首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Citrus is considered to be specifically sensitive to chloride and sodium, yet little data exist to show the effect of these ions on yield. An experiment was started in 1978 to study the effect of sodic irrigation water on yield. The treatments were SAR of the irrigation water of 2.8-(L), 5.5-(M), and 10.3-(H) (mol/m3)1/2 . The experiment follows a study on the same plots using irrigation water of variable chloride concentration and a uniform SAR of 4.2 (mol/m3)1/2.The high SAR, high Cl water resulted in a yield reduction of 9% from the control treatment. This reduction was similar to the reduction observed when only Cl was a variable. Total water uptake was reduced as salt concentration in the soil increased. The average water uptake for the four irrigation seasons 1978 to 1981 was 1025 mm, 953 mm and 823 mm for the L, M and H treatments, respectively.Soil ESP was increased as a result of sodium accumulation in the soil profile in the M and H treatments, while Cl and EC remained relatively constant with time during the experiment. After four years of irrigation the infiltration capacity values were 0.26, 0.17 and 0.16 cm/h for the L, M and H treatments, respectively. Fruit quality was not affected by the treatments.No specific toxicity symptoms were observed when the Na concentration in the soil saturation extract was 16 mol/m3 and the ESP was 8.0. The results lead to the conclusion that within the range used in this experiment the high ESP did not specifically effect yield and that yield response was due to the total salt concentration in the soil.Contribution from the Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel, No. 626-E, 1982 series  相似文献   

2.
Potassium-salinity interactions in irrigated corn   总被引:1,自引:0,他引:1  
Summary Potassium uptake by plants can be affected by high salinity and the Na concentration in the soil solution. There is abundant evidence that Na and the Na/Ca ratio affects K uptake and accumulation within plant cells and organs and that salt tolerance is correlated with selectivity for K uptake over Na. This provides the basis for hypothesis which exists in the literature and was examined in this study, that K application can reduce salinity damage to plants. The main objectives of this study were to: (i) study the effects of salinity and K fertilization interactions on corn yield and nutrient uptake; (ii) test the possibility that salinity damage can be reduced by elevating K fertilization rate; and (iii) study K dynamics in soil as a function of the salinity of the irrigation water, in soils with high and low indigenous potassium. The response of corn (Zea mays (L.) cv. Jubilee) to K fertilization under saline and non-saline conditions was studied by growing corn in two soil types in a pot experiment. Rates of K application to a 3 kg pot were: 0, 15 and 30 mmol K to the Gilat soil and 7.5, 15 and 30 mmol K to the Nordiya soil as KCl. The desired quantity of K was applied in one dose after seedling emergence. The salinity levels of the irrigation water were 4, 20 and 40 mmol charge 1–1. The irrigation was applied at least every second day and in excess to avoid water stress and to ensure drainage. Increased salinity in the irrigation water significantly decreased yield in both soils. Potassium significantly increased yield at all salinity levels only in the sandy soil which had a low natural level of K, but there was no difference in the relative yield decrease with salinity increase between the lowest and highest K application rates. Potassium fertilization did not eliminate the deleterious effects of salinity on corn yield despite its beneficial effect of increasing K content and reducing the NaK ratio in plant tissue. Potassium uptake by plants was the major factor in K dynamic processes. Potassium adsorption, release and fixation were secondary factors while leaching was an insignificant factor in overall K balance under cropping conditions.  相似文献   

3.
Summary The effect of soil texture and CaCO3 content on water infiltration rate in crusted soil was studied with the use of a rain simulator. Two types of soils with low exchangeable sodium percentage (ESP < 3.0%) were studied: (i) calcareous soils (5.1–16.3% CaCO3) with a high silt-to-clay ratio (0.82–1.47) from a region with < 400 mm winter rain; and (ii) non-calcareous soils with a low silt-to-clay ratio (0.13–0.35) from a region with > 400 mm winter rain. Soil samples with clay percentages between 3 and 60 were collected in each region. Distilled water (simulating rainfall) and saline water (simulating irrigation water) were sprinkled on the soil. The soils were exposed to rain until steady state infiltration and corresponding crust formation were obtained. For both types of soils and for both types of applied water, soils with 20% clay were found to be the most sensitive to crust formation and have the lowest infiltration rate. With increasing percentage of clay, the soil structure was more stable and the formation of crust was diminished. In soils with lower clay content (< 20%), there was a limited amount of clay to disperse and, as a result, undeveloped crust was formed. Silt and CaCO3 had no effect on the final infiltration rate for either type of applied water, whereas with saline water, increasing the silt content increased the rate of crust formation.Contribution from the Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel. No. 1130-E, 1984 series  相似文献   

4.
High levels of soil sodicity, resulting from intensive irrigation with saline-sodic waters, lead to an increased soil susceptibility to seal formation and to severe problems of runoff and soil erosion. The objective of this study was to investigate the efficacy of the addition of small amounts of an anionic polyacrylamide (PAM) to the irrigation water in controlling seal formation, runoff and soil erosion. Two predominantly montmorillonitic soils were studied, a grumusol (Typic Haploxerert) and a loess (Calcic Haploxeralf), having naturally occurring exchangeable sodium percentage (ESP)>12. The soils were exposed to 60 mm of simulated irrigation with commonly used tap water (TW, electrical conductivity=0.8 dS m–1; sodium adsorption ratio (SAR)=2), or saline water (SW, electrical conductivity=5.0 dS m–1; SAR>12). PAM effectiveness in controlling runoff and erosion from the sodic soils was compared with runoff and erosion levels obtained from untreated soils having low ESPs (<4). For both soils and for both water qualities and polymer concentrations in the irrigation water, PAM was efficient in controlling runoff at low ESP levels and inefficient at high ESP levels. At moderate ESP levels, PAM's efficacy in controlling runoff was inconsistent and varied with water quality and polymer concentration. Conversely, in general, soil loss originating from rill erosion, was significantly and effectively reduced in moderate and high ESP soils by addition of PAM to the irrigation water, irrespective of water quality and polymer concentration. PAM was more effective in reducing rill erosion than in reducing runoff in the moderate and high ESP samples, because the energy involved in generating runoff is much higher than that involved in rill erosion. PAM treated surface aggregates were not stable against the distructive forces leading to seal formation and runoff production; but they were stable enough to resist the hydraulic shear exerted by the runoff flow.  相似文献   

5.
Salinity in topsoil and subsoil is one of the major abiotic environmental stresses to crop production. To investigate the comparative tolerance ability of wheat, barley, canola and chickpea to subsoil NaCl salinity and its impact on water uptake, water use efficiency, plant growth and ionic balance, a pot experiment was conducted on a heavy texture soil (sodic vertosol) having 20 ESP (exchangeable sodium percentage), 3.5 dS/m ECe and 400 mg/kg Cl with additional NaCl applied in subsoil at 500, 1000, 1500 and 2000 mg/kg soil. Plants were harvested 40 days after sowing and assessed for different parameters. Increasing levels of subsoil NaCl salinity had significant depressing effect on shoot and root biomass, root/shoot ratio, water uptake and water use efficiency (shoot biomass production with a unit amount of applied water), leaves K:Na ratio and Ca:Na ratio of all the four species, but the magnitude of effect varied considerably among the species. Chickpea was affected most followed by wheat, barley and canola at the highest level of subsoil NaCl salinity. There was 64%, 49%, 37% and 34% reduction in shoot dry weight of chickpea, wheat, barley and canola respectively by highest subsoil salinity. Similarly water uptake declined by 61%, 36%, 31% and 26% respectively in chickpea, wheat, barley and canola. Water use efficiency of four species was in order of barley > canola > wheat > chickpeas on this sodic vertosol. The cumulative effects of reduced osmotic potential of soil solution, ion toxicity (high concentrations of Cl and Na) in soil/plants and ionic imbalance (reduced K:Na and Ca:Na ratio) within plant system under increased subsoil NaCl salinity contributed to reduce water uptake and plant growth in all the four crops, and the effects were more severe in chickpeas. Wheat despite having considerably lower Na and Cl in their leaves suffered greatly in plant growth and water uptake compared with barley and canola indicating better tolerance ability of barley and canola to high Cl and Na build up at tissue level. Results suggest chickpea to be the most sensitive to subsoil NaCl salinity. The growing of comparatively tolerant species like barley and canola may be the better option for sustaining crop production and higher water use efficiency on sodic vertosols with high subsoil NaCl salinity.  相似文献   

6.
施用氮磷肥对苏北滩涂围垦土壤盐渍化水平的影响   总被引:1,自引:0,他引:1  
以苏北滩涂围垦土壤为研究对象,采用完全随机区组设计,通过种植碱篷与施用氮磷肥等种植模式,评价不同施肥方式对围垦土壤盐渍化水平的影响。对各处理的土壤盐分八大离子、pH、EC、总碱度(TA)、钠化率(ESP)、钠吸附比(SAR)进行因子分析,提取的3个主因子解释了总方差的84.16%,并且EC、Cl-、Na+、SAR和ESP在因子1上有较高的载荷,代表滩涂土壤的盐碱特征;Ca2+与SO24-在因子2上有较高的载荷,反映土壤的结构状况;TA和CO23-在因子3上有较高的载荷,代表着滩涂土壤的碱化特征。比较盐渍化水平综合评价得分可知,裸地的盐渍化水平最高,与其他各处理相比均达到显著性差异,滩涂围垦土壤种植碱篷后,盐渍化程度均得到明显地降低。尿素与过磷酸钙对围垦土壤的盐渍化水平的影响存在交互作用,其中过磷酸钙对盐渍化的影响起主导作用。  相似文献   

7.
采用桶栽试验,研究了不同施用量下,基质改良剂对江苏滨海高钠盐粉土理化性质及西红柿产量的影响。结果表明,与不使用改良剂处理(CK)相比,施用基质改良剂处理表层土壤干密度降低1.06%~9.39%,孔隙率增加1.10%~9.69%;土壤含盐量减少21.16%~25.64%;基质改良剂处理的土壤,其碱化度(ESP)、pH、土壤交换性Na+、土壤Na+和Cl-均较CK下降,且与基质施用量负相关;各处理土壤Ca2+和SO24-质量摩尔浓度分别较CK增加了150.00%~271.4%和3.8%~88.9%,且与施用量正相关。施用改良剂后,西红柿增产6.04%~30.95%,基质改良剂对江苏省滨海滩涂高钠盐粉砂土具有较好改良效果,其最佳施用量约为8.4~9.0t/hm2。  相似文献   

8.
Summary Field studies were conducted for a period of ten years (1974 to 1984) on Typic Ustochrept to determine the sustained effects of saline irrigation water electrical conductivity (EC iw ) 3.2 dS/m, sodium adsorption ratio (SAR) 21 (mmol/1)1/2 and residual sodium carbonate (RSC) 4me/1, on the build up of salinity in the soil profile and yield of crops grown under fixed rice-wheat and maize/millet-wheat rotations. Saline waters were continuously used with and without the addition of gypsum (at the rate needed to reduce RSC to zero) applied at each irrigation. In maize/millet-wheat rotation, two additional treatments viz. (i) irrigation with 50% extra water over and above the normal 6 cm irrigation, and (ii) irrigation with good water and saline water alternately, were also kept. The results showed that salinity increased rapidly in the profile during the initial years but after five years (1979–1984) the average soluble salt concentration in 0–90 cm soil profile did not appreciably vary and the mean EC e values under saline water treatment remained almost similar to EC iw , under both the crop rotations.Saline water irrigation increased pH and Na saturation of the soil, reduced water infiltration rate and decreased yields of maize, rice and wheat. The differences in the build up of salinity and ESP of the soil under the two cropping sequences seemed to be related with the differences in leaching that occurred under rice-wheat and maize/millet-wheat rotations. Application of gypsum increased the removal of Na from the profile, appreciably decreased the pH and Na saturation and improved water infiltration rate and raised crop yields. Application of non-saline and saline waters alternately was found to be a useful practice but irrigation with 50% extra water to meet the leaching requirement did not control salinity and hence lowered crop yields.  相似文献   

9.
【目的】改良盐碱地。【方法】通过引水冲刷的方法,研究盐碱地盐分因子的时空变化,采用常规理化分析方法对样点土壤的盐碱度进行分析,并比较土壤的阴阳离子和生态离子之间的相关性。【结果】随着冲洗的次数增多,土壤中SAR从11.87 mmol/L降到3.02 mmol/L,pH值(从8.47降到8.25,夏季盐碱因子量最低,而秋季为返盐期盐碱因子小幅增加;盐度量随着月份的增加而增加,10月份最大为8.30‰;EC和TDC呈先减小后增加的趋势,分别从982.67μS/cm到1 037.67μS/cm和491.33 mg/L到523.67 mg/L;上、中、下层土在不同月份间有差异。本试验盐碱离子主要是Na+、CL-构成,表现为CL->Na+>Mg2+>SO42->Ca2+>HCO3->K+>CO32-,SAR与Na+极显著正相关。【结论】减少土壤中Na+量对治理盐碱地具有极大的作用。  相似文献   

10.
Summary Saturated hydraulic conductivity HC, and degree of clay dispersion DD, were determined for a sandy loam and a clay loam soil with waters of different combinations of sodium adsorption ratios SAR (5, 15, 30 and 45 mmol1/2l–1/2) and total electrolyte concentration TEC (15, 30, 60 and 90 me l–1) followed by distilled water to simulate rainwater. Increase in SAR and decrease in TEC of leaching water increased DD and decreased HC of soils. The HC values were more highly correlated with SAR than TEC. The critical ratio of TEC/SAR of water below which the relative HC is less than the hreshold value (i.e. 0.75) was 3.82 and 2.01 for clay loam and sandy loam, respectively taking the HC of initial soil with good quality water (SAR = 0.5, EC = 0.3dS m–1) as the reference. Drastic reductions in conductivity were observed even at SAR = 5 (60–83%) when saline water was displaced by rainwater, sensitivity being greater for the sandy loam than for the clay loam; recovery was negligible when the saline water was again applied. Data of EC and clay content of the effluent on application of distilled water suggested that clay dispersion, its movement and lodgement into conducting pores, may be the major cause of HC reduction in sandy loam, whereas in clay loam, surface sealing is the major cause. With distilled water application HC values were governed by SAR rather than TEC of initial water used. The study thus suggests that existing water quality criterion may underestimate the real soil permeability hazards from saline-sodic waters during rainfall infiltration in monsoon season.  相似文献   

11.
Summary Irrigated cultivation of pecans (Carya illinoensis K.) has increased dramatically in the Southwestern USA, yet their tolerance to salinity remains largely unknown. The first part of this study was conducted to assess if stunted tree growth reported in clayey soils is related to salinity, and the second part was to evaluate changes in soil salinity and the performance of 11 year old Western trees irrigated with water of 1.1 dSm–1 and 4.3 dSm–1 for 4 years. The first study, conducted at a commercial orchard (49 ha) in the El Paso valley (TX), showed a highly significant correlation between tree trunk size and salinity of the saturation extract (ECe) with r=–0.89. Soil salinity above which trunk size decreased in excess of the standard error was 2.0 dSm–1 in ECe from 0–30 cm depth, and 3.0 dSm–1 in 0 to 60 cm depth with corresponding Na concentrations of 14 and 21 mmol l–1. Excessive accumulation of salts and Na was found only in silty clay and silty clay loam soils. The second study, conducted at a small experimental field (1 ha), indicated that irrigation with waters of 1.1 and 4.3 dSm–1 increased ECe of the top 60 cm profile from 1.5 to 2.2 and 4.2 dSm–1 and Na concentration in the saturation extract to 17 and 33 mmol l–1, respectively. The leaching fractions were estimated at 13 and 37% when irrigated with waters of 1.1 and 4.3 dSm–1, respectively. Tree growth progressively slowed in the saline plots irrigated with water of 4.3 dSm–1, and became minimal during the 4th year. The cumulative shoot length over the 4 year period was reduced by 24% and trunk diameter by 18% in the saline plots relative to nonsaline plots. Irrigation with the saline water also reduced nut yields by 32%, nut size by 15% and leaflet area by 26% on the 4 year average, indicating that pecans are only moderately tolerant to salinity. The concentration of Na, Cl and Zn in the middle leaflet pair did not differ significantly between the two treatments. Soil salinity provided a more reliable measure for assessing salinity hazard than leaf analysis. However, soil salinity was found to be highly spatially variable following a normal distribution within a soil type. This high variability needs to be recognized in soil sampling as well as managing irrigation.Contribution from Texas Agricultural Experimental Station, Texas A & M University System. This program was supported in part by a grant from the Binational Agricultural Research and Development (BARD) fund  相似文献   

12.
利用SAR和pH分析脱硫石膏改良碱(化) 土壤的机理   总被引:11,自引:0,他引:11  
通过对碱土和强碱化2种土壤施加不同数量脱硫石膏进行改良的大田试验研究,探讨了土壤N a+吸附比SAR以及土壤溶液pH值的变化规律。研究结果表明:经过1年的大田试验后,2种土壤的在(0~15 cm的SAR以及pH值较对照均有了明显的降低,且不同处理的试验效果差异较大。1年的大田试验对15 cm以下土层的pH值影响甚微。这说明经过1年的大田试验后,根区活动层范围内的土壤钠碱化度明显降低,土壤理化性质在一定程度得到了改善。由于供试土壤的渗透性较差,经过N a+-C a2+交换后,0~15 cm土乘代换出的盐分不能全部被淋洗排出土体,在土体下层附集,这无疑说明了碱土改良是一个较漫长的过程。在改良的初始阶段,强度碱化土壤的改良效果要优于碱土区的改良效果,这是由土壤原有的碱化程度以及土壤的理化性质决定的。  相似文献   

13.
通过2年的田间小区向日葵种植试验,分析了脱硫副产物改良苏打碱土对ESP、SAR、pH值和向日葵产量的影响,提出了脱硫产物改良苏打碱土的合理施用量和施用方式。研究设4个脱硫副产物水平(18750、22500、26250和30000kg/hm2)。研究结果表明:施加脱硫副产物后各处理的ESP、SAR和pH值都明显降低,向日葵产量明显提高;经过2年的改良后,耕作层土壤的ESP、pH和SAR分别小于15、8.5和13,向日葵产量达到1100kg/hm2;脱硫副产物存在利用效率问题,实际选用的脱硫副产物用量应在理论计算量的基础上乘以修正系数1.32;对于碱化度较高的土壤,应选用分批连续施用的方式,以避免形成盐害。  相似文献   

14.
Water quality is one of the potential concerns associated with the development of coalbed natural gas (CBNG) in the Powder River Basin (PRB) of Wyoming and Montana. Large quantities of water (hereafter referred to as CBNG water) are being co-produced and often discharged in the process of exploring natural gas from coal seams. Use of CBNG water for irrigating croplands may be beneficial if factors associated with soil salinity and sodicity are controlled. This study evaluated effects of five water and three soil treatments applied to a mixed-hay cropland on selected soil chemical properties using a split plot design. Water treatments consisted of Piney Creek water (PC or control), direct irrigation with CBNG water (electrical conductivity or EC of 1.38 dS m−1 and sodium adsorption ratio or SAR of 24.3 mmol1/2 L−1/2) with no amendments (NT), CBNG water mixed with solution grade gypsum (G), CBNG water acidified using sulfur burner and mixed with gypsum (GSB) and CBNG water mixed with Piney Creek water (PC/CBNG). Soil treatments consisted of gypsum (G), elemental sulfur (S), combination of these two (GS) and no treatment or the control (NT). Pre (Summer 2003) and post treatment (Fall 2004) soil samples were collected to a depth of 60 cm (top three horizons: A, Bt1 and Bt2) to evaluate the effects of treatments on soil pH, EC, SAR, and sulfate (SO42−) concentrations. Comparisons between pre and post irrigation soil chemistry data indicated CBNG water with no amendments significantly increased (P ≤ 0.05) Na+ concentration within the soil profile. Plots treated with a combination of the GSB water treatment and the GS soil amendments were most effective in maintaining the low SAR values at surface soil layer. In all treatment combinations, both EC and SAR increased significantly in the top two sampling depths (A and Bt1 horizons). Further studies are required to evaluate applications of leaching fractions at the end of each irrigation season for its effectiveness at moving Na+ below the rooting zone.  相似文献   

15.
Changes in soil sodicity-salinity parameters are one of the most characteristic alterations after treated sewage effluent (TSE) irrigation in agro-systems. Considering the importance of these parameters for agricultural management, as well as the economical value of sugarcane for Brazil, the present study aimed at evaluating effects on soil sodicity and salinity under tropical conditions over 16 months of TSE irrigation in a sugarcane plantation at Lins, São Paulo State, Brazil. Soil samplings were carried out in February 2005 (before planting), December 2005 (after 8 months of TSE irrigation) and September 2006 (after 16 months of TSE irrigation) following a complete block design with four treatments and four replicates. Treatments consisted of: (i) control, without TSE irrigation; (ii) T100, T150 and T200, with TSE irrigation supplying 100% (0% surplus, total of 2524 mm), 150% (50% surplus, total of 3832 mm) and 200% (100% surplus, total of 5092 mm) of crop water demand, respectively. Compared to initial soil conditions, at the end of the experiment increases of exchangeable sodium (from 2.4 to 5.9 mmolc kg−1), exchangeable sodium percentage (ESP) (from 8 to 18%), soluble Na (from 1.4 to 4.7 mmol L−1) and sodium adsorption ratio (SAR) of soil solution (from 3.6 to 12.6 (mmol L−1)0.5) were found in the soil profile (0-100 cm) as an average for the irrigated plots due to high SAR of TSE. Associated with the increments were mostly significant increases in clay dispersion rates at depths 0-10, 10-20 and 20-40 cm. Electrical conductivity (EC) of soil solution increased during the TSE irrigation period whereas at the end of the experiment, after short term discontinuation of irrigation and harvest, EC in the topsoil (0-10 and 10-20 cm) decreased compared to the previous samplings. Moreover, despite increasing sodicity over time mainly insignificant differences within the different irrigated treatments were found in December 2005 and September 2006. This suggests that independent of varying irrigation amounts the increasing soil sodicity over time were rather caused by the continuous use of TSE than by its quantity applied. Moreover, also plant productivity showed no significant differences within the TSE irrigated plots. The study indicates that monitoring as well as remediation of soil after TSE irrigation is required for a sustainable TSE use in order to maintain agricultural quality parameters.  相似文献   

16.
Summary An irrigation experiment with water of different salinities (2.8, 7.6 and 12.7 mol Cl m–3) was carried out from 1982 to 1988 in a mature Shamouti orange grove in the coastal plain of Israel. Seasonal accumulation of salts in the soil solution of the root zone (EC of more than 4.0 dS m–1 at the end of the irrigation season) was almost totally leached during the winter. The average annual rainfall of 550 mm reduced EC values below 1.0 dS m–1. Tree growth, as measured by the increase in cross sectional area of main branches, was retarded by saline irrigation water (123, 107 and 99 cm2 growth per tree during six years for the 2.8, 7.6 and 12.7 mol Cl m–3 treatments, respectively). Potassium fertilization (360 kg K2O ha–1) increased yield at all salinity levels during the last three years of the experiment, mainly by increasing fruit size. Saline irrigation water slightly increased sucrose and C1 concentrations in the fruit juice. Salinity decreased transpiration, increased soil water potential before irrigation and decreased leaf water potential. However, the changes in leaf water potential were small. Leaf Cl and Na concentrations increased gradually during the experimental period, but did not reach toxic levels up to the end of the experiment (4.4 g Cl kg–1 dry matter in the high salt treatment vs. 1.7 in the control). Relatively more leaf shedding occurred in the salinized trees as compared to the control. The sour orange root-stock apparently provided an effective barrier to NaCl uptake; therefore, the main effect of salinity was probably osmotic in nature. No interactions were found between N or K fertilization and salinity. Additional N fertilization (160 kg N ha–1 over and above the 200 kg in the control) did not reduce Cl absorption nor did it affect yield or fruit quality. Additional K had no effect on Na absorption but yield and fruit size were increased at all salinity levels. No significant differences were obtained between partial and complete soil surface wetting (30% and 90% of the total soil area resp.) with the same amounts of irrigation water. The effect of salinity on yield over the six years of the experiment was relatively small and occurred only after some years. But, in the last three years salinity significantly reduced average yields to 74.6, 67.1, and 64.2 Mg ha–1 for the three levels of salinity, respectively.These results suggest that saline waters of up to 13 mol Cl m–3 primarily influence the tree water uptake and growth response of Shamouti orange trees, whereas yield was only slightly reduced during six years.  相似文献   

17.
In the irrigated western U.S. disposal of drainage water has become a significant economic and environmental liability. Development of irrigation water management practices that reduce drainage water volumes is essential. One strategy combines restricted drainage outflow (by plugging the drains) with deficit irrigation to maximize shallow groundwater consumption by crops, thus reducing drainage that needs disposal. This approach is not without potential pitfalls; upward movement of groundwater in response to crop water uptake may increase salt and sodium concentrations in the root zone. The purposes for this study were: to observe changes in the spatial and temporal distributions of SAR (sodium adsorption ratio) and salt in a field managed to minimize drainage discharge; to determine if in situ drainage reduction strategy affects SAR distribution in the soil profile; and to identify soil or management factors that can help explain field wide variability. We measured SAR, soil salinity (EC1:1) and soil texture over 3 years in a 60-ha irrigated field on the west side of the San Joaquin Valley, California. At the time we started our measurements, the field was beginning to be managed according to a shallow groundwater/drainage reduction strategy. Soil salinity and SAR were found to be highly correlated in the field. The observed spatial and temporal variability in SAR was largely a product of soil textural variations within the field and their associated variations in apparent leaching fraction. During the 3-year study period, the percentage of the field in which the lower profile (90-180 cm) depth averaged SAR was above 10, increased from 20 to 40%. Since salinity was increasing concomitantly with SAR, and because the soil contained gypsum, sodium hazard was not expected to become a limiting factor for long term shallow groundwater management by drain control. It is anticipated that the technology will be viable for future seasons.  相似文献   

18.
Summary Results are reported from a long-term field experiment designed to determine the effect of irrigation water salinity on the yield and water uptake of mature grapefruit trees. Treatments were started in 1970 and consisted of chloride concentrations in the irrigation water of 7.1, 11.4 and 17.1 meq/1 added as NaCl+CaCl2 at a 1 : 1 weight ratio.For the last four years of the experiment, 1973 to 1976, yield was linearly related to the mean chloride concentration in the soil saturation extract weighted according to the distribution of water uptake with depth and time (Fig. 2, Table 1). There was a 1.45% (1.68 Mg/ha) yield reduction for each 1 meq/1 increase in chloride concentration above a threshold value of 4.5 meq/1. This corresponded to a 13.5% (14.7 Mg/ha) decrease per 1 mmho/cm increase in the electrical conductivity of the soil saturation extract above a threshold value of 1.2 mmho/cm.Total water uptake was reduced as salt concentration in the soil increased (Fig. 3, Table 2). In the high salinity treatment, root concentration in, and water uptake from, the lower portion of the root zone were decreased. The maximum electrical conductivity (ECe) measured at the bottom of the root zone was 7.90 mmho/cm similar to the values of EC, obtained by linear extrapolation to zero yield and also to zero water uptake.Salt accumulation in the soil depended on the quantity and salt concentration of the irrigation water, rainfall, and on the amount of leaching. SAR and the Na+ concentration of the soil remained low throughout the experiment (Table 3). No leaf symptoms of either Cl or Na+ injury were observed. The results indicate an osmotic — rather than a specific ion effect — of salinity on grapefruit yield.Contribution from the Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel. 1977 Series No. 197-E  相似文献   

19.
Soil column studies were conducted with two soils to assess the effects of irrigation with wastewater on soil and groundwater quality. Upon the application of wastewater, exchange occurred between solution sodium (Na+) and exchangeable cations (Ca2+, Mg2+, K+), whereby these cations were released into solution. The average exchangeable sodium percentage (ESP) of the soils increased during leaching from 9 to 21 and 28.8 to 29.7 after applying 5.0 and 3.5 l (about 7 and 6 pore volumes) of wastewater to the soils columns, respectively. Adverse effect of high Na+ concentration in the wastewater on raising ESP was less pronounced in the soil having initial high ESP than in the soil with low initial ESP. Salinity of the soils was also increased with the application of wastewater and Mg2+ and K+ were leached from the soils. These losses would be more severe on soils having a low cation exchange capacity and if, uncorrected could lead eventually to their deficiencies for plant growth. When the soil columns were leached with distilled water the flow rate of one soil decreased to zero after 2.2 pore volume indicating damage to soil structure. Irrigation with wastewater, which is generally more sodic and saline than regional groundwater, increases the rate of soil sodification of shallow groundwater. A relatively simple chromatographic model was used to estimate final ESP profiles in the soils assuming the condition of local equilibrium. This approach had a limited success for one of the soil. Since the final leached concentrations are in good agreement with those of wastewater, we attribute these differences to non-uniform flow through the column. In terms of practical soil and water management, our study reveals that relatively simple means can be useful to predict the water quality in soils, their discharge to ground water, and the hazard of soil structure deterioration.  相似文献   

20.
Changes in agricultural practices that brought about deflocculation problems on salt affected alluvial soils in eastern England are outlined. The spatial variation in the occurrence of problems is discussed. Exchangeable sodium percentage (ESP) was found to be the factor having greatest influence on soil stability as measured by the dispersion ratio. Changes in ESP had similar effects on the stability of soils from Essex and Kent. Threshold ESP of 5% for topsoils and 10% for subsoils are suggested, above which deflocculation problems can be expected. The use of these thresholds as part of the process for identifying future management options is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号