首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Purpose

The purpose of this study was to compare effects of two biostimulating substances (compost and bird droppings) on the proliferation of microorganisms, enzymatic activity, and resistance of spring barley in soil exposed to tebuconazole fungicide. Both biostimulating substances were also assessed for their efficacy in tebuconazole degradation in soil.

Materials and methods

A pot vegetation experiment was performed with soil belonging to the Eutric Cambisols to test the effect of tebuconazole on the biological activity of soil. Its adverse effect on the biological properties of soil was minimized through the use of biostimulating substances (compost and bird droppings), the effect of which was expressed with the IFC/BD index. The RCh index was used to determine the effect of tebuconazole on the proliferation of soil microorganisms and enzymes, the BA21 index was used to express soil fertility based on the activity of soil enzymes, whereas the RS index—to express the resistance of spring barley to the administered doses of tebuconazole. Finally, analyses were conducted to determine the efficacy of soil amendment with biostimulating substances in tebuconazole degradation.

Results and discussion

Study results demonstrate that tebuconazole caused significant changes in the proliferation of the tested groups of microorganisms, in the activity of soil enzymes, and in spring barley yield. It was especially noticeable in pots in which the soil was exposed to its highest dose, i.e., 2.499 mg kg?1. Soil supplementation with bird droppings had a positive effect on the development of soil microorganisms and on the enzymatic activity in the soil. In turn, compost addition to soil exerted various effects on the biological properties of soil. Both biostimulating substances failed to improve spring barley yield. Tebuconazole degradation was more intense in the soil fertilized with bird droppings than with compost.

Conclusions

Results of this study suggest that tebuconazole can affect the stability and health status of soil ecosystems by modifying their biological properties. The high sensitivity of soil microorganisms and enzymes to stress conditions makes them reliable environmental bioindicators. The strive for eliminating the adverse impact of fungicides on soil microbiome through the use of appropriate remediation methods, like, e.g., biostimulation, is of greater concern from the ecological perspective.

  相似文献   

2.
Since radioactive rain-out covered Japan in March-May 1954, due to the H-bomb detonation at Bikini atoll, the authors started assaying the possibie radioactive contamination of crop plants grown at Tokyo district.  相似文献   

3.
Glyphosate is a commonly used herbicide in grassland soils and microorganisms control its degradation. We introduce the concept of using the degradation rate as an indicator for ecosystem health. Testing this concept, we used soils with a long history of heavy metal pollution (Cu, Pb, and Zn). We hypothesized lower degradation rates in metal-polluted compared to less polluted soils. The degradation rates were measured by repeated measurements of the parent compound in spiked soil-water slurries incubated at 20 °C over 21 days. Average rates showed no differences comparing among soils. We observed a positive correlation between glyphosate degradation rates and soil metal pollution. Therefore, we concluded that the expected impact of the metals on the bacteria responsible for the herbicide degradation was not established. We discuss the potential influence on biological degradation rates of soil pH and adsorption and implications using the concept of the soil health indicator.  相似文献   

4.
The effect of oil contamination on bacteria in a soddy-podzolic soil was studied. Oil was introduced into the soil 8, 11, and 17 years ago. It was found that oil contamination has exerted long-term negative effects on the number and biomass of the soil bacteria. The deficiency of available phosphorus was one of the major negative factors affecting these parameters in the old-contaminated soils. The application of Na2HPO4 to the contaminated soils eliminated this negative effect. The effect of oil contamination on the taxonomic diversity and structure of the bacterial community in the studied soil was determined with the help of denaturating gradient gel electrophoresis.  相似文献   

5.
土壤作为氟的环境化学体系枢纽,有着极其重要的作用。土壤中的氟污染不仅会对人类造成直接的危害,还会因水源、动植物的富集而对人类的健康造成不利的影响。氟污染是目前环境热点问题之一。我国是高氟地区分布广泛的国家,地方性氟中毒的研究表明饮用水是地方性氟中毒的主要传播途径,氟中毒的发病率与饮用水含量之间是否存在相关性,已有的研究结论不尽相同。现有的土壤氟污染修复技术主要有植物修复技术、固化/稳定化修复技术、电动力学修复技术和化学淋洗修复技术等。目前土壤氟的研究还存在部分地区土壤氟污染的来源、土壤微生物与土壤中氟化物的相互作用机制不明确。因此,对土壤氟污染与修复方法的研究十分必要。论文参考大量的国内外有关氟污染的相关文献,系统总结了土壤氟污染的现状、土壤氟污染修复方法的最新研究进展,重点比较了各种土壤氟污染修复方法的优势和缺陷,并探究在实际修复应用中的可行性,指出了今后土壤氟污染修复的发展方向。  相似文献   

6.
Amending soil with products rich in organic matter, such as raw olive cake or alperujo and its compost and vermicompost, could be a simple bioremediation strategy for soil pollutants such as pesticides. To investigate this hypothesis in relation to sulfonylurea herbicides, these amendments were applied to a Mediterranean agricultural soil at rates 4 times higher than agronomical dosage to stimulate biodegradation of chlorsulfuron, prosulfuron, and bensulfuron, added in a mixture to the soils. Degradation studies were conducted in microbially active and sterile soils to check the importance of biological and chemical degradation of sulfonylurea herbicides in nonamended and amended soil. The addition of alperujo stimulated soil microbial activity, as determined by dehydrogenase activity measurements, but it did not enhance the degradation of the sulfonylurea herbicides. In contrast, compost and vermicompost slightly favored the biological degradation of bensulfuron during the first week of incubation. Chlorsulfuron and prosulfuron were mainly degraded by chemical pathways in all substrates, which is probably due to a competitive or inhibitory phenomenon observed between chlorsulfuron and bensulfuron. The first-order kinetic equation satisfactorily explained the experimental data for chlorsulfuron and prosulfuron; however, a biphasic model, such as that proposed by Hoerl, better predicted the results obtained for bensulfuron.  相似文献   

7.
1 The Problem  One of the major problems facing risk assessment at polluted industrial sites and military bases is subsurface contamination by non-aqueous phase-liquids (NAPLs), since tracing the extent of a NAPL plume using conventional methods (drive point profiling) is usually associated with difficulties. In an effort to trace subsurface contamination as precisely as possible, monitoring points are placed in the area that might be affected by contaminants, and groundwater and soil samples are taken to the laboratory for analysis. However, the final number of monitoring points is hardly ever sufficient for distinctive contamination mapping, and this may ultimately result in an unsuitable remediation action being taken. 2 Objectives  To obtain a more detailed image of a subsurface NAPL plume and, hence, to facilitate remediation measures that are best suited for the site in question, a denser network of monitoring points is desirable. The aim of the investigation described in this paper was therefore to develop a new detection method for subsurface NAPL contamination, which is based on an easily accessibleindicator for NAPLs rather than on the analysis of soil and groundwater samples taken at the site. Based on the good solubility of radon in NAPLs, the idea was put forward that subsurface NAPL contamination should have an influence on the natural radon concentration of the soil gas. Provided this effect is significant, it would be possible to carry out a straightforward radon survey on an appropriate sampling grid covering the suspected site and thus enabling the NAPL contamination to be detected by the localization of anomalous low radon concentrations in the soil. The overall aim of the investigation was to assess the general suitability of the soil-gas radon concentration as an indirect tracer for NAPL contamination in the ground. 3 Methods  The partitioning coefficient KNAPL/air is one of the most influential parameters governing the decrease of the radon concentration in the soil gas in the presence of a subsurface NAPL contamination. Since NAPL mixtures such as gasoline, diesel fuel and paraffin are among the most important NAPLs regarding remediation activities, laboratory experiments were performed to determine the radon-partitioning coefficient for these three NAPL mixtures. Field experiments were carried out as well. The aim of the field experiments was to test the use of the soil-gas radon concentration as a tracer for NAPL contamination on-site. For the field experiments, each site was covered with a suitable grid of soil gas sampling points. Finally, the lateral radon distribution pattern achieved on each of the sites was compared to the respective findings of the earlier research performed by conventional means. 4 Results and Discussion  The results of the laboratory experiments clearly show a very strong affinity of radon to the NAPL mixtures examined. The partitioning coefficients achieved correspond to those published for pure NAPLs (Clever 1979) and are thus in the expected range. The results of the field experiments showed that the minimum radon concentrations detected match the respective NAPL plumes traced previously. 5 Conclusions  Both the results of the lab experiments and the on-site findings demonstrate that the soil-gas radon concentration can be used as an indicator for subsurface NAPL contamination. The investigation showed that NAPL-contaminated soil volumes give rise to anomalous low soil-gas radon concentrations in the close vicinity of the contamination. The reason for this decrease in the soil-gas radon concentration is the good solubility of radon in NAPLs, which enables the NAPLs to accumulate and ‘trap’ part of the radon available in the soil pores. 6 Recommendations and Outlook  Further research is required into contamination with rather volatile NAPLs such as BTEX. Further research is also needed to examine whether it is possible to not only localize a NAPL plume, but also to obtain some quantitative information about the subsurface NAPL contamination. The authors also believe that additional investigations should be carried out to study the ability of the method to not just localize a NAPL contamination, but also to monitor on-site, clean-up measures.  相似文献   

8.
Purpose

The purpose of this paper is to study the responses of soil biological parameters as indicator of ecological status on PAH-contaminated soil.

Materials and methods

Studies are conducted on the soils and natural grassy vegetation of monitoring plots subjected to Novocherkassk power station (NPS) emissions. Monitoring plots were established at different distances from the NPS (1.0–20.0 km).

Results and discussion

The level of polycyclic aromatic hydrocarbons (PAHs) around NPS is the highest at the monitoring plot located at distance 1.6 km to the northwest through the prevailing wind direction. Gradually, decrease of PAHs was observed while increasing the distance from the NPS through the prevailing wind direction. Calculation of correlations between PAH level and biological activity parameters of soils showed lack of dependence with total and every PAH content in all 12 studied monitoring plots. The most significant correlations were found between PAH content and enzyme activity in the monitoring plots situated through the prevailing wind direction from NPS.

Conclusions

The main pollution source in the studied area is NPS. It was found that contamination of soil by PAHs has a direct dependence on the activity of all biological communities in chernozems, as well as the activities of dehydrogenase and the phytotoxicity of soils. Inverse correlations have been revealed between the PAH contamination and abundance of soil bacteria.

  相似文献   

9.
Intensified field management in orcahrds has resulted in significant and widespread acidification in the soils. However, effectively mapping the spatial patterns of soil pH aiming to support ecological management is impeded by its large variotions across soil types and planting durations. Kriging methods were used to integrate soil type and planting duration information for effective mapping of orchard soil pH in a case study in orchards of the Northeast Jiaodong Peninsula, East China. A total of 1 472 surface soil samples were collected, and the planting duration of each sampled orchard was acquired to generate a planting duration map via Voronoi tessellations. The performance of five kriging methods was compared, namely, ordinary kriging (OK), OK combined with soil type (OK_ST), OK combined with planting duration (OK_PD), cokriging combined with soil type and planting duration (OCK_STPD), and OK combined with soil type and planting duration (OK_STPD). Results showed that soil pH declined significantly with increasing planting duration and exhibited moderate spatial variability over the study area. Soil type and planting duration both had significant influence on the spatial distribution of soil pH. The OCK_STPD and OK_STPD methods showed better prediction efficiency than OK, OK_ST, or OK_PD. With regard to the predicted maps of soil pH, the OCK_STPD and OK_STPD methods highly reflected local variations associated with soil type and planting duration, but the OK method was poorly representative. Categorical soil type and planting duration information may be used as ancillary information to improve the mapping quality of orchard soil pH. The OCK_STPD and OK_STPD methods were practical and efficient methods for interpolating orchard soil pH in the study area. The resultant high-quality soil pH maps can contribute to improved site-specific management in the orchards.  相似文献   

10.
Journal of Soils and Sediments - Natural degradation of petroleum hydrocarbons (PHC) is a crucial process to consider when managing contaminated soils. However, the degradation rate is dictated by...  相似文献   

11.
The agricultural use of pesticides leads to diffuse pollution whereby the various contaminants of the soil infiltrate into the groundwater reaching lakes and drinking water aquifers. Due to the extensive application of these chemicals, their leaching presents a high environmental risk. Since the adsorption coefficient (K) characterizes the soil / water partitioning [1] and is also representative for leaching, the first step in understanding of the environmental fate of a pollutant is to study its adsorption properties. Weak binding to the soil constituents (low K) leads to groundwater pollution, while a strong binding (high K) results in surface water pollution through the erosion of the soil. Acetochlor is a widely used herbicide all over the world. Similar to other organic pollutants, the environmental fate of this chemical is strongly related to its adsorption properties. Static adsorption equilibrium measurements were carried out at 25°C on different types of Hungarian soils (chernozem, brown forest and sandy soil) characterized by varying amounts of organic matter and pH values. Acetochlor solutions were prepared in the presence of nitrate and phosphate ions (0.1 mol/L sodium nitrate and 0.1 mol/L phosphate uffer, pH=7) which are constituents of fertilizers occurring in high concentrations in the environment. In order to appreciate their effect, adsorption studies were also performed in pure aqueous medium. The equilibrated liquid was analyzed after centrifugation by two different methods (Total Organic Carbon measurement, High Performance Liquid Chromatography). Isotherms obtained under different conditions, as well as on various soils, exhibit a similar shape, thus indicating a two-step adsorption process. The plots cannot be interpreted according to the classes of isotherms suggested by Giles (H-, L- and C-type, [2]). The adsorption coefficients were estimated from the initial slope of the curves. These values were determined not only by the type of the soil, but also by the composition of the aqueous media. Due to the low value of the adsorption coefficients, the acetochlor is a rather mobile pollutant of the soil posing a potential danger to the aquatic environment. The organic matter adsorption coefficients (Kom) [3] were also calculated and they were approximately identical for soils of high organic matter. For the chernozem and brown forest soils, the values of the K and Kom parameters are increasing in the order from water < phosphate buffer < sodium nitrate. For soils of low organic content, the similarity of the Kom values cannot be expected (due to the hyperbolic nature of the equation) as the data really indicate it for the adsorption behavior of the sandy soil. Here, the organic matter plays a less important role and the adsorption is controlled by the solute / inorganic substance interactions. This conclusion is nicely proved by the adsorption of the acetochlor on quartz resulting thereby in a similar plot being obtained for the soils. According to the hypothesis presented here, the first step of the isotherms is controlled by the solute / surface interactions while the solute / adsorbed solute interactions are operating in the second step of the isotherm. The role of the organic matter in this region of the isotherm is probably negligible. The comparison of the adsorption coefficients leads to the conclusion that the presence of nitrate and phosphate ions enhances the adsorption of acetochlor on the soils containing a high percentage of organic matter. As these ions are present in the environment due to the extensive use of fertilizers, they may increase the acetochlor pollution of water by erosion. This conclusion corroborates those earlier observations that reported frequent acetochlor contamination of the surface waters [4–5]. As the organic matter content of the soils plays an important role in the acetochlor adsorption, humic substances must have a strong influence on the transport of this compound. Experiments to obtain adsorption isotherms of further pesticides and the development of a quantitative model are in progress.  相似文献   

12.
Soils around sulphur producing factories may be contaminated with increased Sulphur, Vanadium and Arsenic caused by industrial fall-out. In this study, attention is focused on the pollution around an isolated factory in Russia. Soils, water in ponds and plants have been sampled in different landscape units and at different distances from the factory. An analysis of variance was used to detect the spatial impact of the major polluting factors. Geostatistical procedures were applied to construct probability maps for the exceedance of critical environmental levels. Mineral sulphur, which does barely occur in unpolluted chernozems shows a clear spatial structure, whereas Arsenic and Vanadium did not show any spatial dependencies. Highest values in the soil were observed at 1–2 km from the factory, and are probably caused by the spread from the factory chimney. By means of this study it was possible to estimate the pollution effects of an isolated factory without disturbances from other pollution sources.  相似文献   

13.
Xu  Yingde  Ding  Fan  Gao  Xiaodan  Wang  Yang  Li  Ming  Wang  Jingkuan 《Journal of Soils and Sediments》2019,19(3):1407-1415
Journal of Soils and Sediments - Crop residue return is an effective and low-cost agricultural approach for soil organic carbon (SOC) sequestration. Yet, it is largely unknown to what extent the...  相似文献   

14.
土壤酶活性评价镉锌铅复合污染的可行性研究   总被引:6,自引:0,他引:6       下载免费PDF全文
模拟试验研究表明在Cd、Zn、Pb复合污染处理土壤中,过氧化氢酶、脲酶活性与碱性磷酸酶或转化酶活性可构成综合评价体系,反映土壤Cd、Zn、Pb污染含量以及土壤Cd-Zn、Zn-Pb复合污染效应,用其评价土壤Cd、Zn、Pb复合污染具有一定可行性。  相似文献   

15.
A new soil-ecological definition of the maximal permissible concentration (MPC) of heavy metals in soils is suggested that regulates the sampling in contaminated territories. Instead of the shallow pits usually used for collecting surface samples for soil-hygienic and other investigations, it is proposed to fulfill a detailed analysis along the entire soil profile including not only the determination of the heavy element content in certain horizons but also the soil density in these horizons. For the polyelemental contamination Zc (according to the Saet equation) based on the background (clarke) excess, the established Zc values ranging from 1 to 128, may reach absurd values of 800–900 upon taking into consideration only one surface layer. At the same time, the use of the weighted average content of the metals in the soil profile adjusts the Zc values for the existing natural conditions. Upon aerial impact, the consideration of the heavy metal contents along the soil profile instead of their contents in the surface horizon only leads to a decrease in the indices of the soil contamination degree. Upon the hydrogenic impact, the transition from the heavy metal contents in the surface horizon to their contents in the soil profile gives higher values of the soil contamination.  相似文献   

16.
土壤镉污染特征及污染土壤的植物修复技术机理   总被引:22,自引:1,他引:22  
论述了土壤Cd污染的特点、Cd在土壤中的形态转化特征、生物毒性及我国目前土壤Cd污染现状及危害。系统论述了Cd污染土壤的植物修复治理机理、研究进展及应用前景,并结合我国土壤Cd的污染特点和部分研究结果,提出今后的研究目标和方向。  相似文献   

17.
Factors influencing degradation of pesticides in soil   总被引:3,自引:0,他引:3  
Degradation and sorption of six acidic pesticides (2,4-D, dicamba, fluroxypyr, fluazifop-P, metsulfuron-methyl, and flupyrsulfuron-methyl) and four basic pesticides (metribuzin, terbutryn, pirimicarb, and fenpropimorph) were determined in nine temperate soils. Results were submitted to statistical analyses against a wide range of soil and pesticide properties to (i) identify any commonalities in factors influencing rate of degradation and (ii) determine whether there was any link between sorption and degradation processes for the compounds and soils studied. There were some marked differences between the soils in their ability to degrade the different pesticides. The parameters selected to explain variations in degradation rates depended on the soil-pesticide combination. The lack of consistent behavior renders a global approach to prediction of degradation unrealistic. The soil organic carbon content generally had a positive influence on degradation. The relationship between pH and degradation rates depended on the dominant mode of degradation for each pesticide. There were positive relationships between sorption and rate of degradation for metsulfuron-methyl, pirimicarb, and all acidic pesticides considered together (all P < 0.001) and for dicamba and all bases considered together (P < 0.05). No relationship between these processes was observed for the remaining seven individual pesticides.  相似文献   

18.
任路路  胡艳芳  颜冬云  徐绍辉  徐振 《土壤》2010,42(3):358-363
微生物降解是拟除虫菊酯类农药从土壤中消去的主要途径。本文介绍了拟除虫菊酯降解菌的分离鉴定、降解基因的克隆以及微生物降解机理研究的近期成果,综合介绍了拟除虫菊酯异构体选择降解的特征、原因以及可能产生的环境效应,重点分析了农药疏水性、土壤吸附、重金属、土壤养分及长期施肥、共存农药对土壤中拟除虫菊酯微生物降解的影响,最后对土壤微生物修复前景进行了展望。  相似文献   

19.
In this study, we compared the differences of bacterial abundance and diversity between rhizosphere and surrounding bulk soils under soil salinization and petroleum contamination in the Yellow River Delta on a 110-km-distance scale. In comparison with bulk soils, rhizosphere soils were mainly characterized by lower salinity and higher water content in saline soils. For bacterial abundance, the numbers of total bacteria and hydrocarbon degraders were significantly higher in rhizosphere soils than those in bulk soils. Although there was no significant difference in total petroleum hydrocarbon (TPH) concentration between the two types of soils, TPH had distinctly different effects on bacterial abundance in rhizosphere and bulk soils. TPH concentration was the major determinant of total bacterial abundance and had positive effects on abundances of hydrocarbon degraders. However, the abundances of total bacteria and hydrocarbon degraders in bulk soils were primarily determined by soil salinity and water content. Great abundance of rhizosphere bacteria suggested that plant roots could alleviate the stresses from soil salinization and provide more favorable microhabitats for bacterial growth. TPH had positive effects on bacterial diversity of both rhizosphere and bulk soils. Our results support the view that petroleum in the environments functions as both toxic chemicals and carbon sources to soil bacteria. Great abundance and diversity of total bacteria in plant rhizospheres would potentially improve the roles of bacteria in maintaining ecosystem functioning in the degraded ecosystems. Our results would improve our understanding of the relationships between rhizosphere effects and multiple environmental stresses that control the development of bacterial community in fragile anthropologically-affected ecosystems.  相似文献   

20.
Roughness of soil fracture surfaces as a measure of soil microstructure   总被引:1,自引:0,他引:1  
The examination of soil fracture surfaces that are created under tensile stress may reveal a great deal about the internal structural condition of the soil. A simple technique for quantifying the roughness of soil fracture surfaces from a measurement of their topography in cross-section is described. The technique involves calculating the standard deviation of the differences between the measured elevations of soil fracture surfaces and their corresponding running-mean values. The standard deviation, σR, is used as a measure of the fracture surface roughness. Advantages of this technique over others are discussed. Two methods for measuring the topography of soil fracture surfaces are presented: a bisection (single transect) method, and a laser scanning (multiple transects) method. The laser scanning method is to be preferred because it requires no sample preparation and enables greater and more rapid replication. Also, fracture surfaces created by applying direct tension in the hands produced values of σR that were statistically indistinguishable from those created using indirect tension in a loading frame. This result makes the technique of fracture surface analysis usable for both laboratory as well as field investigations of soil structure. An example of the technique is presented to illustrate the role that air-filled pores play in the brittle fracture of unsaturated soil (air-filled pores are closer together in drier soils and further apart in wetter soils.) A strong positive linear correlation was found between the gravimetric water content, w and σR of natural soil clods, which supports the contention that brittle fracture of unsaturated soils under tensile stress occurs at least partly because of the propagation of air-filled pores.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号