其中较翻耕降低0.65~5.21℃,较旋耕降低0.48~3.89℃。【结论】不同耕作方式各层次土壤温度均极显著响应气温变化;耕作方式主要影响土壤温度的变化幅度而且主要表现在冬小麦生长前期;免耕在冬小麦活动期表现为降温效应,究其原因是由于较大程度地降低高温而较小程度地提高低温;越冬期表现增温效应是由于显著提高了各个时刻的土壤温度。  相似文献   

5.
以长白山区云冷杉针阔混交林3个不同大小的林隙(456.2、290.2、83.9 m2)为研究对象,在林隙内按照不等距分布设置气温和土壤温度观测点,对8月份林隙内不同观测点气温和土壤温度的连续观测数据进行了分析,探讨了3个林隙内温度的时空变化特征.结果表明:林隙中央位置的气温和土壤温度的日变化均呈单峰型,温度在S-N方向...  相似文献   

6.
本研究利用2018—2019年科尔沁左翼后旗沙地土壤温度资料,将不同深度土壤温度依照土壤的表土层、心土层以及底土层划分为浅层(0、5、10 cm)、中层(15、20、40 cm)、深层(80、160、320 cm)3个层次,对比分析得出科尔沁沙地土壤温度的时间动态特征,为综合评估土壤温度的环境效应提供理论基础。结果表明,科尔沁沙地土壤温度有明显的日变化、季节变化和年变化特征,其三者都有一个最高温度和最低温度出现,并且因深度的增加各层土壤最高温度和最低温度出现的时间不一致,热量传输的方向也会发生变化。  相似文献   

7.
以3年生克瑞森地下滴灌葡萄园为研究对象,分析土壤垂直方向上20、40、60、80 cm处的土壤温度日变化、土壤温度在葡萄不同生育期的变化及年变化特征。结果表明,地下滴灌葡萄园各深度的土壤温度日变化趋势基本相同,近地表处土壤温度日变化幅度相对较大,深层土壤温度日变化趋势平缓;以04:00、08:00、14:00、22:00代表土壤温度变化特征时刻的各深度土壤温度,在葡萄整个生育期内变化趋势均匀,萌芽期开始上升,果实生长期土壤温度达到最大值,后开始下降;葡萄园土壤温度在年变化过程中先上升后下降,7月达到最大值,土壤温度变化曲线随土壤深度的增加振幅减小;土壤深度40 cm处的年平均温度为13.14℃,高于其他深度土壤年平均温度;各深度土壤温度与气温有明显的二次函数关系,并随土层深度的变化显著性逐渐降低。  相似文献   

8.
农田蒸散是联系作物气孔行为、生态系统水分利用效率的重要生态过程,对农田合理灌溉有重要意义。根据涡度相关系统观测的黑河中游农田生态系统2012年生长季的蒸散数据与气象数据,分析了农田蒸散的日、季节变化,对环境影响因子与农田蒸散的关系进行研究。研究结果表明:试验地在玉米生长季,蒸散日变化呈现早、晚低,中午高的变化特征,但受当地气候影响,正午蒸散值有略微的下降,出现具有"蒸散高地"现象的"单峰型"变化曲线;蒸散最大日峰值出现在大喇叭口期,为0.32mm·h-1,最低日峰值出现在完熟期,为0.16mm·h-1。农田蒸散季节变化动态明显,与玉米叶面积指数密切相关,呈明显的单峰变化曲线,在抽雄吐丝期达到最高值(91.1mm),在完熟期达到最低值(33.0mm)。土壤温度是农田蒸散最主要的环境控制因子,光合有效辐射、空气温度、空气相对湿度、风速次之,土壤含水量的响应最弱。土壤温度、空气温度、风速和空气相对湿度对农田蒸散的影响主要是直接影响,光合有效辐射主要通过土壤温度和空气温度对农田蒸散产生影响。  相似文献   

9.
对宁夏干旱风沙区日光温室墙体保温性能进行探索性研究,通过对温室外温度、温室内温度、温室内土壤温度和温室墙体温度日变化及各种温度之间相关性分析得出,日光温室内部温度变化呈现非标准正弦曲线变化规律,在温室内温度下降过程中存在两个阶段,即急速下降阶段和缓慢下降阶段,急速下降阶段(14:00-18:00)主要是由于下午光照强度降低所引起的,缓慢下降阶段(18:00-次日9:00)主要是由于室内温度降到低于土壤温度和墙体温度时,土壤及墙体开始缓慢放热,缓解由缺少光照所引起的温度急速下降;墙体温度变化与土壤温度变化趋于同步,同时受温室外部温度影响较大;通过本研究得出在西北干旱风沙区日光温室墙体采用砖土复合结构,内部土墙1.5 m高度处以90 cm厚度为宜.  相似文献   

10.
艾比湖流域土壤呼吸日变化及水热因子影响   总被引:6,自引:3,他引:3  
为研究干旱区植物群落土壤呼吸日变化特征及影响因子,利用开路式土壤碳通量测量系统LI-8100测定艾比湖流域四种植物群落土壤呼吸速率日变化,结合实测的温度、湿度因子,分析土壤温度、湿度,大气温度、空气相对湿度对土壤呼吸速率的影响.结果表明:胡杨、梭梭、芦苇、盐节木四种群落土壤呼吸速率日变化基本都呈单峰曲线.在日时间尺度上,胡杨群落、梭梭群落、盐节木群落、芦苇群落土壤呼吸速率与地上10和150cm高度处气温均表现为显著正相关.各群落土壤呼吸速率与不同深度土壤温度并没有固定的相关关系.不同的植物群落,对土壤呼吸起首要作用的温度因子不相同,且气温通过土壤温度对土壤呼吸的间接影响不相同.可用一元或二元线性函数来描述温度与土壤呼吸速率关系.各群落的土壤呼吸速率与地上10和150cm处空气相对湿度均呈显著负相关.在日变化尺度上,土壤温度、土壤湿度、气温、空气相对湿度共同影响了土壤呼吸速率,由温度和湿度共同拟合出的模型能解释土壤呼吸速率变化78;以上的原因.  相似文献   

11.
土壤温度的变化特点及其规律   总被引:10,自引:0,他引:10  
常征 《油气储运》1989,8(3):34-37
地温变化对地下管道输油的影响较大,因此各输油泵站都设有地下温度的观测和记录仪,如何应用现有观测记录分析地下温度的变化,掌握规律,运用于输油生产和试验研究。关于土壤导热系数方面的有关论述和数据已在“土壤中的热交换”一文中作了介绍,本文对土壤温度日变化和年变化的特征及其原因和影响因素进行了分析,提出了土壤温度变化的一般规律。  相似文献   

12.
为探索土壤温度时间动态特征与导温率及土壤深度之间的关系,以西南亚高山森林表层土壤温度为研究对象,分析了2009-2010年每月28日或29日不同土层土壤温度的日变化特征,并对不同月份不同深度温度日变化建立数学模型并进行数据拟合.结果表明,亚高山森林0~40 cm土壤温度日较差随着土壤深度的增加逐渐减小,其中0~20 cm土壤温度日较差明显,20~40 cm的深层土壤温度日较差很小;40 cm深度土壤温度日进程基本上处于稳定状态,在冬季30 cm以下深度土壤温度都基本上处于稳定状态;随着深度的增加,土壤温度最高值和最低值出现滞后时间延长的趋势,而且同一土壤深度滞后时间在不同月份差异很大;非冻融季节土壤温度日变化用土壤温波方程来拟合是有效的;在低温季节(9月至次年3月),10 cm以下土壤剖面温度用土壤温波方程拟合误差较大,显示土壤冻结对土壤热量传输影响显著,温波方程不适于拟合冻融期土壤温度日动态.  相似文献   

13.
(一)土壤温度的变化由于太阳辐射周期性日变化和年变化的影响,土壤温度也有相应的变化.这种变化可以到达一定的深度. 因为热量通过土层时要被各层土壤吸收掉一部分,所以土壤温度的日变化和年变化,在向土壤深层传递的过程中不断地变得缓慢,最终在一定深度上消失.  相似文献   

14.
基于解析解理论,得出垂直埋管周围土壤温度场分布解析表达式。分析当钻孔外传热达到稳态时,钻孔壁温度的变化,由此分析土壤温度变化,得出土壤温度持续变化对大地热流及土壤本身的物性参数的影响,并会造成对土壤中微生物环境、植物生存环境的影响,进而会影响到整个生态环境。最后,提出在地源热泵推广过程中应注意的问题及采取的相应措施。  相似文献   

15.
沈城铭 《浙江农业科学》2019,60(11):2078-2079
为了解气象要素变化对椪柑贮藏品质的影响,通过2018年1月1日至4月30日期间在自然库房建立小气候观测站,获取自然库房贮藏椪柑品质变化(特别是变质烂果)的试验气象要素数据。基于试验数据,通过室内外温差对比和表皮烂果观测分析,得出烂果温度及时间变化特征。结果表明,自然库房椪柑贮藏时温度变化对果实品质有着重要影响,室内外温湿度变化特征和柑橘腐烂有着密切联系。  相似文献   

16.
基于有林地和无林地的土壤温度数据,对不同土层深度温度的日变化规律进行研究。结果表明:土壤温度随土层深度的增加而降低,且土层越深波动越小,最终稳定在15~20 cm处;有林地能够消减土壤最高温度,延缓土壤的过快升温;林木的郁闭度对土壤温度变化规律也有一定影响。  相似文献   

17.
农田环境要素在线监测系统能准确掌握地面气象要素和土壤墒情等数据,从而能确定合理的灌水时间和灌水量,达到农业生产节本增收的目的。2017年江苏省太仓市通过构建农田环境要素在线监测系统,对当地地面气象要素和土壤墒情等数据进行了收集,并在此基础上分析了当地农田环境要素的变化规律。结果表明,太仓市全年总降雨量约843 mm,单日最高降雨量达105.2 mm,日平均气温≥10℃的天数有245 d,≥10℃的积温约5 122.38℃;全年各土层的土壤温度均在5℃以上,且土层越深土壤温度越高、土壤温度变化越小;在水稻种植期间,土壤含水率达40%~50%,且随土层深度的增加土壤含水量明显增大。  相似文献   

18.
阿尔泰山作为干旱区典型的山地系统,其土壤温度的日、月、季节和年际动态及其影响因素研究,是深入理解干旱区山地森林生态系统能量循环过程的关键所在。基于阿尔泰山森林生态站2014年11月-2019年7月的气象因子和土壤温度数据,应用相关分析、回归分析和BP人工神经网络分析了阿尔泰山5、10、20 cm和30 cm深度土壤温度的动态变化及其对气象因子的响应,同时,应用多元线性回归和BP人工神经网络对土壤的温度进行了模拟。结果表明:1)近5 a各层土壤温度月均值年际变化一致,最低最高温度和日较差最大值均出现在20 cm,仅30 cm土壤温度的月变化出现自表层至深层滞后现象,年内月较差最大值出现在30 cm深度;各土壤层温度在春夏秋季变化较大,冬季变化较小;2)空气温度、气压和太阳辐射等与土壤温度的相关性达到极显著水平,其中与空气温度的相关性最强;3)回归模型和BP人工神经网络对20 cm土壤层的模拟结果最好,且BP人工神经网络模型的性能总体上优于回归模型。  相似文献   

19.
为了揭示江苏丘陵区栎林内的小气候变化规律,利用土壤温度和湿度传感器测量不同层次土壤温度和水分,并对其时空变化进行分析.结果表明,从土壤温度日变化来看,4个层次土壤日平均温度冬季为40 cm>10 cm>0 cm>5 cm、春季为0 cm>5 cm>10 cm>40 cm、夏秋季为0 cm>40 cm>10 cm>5 cm;从土壤温度月变化来看,4个层次土壤温度呈倒U型变化,各层土壤月平均温度差异并不显著;从土壤温度季节变化来看,秋、冬两季随着土壤深度的增加,温度总体呈现上升的趋势,以冬季最为明显,而春、夏两季规律性不是很明显;从日、月、季节土壤温度变化幅度来看,温度变化幅度随着土壤深度的增加而减小,说明土壤越深,温度越稳定.从日、月、季节土壤水分来看,各层土壤水分变化都较稳定、变幅很小,各层土壤含水量随着土壤深度的增加而增加,水分变化的幅度随着土壤深度的增加而降低.  相似文献   

20.
为确定华北农牧交错带农田草地界面土壤温度的影响域,采用移动窗口法对该区域的农田-草地景观界面0~20cm土壤温度影响域进行了研究。结果表明:界面温度的影响域草地为7m,农田为10m,总宽度17m,属渐变型界面,农田-草地景观界面可划分为农田、草地和农田-草地3个功能区。农田-草地复合功能区,土壤温度变化剧烈;而在草地功能区与农田功能区内土壤温度基本呈线性分布;农田生态系统土壤平均温度比草地约高2℃。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号