首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
孙长春  杨凤 《畜牧与兽医》1990,22(5):198-200
二十四头长白猪(70日龄),随机分为四组,饲喂在玉米淀粉—豆饼为主的基础饲粮中添加不同量植酸钠组成植酸磷水平分别为0.065%、0.15%、0.25%、0.35%(占总磷水平分别为13%、30%、50%、70%)的4种饲粮,试验期为五周,研究植酸磷对体内矿物质代谢的影响。结果表明:饲粮中植酸磷影响钙、锌、铜等元素的吸收利用,且这些元素的利用率与饲粮中植酸磷含量呈显著负相关,从而也影响了钙、磷、锌等元素在骨中沉积。饲粮中植酸磷水平达到0.35%时,钙、铜、锌、磷的吸收利用及其在骨中沉积量显著高于其它三个组,而这三组间则无显著差异,但表现出随饲粮中植酸磷水平升高,钙、铜、锌吸收利用及其在骨中沉积量呈下降趋势。  相似文献   

2.
本试验旨在研究猪的生长阶段对饲料磷的全肠道消化率的影响。选用初始平均体重分别为27.2、59.1、103.1kg的生长育肥猪各16头,根据体重随机分为低磷饲粮组和高磷饲粮组,每组8个重复,每个重复1头猪。低磷饲粮为无磷酸氢钙(DCP)的玉米-豆粕型饲粮,饲粮总磷浓度为3.3 g/kg,在低磷饲粮中添加14.5g/kgDCP构成总磷浓度为5.9 g/kg的高磷饲粮。采用全收粪法测定总磷的表观全肠道消化率(ATTD),采用差量法计算DCP中磷的全肠道真消化率(TTTD)。试验共12 d,包括5 d适应期和7 d粪样收集期。结果表明:高磷饲粮组的可消化磷含量和总磷的ATTD均显著高于低磷饲粮组(P<0.05);饲喂高磷饲粮时,不同生长阶段猪磷的ATTD无显著差异(P>0.1);饲喂低磷饲粮时,育肥猪磷的ATTD显著高于生长猪和生长育肥猪(P<0.05);虽然饲粮总磷的ATTD受生长阶段影响(P<0.05),但生长阶段对DCP中磷的TTTD无显著影响(P>0.1)。由此可见,猪的生长阶段显著影响植物性饲料原料中磷的消化利用率,但对DCP中磷的消化利用率无显著影响。  相似文献   

3.
试验研究了不同磷酸氢钙添加水平的大麦型饲粮在添加植酸酶及非淀粉多糖酶类条件下,对生长猪生长性能及粪磷排泄量的影响.选择(33.4±2.33) kg的杜长大杂种仔猪108头,随机分成3组,分别饲喂如下3种磷水平饲粮:总磷0.39%(磷酸氢钙6 kg/t);总磷0.33%(磷酸氢钙3 kg/t);总磷0.29%(不添加磷酸氢钙).每组3个重复,每个重复12头猪.结果表明,本试验条件下,植酸磷含量较高的大麦型生长猪饲粮,添加植酸酶等酶制剂后,少量添加或完全不添加磷酸氢钙对生长猪的生长性能没有显著影响(P>0.05),试验猪采食每千克低磷酸氢钙水平饲粮或不添加磷酸氢钙饲粮之粪磷排泄量减少13.25%~22.29%.  相似文献   

4.
饲粮非植酸磷水平对褐壳蛋鸡植酸磷利用率的影响   总被引:4,自引:0,他引:4  
丁保安 《中国家禽》2002,24(7):9-10
150只蛋鸡随机分为5个处理组,5个处理组非植酸磷水平分别为0.2%,0.25%,0.3%,0.35%,0.4%,钙水平都为3.5%。结果表明:饲粮非植酸磷水平为0.2%时,蛋鸡对植酸磷的表观利用率为65.5%(P<0.05)。饲粮非植酸磷水平对蛋鸡生产性能无明显影响(P>0.05)。  相似文献   

5.
试验旨在研究饲粮不同钙和非植酸磷水平对1~21日龄肉仔鸡生长性能和血清指标的影响。选用540只1日龄商品代AA肉公雏作为试验动物,采用5(钙水平)×3(非植酸磷水平)双因子完全随机试验设计,饲粮钙水平分别为0.60%、0.70%、0.80%、0.90%、1.00%,非植酸磷水平分别为0.35%、0.40%、0.45%,共15个处理组,每组6个重复笼,每个重复笼6只鸡,试验期21 d。结果表明:饲粮钙和非植酸磷水平对1~21日龄肉仔鸡日增重、日采食量、耗料增重比、死亡率均无显著影响,饲粮钙和非植酸磷水平互作对1~21日龄肉仔鸡日增重有影响(P<0.01),但对21日龄肉仔鸡血清钙、磷含量及碱性磷酸酶活性均无显著影响;当饲粮钙水平为0.62%、磷水平为0.35%时,肉仔鸡的日增重最大(P<0.05)。以上结果表明,饲粮钙和非植酸磷水平为0.62%和0.35%时,可使1~21日龄肉仔鸡获得最佳生长性能,且对其血清钙、磷含量及碱性磷酸酶活性无明显不良影响。  相似文献   

6.
<正> 猪常用的谷实,油饼及糠麸类饲料中植酸磷含量很高,1979年本实验室分析,一般均占总磷的40—80%。同年我们测定大白鼠对植酸盐中磷的真吸收率为44.7%。美国NRC(1979)提出猪对植物性饲料中总磷利用率约为30-60%。我国目前猪日粮中  相似文献   

7.
饲粮中添加植酸酶已经成为降解饲粮中植酸及其盐类从而提高畜禽对磷利用率、节约磷源矿物质饲料和减少磷排放的有效途径,植酸酶广泛应用于畜禽饲粮配制和养殖生产中。相对猪和鸡,植酸酶在肉鸭饲粮中的应用研究较少。因此,本文综述了在低非植酸磷水平饲粮中添加植酸酶对肉鸭生长性能、骨骼发育和养分利用率的影响以及植酸酶活性与饲粮非植酸磷水平之间定量换算关系方面的研究报道,旨在为肉鸭饲粮配制中科学合理使用植酸酶提供技术支撑和理论依据。  相似文献   

8.
以植物性饲料原料为主的畜禽饲粮中植酸磷的含量占总磷的60%~80%(Mollaguard,1946;deBolend,1975;Keddy,1982;Graf,1986)。一些早期报道显示,肉鸡对植酸磷的消化利用率仅为10%(Asada等,1969;Abernathy等,1973)。未被消化的植酸磷随粪排出进入环境,从而导致潜在的环境磷污染。鸡对植酸磷利用率受日粮钙、磷水平和鸡年龄的影响,而钙的影响更大一些。高钙饲粮会抑制植酸磷的降解。在实际生产中为了获取最佳生产性能和骨骼的钙化,一般采用较高钙水平的饲粮,这样植酸磷的降解率很低,消化利用率差(Gilles等,1957;Nelson,1976)。Natt(1967)和Bal-lam(1984)报道,饲粮钙水平为1%时肉鸡对植酸磷的降解率比饲粮钙水平为0.85%时低。 Mo-hammed(1991)报道,饲粮钙从1%下降到0.5%时,肉鸡对植酸磷的降解率增加15%。然而近期的一些研究表明,肉鸡对植酸磷利用率为50%(Edwards,1983;Edwards,1993;Mohammed等,1991)。由上可见,关于鸡对植酸磷利用率的研究主要集中于肉鸡上,而关于蛋鸡对植酸磷利用率的研究很少。本研究的目的,是以商品代北京红产蛋鸡为试验动物,以玉米-豆粕型饲粮为基础饲粮,研究中型产蛋鸡对饲粮植酸磷的消化利用率及饲粮钙水平的影响,为蛋鸡生产中合理添加无机磷和钙提供试验依  相似文献   

9.
钟道强 《饲料工业》2000,21(12):44-44
饲料中的钙含量过剩会形成不可溶的钙—植酸盐络合物,影响了磷的利用率。在添加了微生物植酸酶的猪饲料中,相应的磷水平一般比较低,那我们这时是否需要调整日粮中的钙磷比例呢?Liu等(1998)在密苏里大学进行了一项检验钙与总磷的比例大小对生长肥育猪的生长性能、胴体品质以及骨强度的试验。1材料与方法  120头猪(56头阉公猪和64头小母猪),试验开始平均体重为23kg,23kg~54kg为生长期,54kg~123kg为育肥期。试验中收集粪样,并最后测定胴体品质。所使用日粮的成分见表1。表1日粮成分日粮组成生长期(23kg~54kg)育肥期(54kg~123kg)…  相似文献   

10.
选用135头体质健康、体重60kg左右的杜×大×长三元杂交猪,随机分为5个处理组,研究不同植酸磷水平对植酸酶使用效果的影响。试验结果表明,加植酸酶情况下,有效磷达0.165%、植酸磷水平为0.25%时大猪的生长性能最好。玉米—豆粕型大猪饲粮中的植酸磷水平能使500IU/kg的植酸酶发挥正常功效,一般不会出现“底物”不足的情况。  相似文献   

11.
Phosphorus (P) is primarily stored in the form of phytates in plant seeds, thus being poorly available for monogastric livestock, such as pigs and poultry. As phytate is a polyanionic molecule, it has the capacity to chelate positively charged cations, especially calcium, iron and zinc. Furthermore, it probably compromises the utilization of other dietary nutrients, including protein, starch and lipids. Reduced efficiency of utilization implies both higher levels of supplementation and increased discharge of the undigested nutrients to the environment. The enzyme phytase catalyses the stepwise hydrolysis of phytate. In respect to livestock nutrition, there are four possible sources of this enzyme available for the animals: endogenous mucosal phytase, gut microfloral phytase, plant phytase and exogenous microbial phytase. As the endogenous mucosal phytase in monogastric organisms appears incapable of hydrolysing sufficient amounts of phytate‐bound P, supplementation of exogenous microbial phytase in diets is a common method to increase mineral and nutrient absorption. Plant phytase activity varies greatly among species of plants, resulting in differing gastrointestinal phytate hydrolysis in monogastric animals. Besides the supplementation of microbial phytase, processing techniques are alternative approaches to reduce phytate contents. Thus, techniques such as germination, soaking and fermentation enable activation of naturally occurring plant phytase among others. However, further research is needed to tap the potential of these technologies. The main focus herein is to review the available literature on the role of phytate in pig and poultry nutrition, its degradation throughout the gut and opportunities to enhance the utilization of P as well as other minerals and nutrients which might be complexed by phytates.  相似文献   

12.
鸡对植酸磷利用率的研究   总被引:2,自引:0,他引:2  
丁保安 《中国家禽》1999,21(11):8-9
给3周龄肉鸡、6周龄肉鸡和30周龄蛋鸡分别喂以植酸磷水平为0.18%和0.24%的玉米-豆粕饲粮,研究肉鸡和蛋鸡对饲粮植酸磷的表现消化率。结果表明,蛋鸡植酸磷表现消化率比肉鸡高,而6周龄的肉鸡比3周龄的肉鸡高。  相似文献   

13.
Phytate formed during maturation of plant seeds and grains is a common constituent of plant-derived fish feed. Phytate-bound phosphorus (P) is not available to gastric or agastric fish. A major concern about the presence of phytate in the aquafeed is its negative effect on growth performance, nutrient and energy utilization, and mineral uptake. Bound phytate-P, can be effectively converted to available-P by phytase. During the last decade, phytase has been used by aqua feed industries to enhance the growth performance, nutrient utilization and bioavailability of macro and micro minerals in fish and also to reduce the P pollution into the aquatic environment. Phytase activity is highly dependent on the pH of the fish gut. Unlike mammals, fish are either gastric or agastric, and hence, the action of dietary phytase varies from species to species. In comparison to poultry and swine production, the use of phytase in fish feed is still in an unproven stage. This review discusses effects of phytate on fish, dephytinisation processes, phytase and pathway for phytate degradation, phytase production systems, mode of phytase application, bioefficacy of phytase, effects of phytase on growth performance, nutrient utilization and aquatic environment pollution, and optimum dosage of phytase in fish diets.  相似文献   

14.
The present study gives an overview on the whole mechanism of phytate degradation in the gut and the enzymes involved. Based on the similarity of the human and pigs gut, the study was carried out in pigs as model for humans. To differentiate between intrinsic feed phytases and endogenous phytases hydrolysing phytate in the gut, two diets, one high (control diet) and the other one very low in intrinsic feed phytases (phytase inactivated diet) were applied. In the chyme of stomach, small intestine and colon inositol phosphate isomers and activities of phytases and alkaline phosphatases were determined. In parallel total tract phytate degradation and apparent phosphorus digestibility were assessed. In the stomach chyme of pigs fed the control diet, comparable high phytase activity and strong phytate degradation were observed. The predominant phytate hydrolysis products were inositol phosphates, typically formed by plant phytases. For the phytase inactivated diet, comparable very low phytase activity and almost no phytate degradation in the stomach were determined. In the small intestine and colon, high activity of alkaline phosphatases and low activity of phytases were observed, irrespective of the diet fed. In the colon, stronger phytate degradation for the phytase inactivated diet than for the control diet was detected. Phytate degradation throughout the whole gut was nearly complete and very similar for both diets while the apparent availability of total phosphorus was significantly higher for the pigs fed the control diet than the phytase inactivated diet. The pathway of inositol phosphate hydrolysis in the gut has been elucidated.  相似文献   

15.
The effectiveness of an Escherichia coli phytase in comparison with a commercially available Aspergillus phytase in improving the bioavailability of phosphorus in broilers, layers and young pigs was studied in three separate experiments. Three basal diets, marginally deficient in dietary P mainly provided as phytate, were formulated. Both phytases were added to the diets at the rate of 500 U/kg diet. The phytases significantly (P < or = 0.05) improved the availability of phytate P to broilers, layers and young pigs. Aspergillus and E. coli phytases enhanced the pre-caecal digestibility of P by 11 and 29% for broilers and 18 and 25% for layers, respectively. Total tract digestibility of P (P balance) was also enhanced but with smaller magnitude. In pigs, total tract digestibility of P was improved by 33 and 34% by Aspergillus and E. coli phytases, respectively. Under the conditions of this study, it was observed that E. coli consistently, though with small magnitude in layers and pigs, enhanced the availability of phytate P at the same range or slightly better than Aspergillus phytase. It was only in pigs that the availability of Ca was significantly (P < or = 0.05) improved by addition of both phytases. It can be concluded that E. coli phytase is highly effective in improving the bioavailability of phytate P to broilers, layers and young pigs. This seems to be based on the high proteolytic stability of the enzyme in the digestive tract, as shown recently.  相似文献   

16.
A large amount of phosphorus (P) in corn and soybean meal is in the form of phytate that is poorly available to monogastric animals. It leads to the presence of large amounts of P in manure, which contributes to the P pollution problem. The fermentation of soybean meal with Aspergillus usamii almost completely degraded phytate and improved P availability in chicks. Although dietary yeast phytase increased P absorption and availability in pigs, its efficacy was less than that of Aspergillus niger phytase. It was suggested that the lesser efficacy of yeast phytase resulted from its lower stability against pepsin. Phytate suppresses zinc availability in monogastric animals. Zinc availability was improved by the substitution of regular soybean meal with fermented soybean meal and by the supplementation with Aspergillus niger phytase in pigs. It has been considered that phytate is easily degraded in the rumen and the availability of phytate P is high in ruminants. However, 20% of phytate in oilseed meals was not degraded in the rumen of sheep. Additionally, heating and formaldehyde treatments with oilseed meals suppressed ruminal degradation of phytate and approximately half of phytate escaped from ruminal degradation in the treated oilseed meals.  相似文献   

17.
A 20-d experiment was conducted to test the hypothesis that phytase increases nutrient digestibility, bone ash, and growth performance of pigs fed diets containing 0.23%, 0.29%, or 0.35% phytate-bound P. Within each level of phytate, five diets were formulated to contain 0, 500, 1,000, 2,000, or 4,000 phytase units (FTU)/kg of a novel phytase (PhyG). Three reference diets were formulated by adding a commercial Buttiauxella phytase (PhyB) at 1,000 FTU/kg to diets containing 0.23%, 0.29%, or 0.35% phytate-bound P. A randomized complete block design with 144 individually housed pigs (12.70 ± 4.01 kg), 18 diets, and 8 replicate pigs per diet was used. Pigs were adapted to diets for 15 d followed by 4 d of fecal collection. Femurs were collected on the last day of the experiment. Results indicated that diets containing 0.35% phytate-bound P had reduced (P < 0.01) digestibility of Ca, P, Mg, and K compared with diets containing less phytate-bound P. Due to increased concentration of total P in diets with high phytate, apparent total tract digestible P and bone ash were increased by PhyG to a greater extent in diets with 0.29% or 0.35% phytate-bound P than in diets with 0.23% phytate-bound P (interaction, P < 0.05). At 1,000 FTU/kg, PhyG increased P digestibility and bone P more (P < 0.05) than PhyB. The PhyG increased (P < 0.01) pig growth performance, and pigs fed diets containing 0.35% or 0.29% phytate-bound P performed better (P < 0.01) than pigs fed the 0.23% phytate-bound P diets. In conclusion, the novel phytase (i.e., PhyG) is effective in increasing bone ash, mineral digestibility, and growth performance of pigs regardless of dietary phytate level.  相似文献   

18.
High fiber co-products from the copra and palm kernel industries are by-products of the production of coconut oil and palm kernel oil. The co-products include copra meal, copra expellers, palm kernel meal, and palm kernel expellers. All 4 ingredients are very high in fiber and the energy value is relatively low when fed to pigs. The protein concentration is between 14 and 22 % and the protein has a low biological value and a very high Arg:Lys ratio. Digestibility of most amino acids is less than in soybean meal but close to that in corn. However, the digestibility of Lys is sometimes low due to Maillard reactions that are initiated due to overheating during drying.Copra and palm kernel ingredients contain 0.5 to 0.6 % P. Most of the P in palm kernel meal and palm kernel expellers is bound to phytate, but in copra products less than one third of the P is bound to phytate. The digestibility of P is, therefore, greater in copra meal and copra expellers than in palm kernel ingredients. Inclusion of copra meal should be less than 15 % in diets fed to weanling pigs and less than 25 % in diets for growing-finishing pigs. Palm kernel meal may be included by 15 % in diets for weanling pigs and 25 % in diets for growing and finishing pigs.Rice bran contains the pericarp and aleurone layers of brown rice that is removed before polished rice is produced.Rice bran contains approximately 25 % neutral detergent fiber and 25 to 30 % starch. Rice bran has a greater concentration of P than most other plant ingredients, but 75 to 90 % of the P is bound in phytate. Inclusion of microbial phytase in the diets is, therefore, necessary if rice bran is used. Rice bran may contain 15 to 24 % fat, but it may also have been defatted in which case the fat concentration is less than 5 %. Concentrations of digestible energy(DE) and metabolizable energy(ME) are slightly less in full fat rice bran than in corn, but defatted rice bran contains less than 75 % of the DE and ME in corn. The concentration of crude protein is 15 to 18 % in rice bran and the protein has a high biological value and most amino acids are well digested by pigs. Inclusion of rice bran in diets fed to pigs has yielded variable results and based on current research it is recommended that inclusion levels are less than 25 to 30 % in diets for growing-finishing pigs, and less than 20 % in diets for weanling pigs.However, there is a need for additional research to determine the inclusion rates that may be used for both full fat and defatted rice bran.  相似文献   

19.
An experiment was conducted with growing pigs to determine the excretion of P and N in 4 barley-based diets formulated to contain 18 or 15% CP by using a normal barley (NB) or a low-phytate barley (LPB). The NB contained 0.31% total P and 0.19% phytate P; the LPB contained 0.32% total P and 0.01% phytate P. The diets were supplemented, when so required, with lysine, methionine, threonine, and tryptophan to meet their apparent ileal digestible supplies according to the NRC (1998). The diets containing NB were supplemented with inorganic P to meet the NRC (1998) recommendation for available P (0.23%). The diets containing LPB were not supplemented with inorganic P because these contained sufficient available P (0.27%). Eight barrows with an average BW of 20.9 kg were assigned to the 4 dietary treatments according to a repeated 4 x 4 Latin square design. The diets were fed at a rate of 2.5 times the ME requirement for maintenance. The barrows were fed twice daily, at 0800 and 1500, equal amounts each meal. Water was added to the feed at a ratio of 2.5:1. Each experimental period consisted of a 7-d adaptation period followed by a 5-d collection of feces and urine. The substitution of NB with LPB decreased (P < 0.001) the total P excretion by 38 and 43% for the 18 and 15% CP diets, respectively. Reducing the CP content from 18 to 15% decreased (P < 0.001) the N excretion by 29 and 32% for the NB and LPB diets, respectively. With the reduction in CP content, there was a decrease (P < 0.001) in the amount of N retained. The N:P ratio in manure of pigs fed the LPB diets was greater (P < 0.001) than from pigs fed the NB diets. These data indicate that P and N excretion can be greatly reduced by substitution of NB by LPB, and also by the reduction of the CP content, in diets for growing pigs.  相似文献   

20.
Phytate, the mixed salt of phytic acid (myo-inositol hexaphosphate), derived from plant-sourced feed ingredients is invariably present in practical diets for pigs. Typically, swine diets contain in the order of 3.0 g kg− 1 phytate-bound phosphorus (phytate-P) but phytate concentrations are subject to variation. Importantly, phytate-P is only partially utilised by pigs because they do not generate sufficient endogenous phytase activity. Phytate-degrading enzymes, via step-wise dephosphorylation of phytate, have the capacity to liberate phytate-P, thus enhancing P absorption and reducing P excretion, which are both nutritionally and ecologically beneficial consequences. The commercial introduction of microbial phytases in 1991 has greatly magnified the interest in the roles of phytate and phytase in pig nutrition.

The capacity of microbial phytases to enhance growth performance of pigs offered diets with inadequate P levels is well documented. However, in some instances, phytase has been shown to improve performance of pigs offered P adequate diets thus phytase-induced improvements in growth performance should not be attributed entirely to increased P availability. This raises the possibility that phytase is increasing the utilisation of nutrients other than P. These so-called ‘extra-phosphoric’ effects of phytase remain controversial, particularly in relation to protein and amino acid availability. There are conflicting opinions that are reflected in the inconsistent outcomes of studies to determine the effect of phytase on ileal digestibility of amino acids and protein utilisation in pigs. In phytase amino acid digestibility assays, it seems likely the choice of chromic oxide as the dietary marker has contributed to these ambiguous results, which may be further complicated when ileal digesta samples are taken from cannulated pigs fed on a restricted, twice-daily basis. In order to resolve this critical issue, there is an urgent need to assess the impacts of selection of dietary markers, methods of ileal digesta collection and feeding regimen relative on the outcomes of phytase amino acid digestibility assays in pigs.

However, inconsistent results from phytase studies in pigs are not confined to amino acid digestibility assays. Arguably, insufficient attention has been paid to dietary substrate levels in relation to phytase inclusion from both scientific and practical standpoints. Phytate analyses are not straightforward and there is a real need to develop more accurate and rapid methods to facilitate phytate determinations. The properties of phytate vary between (and within) feed ingredients where solubility of phytate may be critical; which, in turn, is a function of gut pH in pigs. Contemporary phytases have the capacity to degrade approximately 50% of dietary phytate at the level of the ileum, which may mean higher inclusion rates are warranted. Consequently, there is scope for the development of more effective ‘second-generation’ phytate-degrading feed enzymes and their possible introduction, coupled with a better scientific understanding of relevant fundamental issues, will ensure that phytate-degrading enzymes will contribute to viable and sustainable pig production to an even greater extent in the future.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号