首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
通过盆栽试验,采用尿素、过磷酸钙各4个水平共8个处理,研究N、P肥对湿加松幼苗的生长效应.结果表明,尿素和过磷酸钙均对湿加松生长有显著影响;各处理对湿加松地径生长的影响在9-12月差异显著,N-1处理地径最大,P-2处理次之;各处理对冠幅生长的影响在7-11月有显著差异,7月以N-2处理冠幅最大,8-11月则以P-2处理最大;各处理对苗高生长的影响差异不显著.对湿加松苗木生物量和植株N、P含量的分析表明,施用一定量的尿素、过磷酸钙可改善植株的养分状况,过量施用则不利于N、P的正常吸收;湿加松苗木最佳施肥组合是每株施尿素6g+过磷酸钙30 g+氯化钾15 g.  相似文献   

2.
马尾松不同苗木类型与整地方式造林早期效果的研究   总被引:3,自引:0,他引:3  
通过对不同苗木类型和整地方式的马尾松幼林的造林成活率、生长状况、生物量和根系特征进行测定,结果表明:容器苗可明显提高造林成活率、当年抽梢高和生物量;整地方式对造林当年的马尾松幼林有一定影响,而在第3年则对幼林树高和抽梢高起着明显促进作用。  相似文献   

3.
Longleaf pine (Pinus palustris Mill.) seedlings were exposed to two concentrations of atmospheric CO(2) (365 or 720 micro mol mol(-1)) in combination with two N treatments (40 or 400 kg N ha(-1) year(-1)) and two irrigation treatments (target values of -0.5 or -1.5 MPa xylem pressure potential) in open-top chambers from March 1993 through November 1994. Irrigation treatments were imposed after seedling establishment (i.e., 19 weeks after planting). Seedlings were harvested at 4, 8, 12, and 20 months. Elevated CO(2) increased biomass production only in the high-N treatment, and the relative growth enhancement was greater for the root system than for the shoot system. In water-stressed trees, elevated CO(2) increased root biomass only at the final harvest. Root:shoot ratios were usually increased by both the elevated CO(2) and low-N treatments. In the elevated CO(2) treatment, water-stressed trees had a higher root:shoot ratio than well-watered trees as a result of a drought-induced increase in the proportion of plant biomass in roots. Well-watered seedlings consistently grew larger than water-stressed seedlings only in the high-N treatment. We conclude that available soil N was the controlling resource for the growth response to elevated CO(2) in this study. Although some growth enhancement was observed in water-stressed trees in the elevated CO(2) treatment, this response was contingent on available soil N.  相似文献   

4.
Seedlings of Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) and western red cedar (Thuja plicata J. Donn ex D. Don) were grown at high (250 mg l(-1)) and low (20 mg l(-1)) nitrogen (N) supply for a year. Before the second growing season, half of the seedlings in each nutrient treatment were allocated to the other treatment. Half of the seedlings in each nutrient treatment then had all growing points removed. Biomass and N, phosphorus (P) and potassium (K) concentrations of old and new shoots and roots were measured three times in the second year to test the interaction of current-year and previous-year nutrient supply on biomass and nutrient allocation in these two species with different growth habits. Pruned seedlings served as controls. Unpruned seedlings of both species increased in height throughout the second growing season, except for Douglas-fir in the N250 --> N20 treatment. Repeated pruning did not prevent new shoot growth, but resulted in a 12 to 52% reduction in biomass of new shoots and new and old roots. Seedlings receiving a low N supply in the first growing season were more severely affected by pruning than seedings receiving a high N supply. Growth was reduced more by pruning in western red cedar than in Douglas-fir. Concentrations of N, P and K were higher in pruned seedlings than in unpruned seedlings. Although dry weights of all plant parts in all treatments increased throughout the second growing season, some retranslocation of N, P and K was observed from old shoots of both species in the N250 --> N20 and N20 --> N20 treatments after August. Quantities of N, P and K retranslocated were greatest in seedlings grown the previous year in the high-N treatment.  相似文献   

5.
Ectomycorrhiza (EM) formation improves tree growth and nutrient acquisition, particularly that of nitrogen (N). Few studies have coupled the effects of naturally occurring EM morphotypes to the nutrition of host trees. To investigate this, pine seedlings were grown on raw humus substrates collected at two forest sites, R2 and R3. Ectomycorrhiza morphotypes were identified, and their respective N uptake rates from organic (2-(13)C, (15)N-glycine) and inorganic ((15)NH(4)Cl, Na(15)NO(3), (15)NH(4)NO(3), NH(4)(15)NO(3)) sources as well as their phosphate uptake rates were determined. Subsequently, the growth and nutritional status of the seedlings were analyzed. Two dominant EM morphotypes displayed significantly different mycorrhization rates in the two substrates. Rhizopogon luteolus Fr. (RL) was dominant in R2 and Suillus bovinus (Pers.) Kuntze (SB) was dominant in R3. (15)N uptake of RL EM was at all times higher than that of SB EM. Phosphate uptake rates by the EM morphotypes did not differ significantly. The number of RL EM correlated negatively and the number of SB EM correlated positively with pine growth rate. Increased arginine concentrations and critical P/N ratios in needles indicated nutrient imbalances of pine seedlings from humus R2, predominantly mycorrhizal with RL. We conclude that different N supply in raw humus under Scots pine stands can induce shifts in the EM frequency of pine seedlings, and this may lead to EM formation by fungal strains with different ability to support tree growth.  相似文献   

6.
One-year-old Norway spruce (Picea abies (L.) Karst.) seedlings were grown hydroponically in a growth chamber to investigate the effects of low and high nutrient availability (LN; 0.25 mM N and HN; 2.50 mM N) on growth, biomass allocation and chemical composition of needles, stem and roots during the second growing season. Climatic conditions in the growth chamber simulated the mean growing season from May to early October in Flakaliden, northern Sweden. In the latter half of the growing season, biomass allocation changed in response to nutrient availability: increased root growth and decreased shoot growth led to higher root/shoot ratios in LN seedlings than in HN seedlings. At high nutrient availability, total biomass, especially stem biomass, increased, as did total nonstructural carbohydrate and nitrogen contents per seedling. Responses of stem chemistry to nutrient addition differed from those of adult trees of the same provenance. In HN seedlings, concentrations of alpha-cellulose, hemicellulose and lignin decreased in the secondary xylem. Our results illustrate the significance of retranslocation of stored nutrients to support new growth early in the season when root growth and nutrient uptake are still low. We conclude that nutrient availability alters allocation patterns, thereby influencing the success of 2-year-old Norway spruce seedlings at forest planting sites.  相似文献   

7.
Seedlings of two fast- and two slow-growing families of slash pine, Pinus elliottii Englm. var. elliottii, were grown in a greenhouse for one growing season in one of 10 nitrogen (N) regimes. Increasing the N concentration in the nutrient solution resulted in both increased growth rates during the exponential growth phase and extended duration of the growing season. The two components of total height, free growth (epicotyl length to the first bud) and summer growth (height growth after the first bud), both increased significantly with increasing N concentrations up to 40-60 mg l(-1) but decreased at N concentrations above 180 mg l(-1). Compared to seedlings grown in the presence of an optimum N concentration, seedlings grown in the presence of trace amounts of N were smaller and had less summer growth as a percentage of total growth, earlier cessation of height growth, fewer flushes, lower shoot/root ratio, higher root fibrosity, and lower N concentrations in all seedling tissues. Compared to slow-growing families, fast-growing families had more summer height growth, more flushes and later growth cessation, higher shoot/root ratios and higher root fibrosity at all N concentrations. In the presence of an optimum or higher concentration of N, the fast-growing families also had higher needle and total N concentrations than the slow-growing families. Strong family by N-treatment interactions occurred for height, phenology and biomass traits because of the extra responsiveness of one family to increasing N concentration. Several seedling traits were identified that appear promising for predicting field performance in slash pine. The results indicated that the nutrient environment greatly influences genetic expression (e.g., family patterns of summer growth were most closely related to field rankings for seedlings in the trace-N treatment).  相似文献   

8.
To advance our understanding of the effects of inoculation with ectomycorrhizal fungi (EMF) on seedling colonization in mine wastelands, we conducted a field experiment in a copper tailing. Six-month-old seedlings of Japanese red pine (Pinus densiflora) and oak (Quercus variabilis) separately inoculated with three EMF species (Pisolithus sp., Cenococcum geophilum, Laccaria laccata) were transplanted to the copper tailing. The survival rates of tree seedlings were monitored monthly, and growth (biomass and height), contents of nutrients and heavy metals (K, P, Ca, Mg, Cu, Zn), and mycorrhizal infection rates of seedlings were determined 6 months after planting. Oak seedlings exhibited higher survival rates than pine seedlings after 6 months of growth on the tailing. EMF inoculations of pine seedlings significantly enhanced their survival, growth, and nutrient uptake. In contrast, EMF inoculations of oak seedlings improved growth only in terms of biomass. Additionally, EMF inoculation caused pine seedlings to accumulate more Cu and Zn in roots compared to non-inoculated seedlings, whereas inoculation inhibited the accumulation of heavy metals in shoots. However, similar results were not observed in oak seedlings. Observations of roots indicated that the rates of mycorrhizal infection of both tree species had dramatically declined at harvest time. In conclusion, ectomycorrhizal symbioses can improve the survival and performance of pine seedlings in mine tailings. The present study provided direct evidence of the importance of EMF inoculation of seedlings to the reforestation of mine wastelands.  相似文献   

9.
Loblolly pine (Pinus taeda L.) seedlings were grown from seed in a greenhouse on A1 horizon soil collected from field plots that have been burned each winter or maintained in an unburned condition for 33 years. Soils from burned and unburned plots were treated with phosphorus (P), P and calcium (Ca), or left untreated. After 32 weeks, height, biomass, and nitrogen (N) and P uptake were greater on soil from burned versus unburned plots, although application of P masked these effects. Addition of P increased plant biomass, seedling height, and uptake of N and P, but depressed levels of soil NH4N. These results suggest that long-term prescribed burning may have a positive effect on nutrient availability that will benefit seedlings of the next stand.  相似文献   

10.
Feeding by pine weevil (Hylobius abietis L.) causes severe damage to newly planted conifer seedlings in most parts of Scandinavia. We investigated the effect of planting time and insecticide treatment on pine weevil damage and seedling growth. The main objective was to study if planting in early autumn on fresh clear-cuts would promote seedling establishment and reduce the amount of damage caused by pine weevil the following season. The experiment was conducted in southern Sweden and in south-eastern Norway with an identical experimental design at three sites in each country. On each site, Norway spruce seedlings with or without insecticide treatment were planted at four different planting times: August, September, November and May the following year. In Sweden, the proportion of untreated seedlings that were killed by pine weevils was reduced when seedlings were planted at the earliest time (August/September) compared to late planting in November, or May the following year. This pattern was not found in Norway. The average length of leading shoot, diameter growth and biomass were clearly benefited by planting in August in both countries. Insecticide treatment decreased the number of seedlings killed or severely damaged in both Norway and Sweden.  相似文献   

11.
The effects of stand stem density (SSD), orientation and distance with respect to shelter trees, and fertilisation on planted Pinus sylvestris and Picea abies seedlings were examined at two sites, one with a southerly aspect (64°14′N, 19°46′E, 225 m a.s.l.) and one with a northerly aspect (64°09′N, 19°36′E, 274 m a.s.l.) in boreal forests in Sweden. The damage and growth were compared at these sites in stands with three SSD’s and different light regimes: uncut forest (SSD 500, ~500 stems/ha), shelterwood (SSD 150,~150 stems/ha), and clear-cut (SSD, 0 stems). Half of the seedlings were irrigated with fertiliser (10 mM N). Fertilisation and SSD affected the height growth of P. abies, since fertilised seedlings in SSD 0 grew the most (22.2 cm). Fertilised seedlings in SSD 0 also generally had the greatest biomass (twigs, leading shoot and needles), even P. sylvestris seedlings on the North slope, where fertilised and unfertilised pine seedlings in SSD 0 had 62.6 and 39.7 g biomass, respectively. P. sylvestris increased about 150% in dry mass of leading shoot of the increase of P. abies with equal height growth, when comparing SSD 150 and SSD 0. The results indicate that the general conditions of the stand have stronger effects on the growth of planted seedlings than their orientation and distance with respect to the nearest tree and that light requirements cannot be moderated by fertilisation. We postulate that a system in which forest gaps are formed under a shelterwood could provide a way to regenerate forests that exploits the beneficial features of both shelter trees and clear-cuts.  相似文献   

12.
Scots pine (Pinus sylvestris L.) seedlings of a provenance from northern Sweden were cultivated hydroponically for 7 weeks in a climate chamber. The nutrient solution contained either 2.5 (low-N) or 50 (high-N) mg N l(-1) with other essential elements added in a fixed optimal proportion to the nitrogen. After 5 and 7 weeks, the seedlings were analyzed for growth, total nitrogen and other essential nutrients, protein and free amino acids. Low-N seedlings grew more slowly and had higher root/shoot ratios than high-N seedlings. With respect to total nitrogen, the effect of the lower nutrient supply was mainly on the nitrogen content of the whole plant and the allocation of nitrogen among tissues, not on tissue nitrogen concentration. This was also the case for potassium, phosphorus, calcium and magnesium. The proportions by weight among these macronutrients in the whole seedlings were similar in both nutrient regimes. The proportion and concentration of sulfur were significantly lower in low-N seedlings than in high-N seedlings, because of a lower net uptake of sulfur than of other macronutrients. The shoot, needles and stem of low-N seedlings had higher concentrations of free amino acids and lower concentrations of protein than the shoot, needles and stem of high-N seedlings. Arginine dominated the pool of free amino acids in the low-N seedlings, whereas glutamine predominated in the high-N seedlings. We conclude that Scots pine seedlings accumulated soluble nitrogen as arginine when net protein synthesis was limited by factors other than nitrogen availability. Nutritional imbalance, as revealed by growth characteristics and a suboptimal proportion and concentration of sulfur in the seedlings, probably affected synthesis of S-amino acids, resulting in the diversion of assimilated nitrogen to arginine instead of protein.  相似文献   

13.
Three-year-old Scots pine (Pinus sylvestris L.) seedlings were exposed to either ambient or elevated (1.5-1.6 x ambient) ozone concentration ([O3]) for three growing seasons in an open-field fumigation facility where they were irrigated during the growing season with a nutrient solution providing nitrogen (N) at 70 (LN treatment), 100 (control) or 150% (HN treatment) of the optimum supply rate. Treatment effects were most evident during the third year of exposure, when the ambient [O3] + HN treatment enhanced whole-plant biomass, root/shoot dry weight ratio, needle pigment concentrations and the number of chloroplast plastoglobuli in the mesophyll cells in current-year (C) needles, whereas it reduced starch accumulation in C needles and abscission of 2-year-old (C+2) needles. In the control fertilization, 3 years of exposure to elevated [O3] decreased stem-base diameter and increased K concentration and electron density of chloroplast stroma in C needles. Plants in the HN treatment exposed for 3 years to elevated [O3] had significantly lower heights, current-year main shoot length and root/shoot dry mass ratio than control plants, and increased abscission of C+2 needles. In contrast, O3-induced changes in the ultrastructure of mesophyll cells were most evident in seedlings grown for 3 years in the LN treatment. We conclude that, in Scots pine, a relatively O3-tolerant species, chronic O3 exposure leads to cumulative growth reduction, increased needle abscission and changes in carbon allocation that are strongly influenced by plant N availability.  相似文献   

14.
Nitrogen (N) is the major nutrient limiting plant growth and production in terrestrial ecosystems around the world. However, nutrient limitation is spatially variable, and different species within the same ecosystem may be limited by different nutrients. N constraints on plant growth have been investigated via fertilization experiments in a variety of ecosystems; however, recently burned coniferous forests are notably under-studied. Given the recent increase in fire activity across western North America, it is important to understand what limits plant growth and carbon sequestration in coniferous forests recovering from wildfire. We evaluated potential inorganic N limitation in four common native plant species, 3–5 years after stand-replacing wildfire in a lodgepole pine forest (Pinus contorta var. latifolia) in Wyoming, USA. Granular reagent grade ammonium nitrate was added around individual plants at a rate equal to the natural background rate of net N mineralization and at 10× this rate. The grass Calamagrostis rubescens exhibited clear evidence of inorganic N limitation: above-ground biomass and shoot:root ratio increased with the high-fertilizer treatment. Nitrogen:phosphorus (N:P) ratio in un-fertilized C. rubescens plants was <14, also consistent with N limitation, but N:P ratio shifted to >16 in the high-fertilizer treatment, suggesting the onset of P limitation. The upland sedge Carex rossii and seedlings of lodgepole pine were not limited by inorganic N: neither species showed any growth response to N fertilization; N:P ratios were only slightly <14; and foliar N concentrations were greater than critical values reported for mature lodgepole pine. The N-fixing forb Lupinus argenteus was not limited by N, for it showed no growth response to fertilization; rather its N:P ratio of 21 indicated P limitation. In this study, to our knowledge the first experimental evaluation of N limitation in subalpine coniferous forests following wildfire, N limitation was seen in only one of four species tested.  相似文献   

15.
【目的】探究‘凤丹’牡丹种苗的最适移栽时期,为其丰产栽培技术提供参考。【方法】以3年生‘凤丹’牡丹实生种苗为试验材料,设置8个移栽时期,通过大田对比试验,分析移栽后根系活力、叶片光合性能及生物量的变化;采用主成分分析和综合评价的方法对不同移栽时期的成苗效果进行评价。【结果】移栽期可能通过移栽时气温、土壤温度和移栽后土壤积温等环境因素影响‘凤丹’牡丹新根和植株的发育,适时移栽显著促进牡丹苗体的生长发育。在不同的移栽时期,‘凤丹’牡丹植株生长期间的新根总数、木质化新根数、根系活力、叶面积、叶片SPAD值、净光合速率、枝条粗度、根生物量、枝条生物量、总生物量和壮苗指数均有一定差异,而枝条长度和根冠比没有显著差异。9月29日与11月28日移栽相比,单株木质化新根质量和叶面积分别增加了90.26%和51.22%,根系活力和净光合作用速率分别提高了93.53%和60.98%,单株生物量增加了46.00%。经通径分析、主成分分析和综合评价表明:9月29日移栽的‘凤丹’牡丹成苗效果最好。【结论】本研究依据植株生物量、壮苗指数与移栽期气象环境要素的依赖关系,明确9月中旬至10月下旬,日均气温15~20℃气侯条件,是‘凤丹’牡丹的最适移栽期。  相似文献   

16.
Scots pine (Pinus sylvestris L.) seedlings were grown in containers filled with peat, using two different fertilizers and three different fertilizer regimes. Seedling shoot and root growth and shoot content of nitrogen, potassium and phosphorus were followed in the nursery and after outplanting in the field. Attempts to regulate growth rate by an exponential nutrient supply were not successful, but the root/shoot ratio was influenced by the fertilization regime. Internal nitrogen concentration was stable only for seedlings with low relative growth rate, while seedlings with high nutrient supply in the nursery showed strong nutrient dilution in the shoot after planting.  相似文献   

17.
Production of quality seedlings is an important aspect of successful tree planting. No information is available on the effect of nutrients and water on the growth and development of the seedlings of neem (Azadirachta indica A. Juss), an important component of many tropical agroforestry systems. In an experiment in central India, the growth and nutrient-use efficiency of neem seedlings grown at various levels of light, nutrients (N and P), and water stress were determined. Seedlings were given light (diffused and complete) and nutrient (N and P) treatments comprising either high N-high P, high N-low P, low N-high P, or low N-low P. Seedlings grown in complete light (800 mol/m2/s) had four times more biomass than those grown in diffused light (200 mol/m2/s). Significant increase in seedling biomass was observed with nitrogen application, while phosphorus had no effect on biomass. Leaves contributed maximum biomass, followed by roots and stem. Nutrient use efficiency decreased with an increase in the supply of nutrients. In another experiment, containerized and bare-root seedlings were subjected to five watering treatments, viz., watering twice a week, watering weekly, watering every alternate week, watering every third week, and natural precipitation. Plant moisture stress affected both growth and survival of neem seedlings. Only 50 per cent of seedlings survived in severe drought treatment (no. 4) whereas 90 to 95 per cent seedlings showed growth in all other treatments. Plant moisture stress in severe drought treatment averaged –21 bar while in other treatments it ranged from –9 to –12 bar. Shoot-root ratio was high in bare-root seedlings as compared to containerized seedlings. Containerized seedlings had shown better endurance against drought than the bare-root seedlings. The results suggest that neem seedlings adjust their nutrient use efficiency and can be grown even under limited available resources. It is also inferred that the species can tolerate soil resource depletion caused by competitor species.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

18.
Seethefirstpartofthisstudy[']forthepurposeandsignificanceofthestudies,thegeneralsituationofexperimentplotsandresearchmethod,thispartmainlydiscussthenutrientelementcontentandreturningamountofmainfractionalcompositionsoflitterinKoreanpine(KP),MongolianScotspine(MSP)andDahurianlarch(DL)plantationsinLaoshanPlantationExperi-mentStationofMaoershanExperimentForestFarmofNortheastForestryUni-versity-CHEMICALANALYSISMETHODSoFNUTRixNTELEMENTSINLITTERTheovendriedsamplesofdeadneed…  相似文献   

19.
Weih M  Nordh NE 《Tree physiology》2005,25(9):1197-1206
Pot experiments are often performed to assess plant physiological traits and relationships among growth traits under controlled environments. However, the reliability of pot studies for predicting the growth and performance of trees in the field has rarely been rigorously assessed. We evaluated the suitability of pot experiments for predicting field performance, measured as shoot biomass production, by investigating determinants of growth in hybrid willows (Salix spp.) grown under various environmental conditions in the field, and by comparing the data with the results from a corresponding pot study. Biomass production in six hybrid willow clones, bred for use as bio-fuels, was assessed in three field trials located in central and southeastern Sweden throughout the first 3-year cutting cycle. The determinants of biomass productivity, measured as biomass allocation and nitrogen (N) economy, were identified in one of the field trials. Key traits for shoot biomass production in the field were total leaf area and total amount of N; plant N losses by shed leaves were only partly controlled by leaf-litter N concentration. These key traits were also obtained from the pot study and related to shoot biomass production and abscission-leaf N loss in the field. Total leaf area and total N pool of plants grown in pot experiments were good predictors of long-term biomass production in the field, whereas shoot biomass production, specific leaf area and tissue N concentration of pot-grown plants were less suitable as predictors of field performance. Relationships between the key traits and shoot biomass production were clone-specific, indicating the need for analysis of growth traits at the clone level if field performance of trees is to be evaluated based on data from pot studies. Nutrient loss components are important for tree performance in the long term and evaluations of nutrient loss characteristics at the individual-tree level should focus on nutrient pools lost rather than on nutrient concentrations in abscised plant parts.  相似文献   

20.
The effects on nutrient exports of a range of thinning regimes for maritime pine and radiata pine plantations in northern Spain were simulated in this study. Growth models, tree biomass equations and nutrient concentration in tree fractions were used simultaneously to calculate the amounts of N, P, K, Ca and Mg removed and left in the logging residues for five thinning intensities, five site indexes and four harvesting scenarios for each species, considering the whole rotation. A more intense thinning regime decreases the total amount of nutrients exported and increases the proportion of nutrients returned to the soil before the clearfell, being a more progressive system of extracting nutrients from the ecosystem. A substantial amount of nutrients are located in the crown fractions and the bark, making desirable the harvesting of debarked logs. The results allow the calculation of fertilization needs to avoid the depletion of soil nutrient capital in a variety of silvicultural situations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号