首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Laboratory experiments were designed to study the toxin content and profile of the Alexandrium catenella strain ACT03 (isolated from Thau Lagoon, French Mediterranean) in response to abiotic environmental factors under nutrient-replete conditions. This dinoflagellate can produce various paralytic shellfish toxins with concentrations ranging from 2.9 to 50.3 fmol/cell. The toxin profile was characterized by carbamate toxins (GTX3, GTX4 and GTX5) and N-sulfocarbamoyl toxins (C1, C2, C3 and C4). C2 dominated at 12–18 °C, but only for salinities ranging from 10 to 25 psu, whereas GTX5 became dominant at temperatures ranging from 21 to 30 °C at almost all salinities. There was no significant variation in the cellular toxin amount from 18 °C to 27 °C for salinities ranging between 30 and 40 psu. At salinities of 10 to 25 psu, the toxin concentrations always remained below 20 fmol/cell. Toxin content was stable for irradiance ranging from 10 to 70 μmol photons/m2/s then slightly increased. Overall, the toxin profile was more stable than the toxin content (fmol/cell), except for temperature and/or salinity values different from those recorded during Alexandrium blooms in Thau Lagoon.  相似文献   

2.
Numerous species of marine dinoflagellates synthesize the potent environmental neurotoxic alkaloid, saxitoxin, the agent of the human illness, paralytic shellfish poisoning. In addition, certain freshwater species of cyanobacteria also synthesize the same toxic compound, with the biosynthetic pathway and genes responsible being recently reported. Three theories have been postulated to explain the origin of saxitoxin in dinoflagellates: The production of saxitoxin by co-cultured bacteria rather than the dinoflagellates themselves, convergent evolution within both dinoflagellates and bacteria and horizontal gene transfer between dinoflagellates and bacteria. The discovery of cyanobacterial saxitoxin homologs in dinoflagellates has enabled us for the first time to evaluate these theories. Here, we review the distribution of saxitoxin within the dinoflagellates and our knowledge of its genetic basis to determine the likely evolutionary origins of this potent neurotoxin.  相似文献   

3.
Traditionally, harmful algal bloom studies have primarily focused on quantifying toxin levels contained within the phytoplankton cells of interest. In the case of paralytic shellfish poisoning toxins (PSTs), intracellular toxin levels and the effects of dietary consumption of toxic cells by planktivores have been well documented. However, little information is available regarding the levels of extracellular PSTs that may leak or be released into seawater from toxic cells during blooms. In order to fully evaluate the risks of harmful algal bloom toxins in the marine food web, it is necessary to understand all potential routes of exposure. In the present study, extracellular and intracellular PST levels were measured in field seawater samples (collected weekly from June to October 2004–2007) and in Alexandrium spp. culture samples isolated from Sequim Bay, Washington. Measurable levels of intra- and extra-cellular toxins were detected in both field and culture samples via receptor binding assay (RBA) and an enzyme-linked immunosorbent assay (ELISA). Characterization of the PST toxin profile in the Sequim Bay isolates by pre-column oxidation and HPLC-fluorescence detection revealed that gonyautoxin 1 and 4 made up 65 ± 9.7 % of the total PSTs present. Collectively, these data confirm that extracellular PSTs are present during blooms of Alexandrium spp. in the Sequim Bay region.  相似文献   

4.
Mouse bioassay is the official testing method to quantify paralytic shellfish toxins (PSTs) in bivalves. A number of alternative analytical methods have been reported. Some methods have been evaluated by a single laboratory validation. Among the different types of methods, chemical analyses are capable of identifying and quantifying the toxins, however a shortage of the necessary calibration standards hampers implementation of the chemical analyses in routine monitoring of PSTs in bivalves. In our present study, we studied preparation of major PST analogues as calibrants by large-scale cultivation of toxic freshwater cyanobacteria Anabaena circinalis TA04. The cells were steadily grown in 10 L bottle for 28 days. The primary N1-H toxins, C1/C2, were produced at a concentration of 1.3 ± 0.1 μmol/L. The intracellular and extracellular toxins occupied 80% and 20%, respectively. Over 220 μmol of the toxins was obtained from approximately 200 L of the culture over six months, demonstrating that it is sufficient to prepare saxitoxin analogues. The toxins were chemically converted to six N1-H analogues. Preparation of the analogues was carried out at relatively high yields (50-90%). The results indicate that our preparation method is useful to produce N1-H toxins. In our present study, detailed conditions for preparation of one of the rare N1-H analogues, gonyautoxin-5, were investigated.  相似文献   

5.
Toxic dinoflagellate Alexandrium spp. produce saxitoxins (STXs), whose biosynthesis pathway is affected by temperature. However, the link between the regulation of the relevant genes and STXs’ accumulation and temperature is insufficiently understood. In the present study, we evaluated the effects of temperature on cellular STXs and the expression of two core STX biosynthesis genes (sxtA4 and sxtG) in the toxic dinoflagellate Alexandrium catenella Alex03 isolated from Korean waters. We analyzed the growth rate, toxin profiles, and gene responses in cells exposed to different temperatures, including long-term adaptation (12, 16, and 20 °C) and cold and heat stresses. Temperature significantly affected the growth of A. catenella, with optimal growth (0.49 division/day) at 16 °C and the largest cell size (30.5 µm) at 12 °C. High concentration of STXs eq were detected in cells cultured at 16 °C (86.3 fmol/cell) and exposed to cold stress at 20→12 °C (96.6 fmol/cell) compared to those at 20 °C and exposed to heat stress. Quantitative real-time PCR (qRT-PCR) revealed significant gene expression changes of sxtA4 in cells cultured at 16 °C (1.8-fold) and cold shock at 20→16 °C (9.9-fold). In addition, sxtG was significantly induced in cells exposed to cold shocks (20→16 °C; 19.5-fold) and heat stress (12→20 °C; 25.6-fold). Principal component analysis (PCA) revealed that low temperature (12 and 16 °C) and cold stress were positively related with STXs’ production and gene expression levels. These results suggest that temperature may affect the toxicity and regulation of STX biosynthesis genes in dinoflagellates.  相似文献   

6.
The illness of three people in 2011 after their ingestion of mussels collected from Sequim Bay State Park, Washington State, USA, demonstrated the need to monitor diarrhetic shellfish toxins (DSTs) in Washington State for the protection of human health. Following these cases of diarrhetic shellfish poisoning, monitoring for DSTs in Washington State became formalized in 2012, guided by routine monitoring of Dinophysis species by the SoundToxins program in Puget Sound and the Olympic Region Harmful Algal Bloom (ORHAB) partnership on the outer Washington State coast. Here we show that the DSTs at concentrations above the guidance level of 16 μg okadaic acid (OA) + dinophysistoxins (DTXs)/100 g shellfish tissue were widespread in sentinel mussels throughout Puget Sound in summer 2012 and included harvest closures of California mussel, varnish clam, manila clam and Pacific oyster. Concentrations of toxins in Pacific oyster and manila clam were often at least half those measured in blue mussels at the same site. The primary toxin isomer in shellfish and plankton samples was dinophysistoxin-1 (DTX-1) with D. acuminata as the primary Dinophysis species. Other lipophilic toxins in shellfish were pectenotoxin-2 (PTX-2) and yessotoxin (YTX) with azaspiracid-2 (AZA-2) also measured in phytoplankton samples. Okadaic acid, azaspiracid-1 (AZA-1) and azaspiracid-3 (AZA-3) were all below the levels of detection by liquid chromatography tandem mass spectrometry (LC-MS/MS). A shellfish closure at Ruby Beach, Washington, was the first ever noted on the Washington State Pacific coast due to DSTs. The greater than average Fraser River flow during the summers of 2011 and 2012 may have provided an environment conducive to dinoflagellates and played a role in the prevalence of toxigenic Dinophysis in Puget Sound.  相似文献   

7.
Saxitoxin and its analogues, paralytic shellfish toxins (PSTs), are potent and specific voltage-gated sodium channel blockers. These toxins are produced by some species of freshwater cyanobacteria and marine dinoflagellates. We previously identified several biosynthetic intermediates of PSTs, as well as new analogues, from such organisms and proposed the biosynthetic and metabolic pathways of PSTs. In this study, 12β-deoxygonyautoxin 5 (12α-gonyautoxinol 5 = gonyautoxin 5-12(R)-ol) was identified in the freshwater cyanobacterium, Dolichospermum circinale (TA04), and 12β-deoxysaxitoxin (12α-saxitoxinol = saxitoxin-12(R)-ol) was identified in the same cyanobacterium and in the marine dinoflagellate Alexandrium pacificum (Group IV) (120518KureAC) for the first time from natural sources. The authentic standards of these compounds and 12α-deoxygonyautoxin 5 (12β-gonyautoxinol 5 = gonyautoxin 5-12(S)-ol) were prepared by chemical derivatization from the major PSTs, C1/C2, produced in D. circinale (TA04). These standards were used to identify the deoxy analogues by comparing the retention times and MS/MS spectra using high-resolution LC-MS/MS. Biosynthetic or metabolic pathways for these analogues have also been proposed based on their structures. The identification of these compounds supports the α-oriented stereoselective oxidation at C12 in the biosynthetic pathway towards PSTs.  相似文献   

8.
9.
Cyanobacteria are recognized producers of a wide array of toxic or otherwise bioactive secondary metabolites. The present study utilized the zebrafish (Danio rerio) embryo as an aquatic animal model of vertebrate development to identify, purify and characterize lipophilic inhibitors of development (i.e., developmental toxins) from an isolate of the freshwater cyanobacterial species, Aphanizomenon ovalisporum.Bioassay-guided fractionation led to the purification, and subsequent chemical characterization, of an apparent homologous series of isotactic polymethoxy-1-alkenes (1–6), including three congeners (4–6) previously identified from the strain, and two variants previously identified from other species (2 and 3), as well as one apparently novel member of the series (1). Five of the PMAs in the series (1–5) were purified in sufficient quantity for comparative toxicological characterization, and toxicity in the zebrafish embryo model was found to generally correlate with relative chain length and/or methoxylation. Moreover, exposure of embryos to a combination of variants indicates an apparent synergistic interaction between the congeners. Although PMAs have been identified previously in cyanobacteria, this is the first report of their apparent toxicity. These results, along with the previously reported presence of the PMAs from several cyanobacterial species, suggest a possibly widespread distribution of the PMAs as toxic secondary metabolites and warrants further chemical and toxicological investigation.  相似文献   

10.
Autophagy is associated with multiple biological processes and has protective and defensive functions with respect to immunity, inflammation, and resistance to microbial infection. In this experiment, we wished to investigate whether autophagy is a factor in the midgut cell response of Bombyx mori to infection by the B. mori cytoplasmic polyhedrosis virus (BmCPV). Our results indicated that the expression of three autophagy-related genes (BmAtg8, BmAtg5, and BmAtg7) in the midgut did not change greatly after BmCPV infection in B. mori. Basal ATG8/ATG8PE protein expression was detected in different B. mori tissues by using western blot analysis. Immunohistochemistry showed that the ATG8/ATG8PE proteins were located mainly in the cytoplasm. ATG8/ATG8PE protein levels decreased at 12 and 16 h after BmCPV infection. Our results indicate that autophagy responded slightly to BmCPV infection, but could not prevent the invasion and replication of the virus.  相似文献   

11.
Cytochrome P450 monooxygenases (CYPs), as an enzyme superfamily, is widely distributed in organisms and plays a vital function in the metabolism of exogenous and endogenous compounds by interacting with its obligatory redox partner, CYP reductase (CPR). A novel CYP gene (CYP9A11) and CPR gene from the agricultural pest insect Spodoptera exigua were cloned and characterized. The complete cDNA sequences of SeCYP9A11 and SeCPR are 1,931 and 3,919 bp in length, respectively, and contain open reading frames of 1,593 and 2,070 nucleotides, respectively. Analysis of the putative protein sequences indicated that SeCYP9A11 contains a heme-binding domain and the unique characteristic sequence (SRFALCE) of the CYP9 family, in addition to a signal peptide and transmembrane segment at the N-terminal. Alignment analysis revealed that SeCYP9A11 shares the highest sequence similarity with CYP9A13 from Mamestra brassicae, which is 66.54%. The putative protein sequence of SeCPR has all of the classical CPR features, such as an N-terminal membrane anchor; three conserved domain flavin adenine dinucleotide (FAD), flavin mononucleotide (FMN), and nicotinamide adenine dinucleotide phosphate (NADPH) domain; and characteristic binding motifs. Phylogenetic analysis revealed that SeCPR shares the highest identity with HaCPR, which is 95.21%. The SeCYP9A11 and SeCPR genes were detected in the midgut, fat body, and cuticle tissues, and throughout all of the developmental stages of S. exigua. The mRNA levels of SeCYP9A11 and SeCPR decreased remarkably after exposure to plant secondary metabolites quercetin and tannin. The results regarding SeCYP9A11 and SeCPR genes in the current study provide foundation for the further study of S. exigua P450 system.  相似文献   

12.
13.
14.
Chemical interactions play a fundamental role in the ecology of marine foodwebs. Dimethyl sulfide (DMS) is a ubiquitous marine trace gas that acts as a bioactive compound by eliciting foraging behavior in a range of marine taxa including the copepod Temora longicornis. Production of DMS can rapidly increase following microzooplankton grazing on phytoplankton. Here, we investigated whether grazing-induced DMS elicits an increase in foraging behavior in the copepod Calanus helgolandicus. We developed a semi-automated method to quantify the effect of grazing-mediated DMS on the proportion of the time budget tethered females allocate towards slow swimming, typically associated with feeding. The pooled data showed no differences in the proportion of the 25 min time budget allocated towards slow swimming between high (23.6 ± 9.74%) and low (29.1 ± 18.33%) DMS treatments. However, there was a high degree of variability between behavioral responses of individual copepods. We discuss the need for more detailed species-specific studies of individual level responses of copepods to chemical signals at different spatial scales to improve our understanding of chemical interactions between copepods and their prey.  相似文献   

15.
Nitric oxide (NO) is generated via the oxidation of l-arginine by the enzyme NO synthase (NOS) both in vertebrates and invertebrates. Three NOS isoforms, nNOS, iNOS and eNOS, are known in vertebrates, whereas a single NOS isoform is usually expressed in invertebrates, sharing structural and functional characteristics with nNOS or iNOS depending on the species. The present paper is focused on the constitutive Ca2+/calmodulin-dependent nNOS recently sequenced by our group in the neogastropod Stramonita haemastoma (ShNOS). In this paper we provide new data on cellular distribution of ShNOS in the CNS (pedal ganglion) and peripheral organs (osphradium, tentacle, eye and foot) obtained by WB, IF, CM and NADPHd. Results demonstrated that NOS-like proteins are widely expressed in sensory receptor elements, neurons and epithelial cells. The detailed study of NOS distribution in peripheral and central neurons suggested that NOS is both intracellular and presynaptically located. Present findings confirm that NO may have a key role in the central neuronal circuits of gastropods and in sensory perception. The physiological relevance of NOS enzymes in the same organs was suggested by thermal stress experiments demonstrating that the constitutive expression of ShNOS is modulated in a time- and organ-dependent manner in response to environmental stressors.  相似文献   

16.
17.
Cnaphalocrocis medinalis Güenée can cause severe losses in rice. Cytochrome P450s play crucial roles in the metabolism of allelochemicals in herbivorous insects. Two novel P450 cDNAs, CYP6CV1 and CYP9A38, were cloned from the midgut of C. medinalis. CYP6CV1 encodes a protein of 500 amino acid residues, while CYP9A38-predicted protein has 531 amino acid residues. Both cDNA-predicted proteins contain the conserved functional domains for all P450s. Phylogenetic analyses showed that CYP6CV1 is grouped in the cluster containing CYP6B members, while CYP9A38 is in the cluster including CYP9 members. However, both clusters are contained in the same higher lineage. Homologous analysis revealed that CYP6CV1 is most similar to CYP6B8, CYP6B7, CYP6B6, CYP6B2, and CYP6B4 with the highest amino acid identity of 41%. CYP9A38 is closest to CYP9A17, CYP9A21, CYP9A20, and CYP9A19 with the highest amino acid identity of 66%. Studies of temporal expression profiles revealed that CYP9A38 showed a steady increase in mRNA level during the five instar stages, but a low-expression level in pupae, and then presented at a high-expression level again in adults. Similar expression patterns were obtained with CYP6CV1. In the fifth instar larvae, CYP6CV1 was mainly expressed in midgut and fat bodies, whereas CYP9A38 was mainly expressed in midgut. Expression studies also revealed a 3.20-fold over-expression of CYP6CV1 and 3.54-fold over-expression of CYP9A38 after larval exposure to host rice resistance. Our results suggest that both CYP6CV1 and CYP9A38 may be involved in detoxification of rice phytochemicals.  相似文献   

18.
通过生物信息学分析,从B73玉米全基因组中鉴定出4个泛素活化酶基因,分别命名为Zm UBA1~Zm UBA4。4个Zm UBA基因编码氨基酸数目在1 030~1 056 aa,编码蛋白分子量在114.63~117.39 k D,等电点在5.18~5.80,且均含有5个内含子。蛋白二级结构预测,4个基因编码的蛋白主要以α–螺旋和不规则卷曲为主,亚细胞定位预测4个基因均定位于细胞核中。荧光定量PCR结果表明,Zm UBA1基因在根、茎、叶、雄穗和雌穗中呈现组成性表达,Zm UBA2和Zm UBA4基因在雄穗表达量最高,Zm UBA3在叶片表达量最高,呈现组织特异性表达。Zm UBA3在盐和低温胁迫上调表达,Zm UBA4在盐胁迫时下调表达,说明Zm UBA3基因可能参与玉米低温和盐胁迫的应答,Zm UBA4可能参与玉米盐胁迫应答。  相似文献   

19.
类免疫球蛋白(Hemolin)是一种鳞翅目昆虫特有的免疫相关蛋白,也是唯一的无脊椎动物免疫球蛋白家族成员。本实验应用RACE技术获得了茶尺蠖(Ectropis obliqua Prout)类免疫球蛋白基因的全长cDNA序列,命名为EoHML(GenBank登录号:KM885983),并分析了相关生物信息学特性,检测了病毒感染后基因的表达水平。结果表明,EoHML基因序列全长1β772βbp,包含1β239βbp的开放阅读框,编码412个氨基酸,预测蛋白分子量大小为45.8βkD,等电点(pI)为8.297,属于典型的分泌型蛋白,且具有昆虫Hemolin基因保守的4个Ig功能区和2个N-glycosylation位点。系统进化分析表明,该蛋白与目前已知的类免疫球蛋白氨基酸序列的亲缘关系都较远,与烟草天蛾(Manduca sexta)类免疫球蛋白氨基酸序列相似度最高,为53%。荧光定量检测结果表明,茶尺蠖核型多角体病毒(EoNPV)感染茶尺蠖幼虫后该基因表达量显著升高,最高表达量是正常对照的36.5倍,表明茶尺蠖EoHML基因可能参与了茶尺蠖对EoNPV的免疫代谢反应。  相似文献   

20.
小麦β-酮脂酰CoA合成酶基因KCS的克隆与酵母表达   总被引:1,自引:0,他引:1  
超长链脂肪酸是生物体内众多重要物质的合成底物。KCS基因编码β-酮脂酰CoA合成酶,该酶具有底物特异性,参与超长链脂肪酸延伸的缩合反应,是超长链脂肪酸合成的限速步骤。为了探究小麦KCS基因在超长链脂肪酸合成中的功能,采用同源克隆的方法从小麦(Triticum aestivum L.)中克隆出KCS基因后,利用生物信息学对其编码序列进行分析,并在酿酒酵母(Saccharomyces cerevisiae)中对其进行真核表达。结果表明,小麦TaKCS6基因的开放阅读框为1 287bp,编码428个氨基酸残基。结构域预测结果显示,TaKCS6蛋白含有III型聚酮合酶脂肪酸延伸酶和C末端3-酰基ACP合酶III结构域,属于KCSs蛋白家族。序列比对分析结果显示,TaKCS6氨基酸序列与拟南芥及其他植物的KCS6氨基酸序列在两个功能结构域上和活性位点保守。酵母表达结果显示,TaKCS6基因编码的蛋白参与C24以上超长链脂肪酸的延伸。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号