首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
While plant growth and productivity are known to derive from the interaction between genetic potential (G) and environmental factors (E), efforts to improve rice production have usually proceeded assuming a standard E that is created by conventional rice-growing practices. Genotypes have been assessed for their performance in continuously flooded paddy soils, with optimally dense plant populations, with reliance on inorganic fertilization to raise yields. The System of Rice Intensification (SRI) developed in Madagascar and now becoming accepted in much of Asia proposes that GxE interactions can be made more productive with different management practices: optimally sparse populations, established with very young seedlings carefully transplanted, intermittent flooding of paddies, with active soil aeration and with soil organic matter enhanced as much as possible. This article evaluates the effects of alternative SRI cultural practices on grain yield with particular attention to their impact on the growth and functioning of rice plant roots and on associated nutrient-use efficiencies that could be contributing to the observed higher grain yields. On-station experiments and on-farm surveys were conducted in Madagascar to evaluate SRI practices in comparison with standard cultural methods, considering how rice plants’ expression of their genetic potential was affected by different crop management practices. Controlling for both soil and farmer effects, rice plants cultivated with SRI methods produced average yields more than double those from standard practice (6.26 vs. 2.63 t ha−1). The most evident phenotypic difference was in plant root growth, assessed by root-pulling resistance (RPR), a summary measure of root system development. On average, uprooting single SRI plants required 55.2 kg of force plant−1, while pulling up clumps of three conventionally grown plants required 20.7 kg hill−1, or 6.9 kg plant−1. SRI plants thus offered 8 times more resistance per plant to uprooting. Direct measurements confirmed that SRI methods induced both greater and deeper root growth, which could be contributing to increased nutrient uptake throughout the crop cycle, compared with the shallower rooting and shorter duration of root functioning under continuous flooding. Rice plants grown with SRI methods took up more macronutrients than did the roots of conventionally managed plants, which was reflected in the higher SRI yields. When grain yield was regressed on nutrient uptake to assess nutrient-use efficiency, SRI plants achieved higher grain yield per unit of N taken up, compared to plants grown with conventional methods. The internal efficiency (IE) of SRI plants in utilizing macronutrients was 69.2 for N, 347.2 for P, and 69.7 for K, while the IE in plants conventionally grown was 74.9, 291.1, and 70.4 for these three macronutrients, respectively. Although no significant differences in IE were observed for N and K, the uptake of P was significantly greater, indicating more efficient use of P by SRI plants for grain production. More research needs to be done on such relationships, but this study indicates that productive changes in the structure and functioning of rice plants, particularly their roots, can be induced by alternative management methods.  相似文献   

2.
Promising results from an increasing number of field evaluations of the System of Rice Intensification (SRI) conducted in Asia and Africa indicate that African farmers could increase their rice production while lowering costs of operation and reducing the need for water by utilizing its principles and practices. This system relies not on external inputs to raise productivity but on alternative methods for managing rice plants and the soil and water resources devoted to their cultivation. Farmers in sub-Saharan Africa increasingly have to cope with the impacts of adverse climate effects because water shortages and long dry spells during the cropping season are becoming common, even in lowland rice agroecosystems. SRI management practices create both larger rice root systems that make their plants more resistant to biotic and abiotic stresses and more conducive environments for beneficial soil microflora and fauna to flourish. Better plant growth and development result from promoting plant–soil synergies. Controlled fertilizer management experiments conducted with SRI practices in The Gambia have showed that grain production can be significantly increased without higher application of inorganic fertilizer and with less requirement for water. SRI management practices with fertilizer application at the national recommended dose produced a grain yield of 7.6 t ha−1. Water productivity was greatly increased, with 0.76 g of grain produced per kg total water input, compared to 0.10 g of grain per kg of water when the crop was continuously flooded. Recent hikes in fuel prices and consequent rises in input costs are making domestic rice production less attractive and importation even more attractive. Computation of production costs showed that SRI production, not needing heavy applications of fertilizer, is economically cost-effective. Achieving yield increases through ever-higher fertilizer applications is not economically or environmentally viable. SRI management with recommended fertilizer applications produced a net return of $853 ha−1 compared to $853 ha−1 compared to 37 when using farmers’ present low-productivity practices.  相似文献   

3.
A field experiment using system of rice intensification (SRI) techniques was conducted in Chiba, Japan during the 2008 rice-growing season (May–September) with eight treatment combinations in a split–split plot design (S–SPD) to observe the potential of SRI methods under the temperate climatic conditions in Japan. Intermittent irrigation with alternate wetting and drying intervals (AWDI) and continuous flooding throughout the cropping season were the two main-plot factors, while the effects of age of seedlings and plant spacing were evaluated as sub and sub–sub plot factors, respectively. The experiment results revealed that the proposed AWDI can save a significant amount of irrigation water (28%) without reduced grain yield (7.4 t/h compared with 7.37 t/h from normal planting with ordinary water management). Water productivity was observed to be significantly higher in all combinations of practices in the intermittent irrigation plots: 1.74 g/l with SRI management and AWDI as compared to 1.23 g/l from normal planting methods with ordinary water management. In addition, the research outcomes showed a role of AWDI in minimizing pest and disease incidence, shortening the rice crop cycle, and also improving plant stand until harvest. Synergistic effects of younger seedlings and wider spacing were seen in tillering ability, panicle length, and number of filled grains that ultimately led to higher productivity with better grain quality. However, comparatively better crop growth and yields when using the same SRI practices with ordinary water management underscore a need for further investigations in defining what constitute optimum wetting and drying intervals considering local soil properties, prevailing climate, and critical watering stages in rice crop management.  相似文献   

4.
The system of rice intensification (SRI) reportedly enhances yield with less water requirement. This claim was investigated to determine the effects of alternative cultivation methods and water regimes on crop growth and physiological performance. Treatment combinations compared SRI with the conventional transplanting system (CTS) using standard practices, evaluating both along a continuum from continuous flooding to water applications at 1, 3, 5, or 7 days after disappearance of ponded water (DAD), subjecting plants to differing degrees of water stress while reducing total water expenditure. SRI methods gave significant changes in plants’ phenotype in terms of root growth and tillering, with improved xylem exudation and photosynthetic rates during the grain-filling stage compared to CTS. This resulted in significant increases in panicle length, more grains and more filled grains panicle?1, greater 1,000-grain weight, and higher grain yield under SRI management. Overall, averaged across the five water regimes evaluated, SRI practice produced 49 % higher grain yield with 14 % less water than under CTS; under SRI, water productivity increased by 73 %, from 3.3 to 5.7 kg ha-mm?1. The highest CTS grain yield and water productivity were with the 1-DAD treatment (4.35 t ha?1 and 3.73 kg ha-mm?1); SRI grain yield and water productivity were the greatest at 3-DAD (6.35 t ha?1 and 6.47 kg ha-mm?1).  相似文献   

5.
A field experiment was conducted to investigate the effects of intermittent versus continuous irrigation, together with different degrees of organic fertilization, on the growth and yield of hybrid rice, looking also at the functioning of the rhizosphere as this is a key element affecting crop performance. The crop management practices employed generally followed the recommendations of the System of Rice Intensification (SRI). The aim of the research was to learn how water management and organic fertilization together would affect crop outcomes. Under intermittent water application as recommended with SRI management (aerobic irrigation, AI), grain yield increased by 10.5–11.3%, compared to standard irrigation practice (continuous flooding, CF). The factor that contributed most to higher yield was increased number of grains per panicle. It was seen that under the range of organic fertilization treatments evaluated, intermittent irrigation compared with CF promoted greater dry matter production and higher leaf area index (LAI) during the main growth stages. Also, the combination of intermittent irrigation and organic material applications significantly increased soil redox potential (Eh), compared with CF, and also the numbers of actinomycetes in the rhizosphere soil. Actinomycetes were evaluated in this study as an indicator of aerobic soil biota. It was seen that with intermittent irrigation, the application of organic material improved the functioning of the rhizosphere and increased yield. However, these results based on 2 years of study reflect relatively short-term effects. The effects of longer-term water management and soil fertilization regimes should be also examined, to know whether these effects continue and, if they do, whether they become greater or less.  相似文献   

6.
Experiments were conducted at irrigated and rainfed lowland rice sites in Bangladesh to assess the performance of management practices that have become known as the System of Rice Intensification (SRI). At a research station, SRI management principles such as seedling age, plant spacing, application of organic manure, seedling densities, duration of planting, planting shape and time of planting were evaluated under SRI management as compared to previously established Best Management Practices (BMPs). In on-farm trials, SRI was compared with BMP on 40 farmers’ fields. Nutrient inputs and water management in BMP and SRI treatments were kept at comparable levels. Seedling age, ranging from just sprouted seed to 40-day-old seedlings, had no effect on grain yield in the winter season. In a plant spacing experiment subject to SRI, the highest and lowest grain yields of 7.82 and 5.41 t ha−1 were obtained with spacing of 25 cm × 15 cm (narrow) and 40 cm × 40 cm (wide), respectively. In SRI, seedling density (1–2 seedlings per hill), planting durations (≤15 min to 1–3 h after uprooting) or root placement (L-shape and J-shape) had no effect on grain yield. With regard to time of planting, the highest grain yields were observed with transplanting in the 3rd week of December, with no difference between SRI and BMP management systems. In on-farm trials, BMP gave significantly higher grain yield compared to SRI and farmers’ practice in a triple-cropped area, but grain yields were similar with SRI in a double and single-cropped area when spacing was narrow. The highest profit was obtained with BMP followed by SRI and farmers’ practice in the single-cropping area. Major findings from this study are that under comparable levels of net nutrient input and water management (i) well-implemented BMPs for rice are more efficient for producing high yields than SRI and (ii) there is no intrinsic yield advantage of SRI that could be caused by its individual crop management techniques or some unknown synergism of the different SRI practices proposed.  相似文献   

7.
The objective of this study was to develop a mechanistic model for simulating the genotypic and environmental variation in rice growth and yield based on measured plant N accumulation. The model calibrations and evaluations were conducted for rice growth and yield data obtained from a cross-locational experiment on 9 genotypes at 7 climatically different locations in Asia. The rough dry grain yield measured in the experiment ranged from 71 to 1044 g m−2 over the genotypes and locations. An entire process model was developed by integrating sub-models for simulating the processes of leaf area index development, partitioning of nitrogen within plant organs, vegetative biomass growth, spikelet number determination, and yield. The entire process model considered down-regulation of photosynthesis caused by limited capacity for end-product utilization in growing sink organs by representing canopy photosynthetic rate as a function of sugar content per unit leaf nitrogen content. The model well explained the observed genotypic and environmental variation in the dynamics of above-ground biomass growth (for validation dataset, R2 = 95), leaf area index development (R2 = 0.82) and leaf N content (R2 = 0.85), and spikelet number per unit area (R2 = 0.67) and rough grain yield (R2 = 0.66), simultaneously. The model calibrations for each sub-model and the entire process model against observed data identified 10 genotype-specific model parameters as important traits for determining genotypic differences in the growth attributes. Out of the 10 parameters, 5 were related to the processes of phenological development and spikelet sterility, considered to be major determinants of genotypic adaptability to climate. The other 5 parameters of stomatal conductance, radiation extinction coefficient, nitrogen use efficiency in spikelet differentiation, critical leaf N causing senescence, and potential single grain mass had significant influence on the yield potential of genotypes under given climate conditions.  相似文献   

8.
《Plant Production Science》2013,16(2):191-198
Abstract

The impacts of the system of rice intensification (SRI) and conventional management (CM) on grain yield, yield components and tillering capacity were examined under 4 rice establishment methods transplanting (TP), seedling casting (SC), mechanical transplanting (MT) and direct seeding (DS). SRI produced significantly higher grain yield than CM under TP and MT but not under DS or SC. DS and SC produced much higher seedling quality than TP or MT, suggesting that robust seedlings with vigorous roots weaken the positive effect of SRI on rice yield. SRI produced a higher tillering rate than CM, but did not affect ear-bearing tiller rate significantly. Moreover, the net photosynthetic rate of the recent fully expanded leaf at mid-tillering stage was significantly higher in SRI than in CM under MT and TP. The obtained results also indicated that SRI increased biomass accumulation before heading and improved utilization of photosynthates in the grain-filling stage.  相似文献   

9.
Alternate wetting and drying irrigation (AWD) has been reported to save water compared with continuous flooding (CF) in rice cultivation. However, the reported effects on yield varied greatly and detailed agro-hydrological characterization is often lacking so that generalizations are difficult to make. Furthermore, it is not known how AWD modifies nutrient use efficiencies and if it requires different N-fertilizer management compared with CF. This study quantified the agro-hydrological conditions of the commonly practiced AWD and compared the impact of AWD and CF irrigations at different N-fertilizer management regimes on rice growth and yield, water productivity, and fertilizer-use efficiencies in five crop seasons in 1999 and 2000 at two typical lowland rice sites in China (Jinhua, Zheijang Province and Tuanlin, Hubei Province), with shallow groundwater tables.Grain yields varied from 3.2 to 4.5 t ha–1 with 0 kg N ha–1 to 5.3–8.9 t ha–1 with farmers N-rates (150 kg N ha–1 in Jinhua and 180 in Tuanlin). In both sites, no significant water by nitrogen interaction on grain yields, biomass, water productivity, nutrient uptakes and N-use efficiency were observed. Yield and biomass did not significantly differ (P >0.05) between AWD and CF and among N timings. The productivity of irrigation water in AWD was about 5–35% higher than in CF, but differences were significant (P <0.05) only when the rainfall was low and evaporation was high. Increasing the number of splits to 4–6 times increase the total N uptake, but not total P-uptake, and total K-uptake compared with farmers practices of two splits. Apparent Nitrogen recovery (ANR) increased as the number of splits increased, but there was no significant difference in ANR between AWD and CF. During the drying cycles of AWD irrigation, the perched water table depths seldom went deeper than – 20 cm and the soil in the root zone remained moist most of the time. The results suggest that in typical irrigated lowlands in China, AWD can reduce water input without affecting rice yields and does not require N-fertilizer management differently from continuous flooding. The results can be applied to many other irrigated lowland rice areas in Asia which have a shallow groundwater table.  相似文献   

10.
A field study on assessment of crop establishment methods on yield, economics and water productivity of rice cultivars under upland and lowland production ecologies was conducted during wet seasons (June–November) of 2012 and 2013 in Eastern Indo-Gangetic Plains of India. The experiment was laid-out in a split-plot design (SPD) and replicated four times. The main-plot treatments included three crop establishment methods, viz. dry direct-seeded rice (DSR), system of rice intensification (SRI) and puddled transplanted rice (PTR). In sub-plots, five rice cultivars of different groups like aromatic (Improved Pusa Basmati 1 and Pusa Sugandh 5), inbreds (PNR 381 and Pusa 834) and hybrid (Arize 6444) were taken for their evaluations. These two sets of treatments were laid-out simultaneously in two production ecologies, upland and lowland during both years. In general, lowland ecology was found favourable for rice growth and yield and resulted in 13.2% higher grain yield as compared to upland ecology. Rice grown with SRI method produced 19.4 and 7.0% higher grain yield in 2012 and 20.6 and 7.1% higher in 2013, over DSR and PTR. However, PTR yielded 13.1 and 14.5% higher grain over DSR during 2012 and 2013, respectively. On an average, Arize 6444 produced 26.4, 26.9, 28.9 and 54.7% higher grain yield as compared to PS 5, P 834, PNR 381 and IPB1, respectively. Further, the interaction of production ecologies × crop establishment methods revealed that, in upland ecology, SRI recorded significantly higher grain yield as compared to PTR and DSR, but in lowland, grain yield resulting from SRI was similar to the yield obtained with PTR and significantly higher than DSR. The latter two methods (PTR and DSR) yielded alike in lowland ecology in both study years. The production ecologies × crop establishment methods × cultivars interaction on grain yield showed that the growing of Arize 6444 cultivar using SRI method in upland ecology resulted in the higher grain yield (8.87 t/ha). But the cost of production was also highest in SRI followed by PTR and DSR across production ecologies and cultivars. Cultivation of hybrid (Arize 6444) involved higher cost of production than all other cultivars. Irrespective of crop establishment methods and cultivars, gross returns, net returns and B:C ratio were significantly higher in lowland compared to upland ecology. Owing to higher grain yield, SRI method fetched significantly higher gross returns and net returns over PTR and DSR. Average increase in net return with Arize 6444 was 68.8, 41.0, 37.7 and 33.1% over IPB 1, PNR 381, P 834 and PS 5, respectively. There was a saving of 30.7% water in SRI and 19.9% in DSR over PTR under upland ecology. Similarly in lowland ecology, water saving of 30.2% was observed in SRI and 21.2% in DSR over PTR. Due to higher yield and saving on water, SRI returned significantly higher total water productivity (TWP) (5.9 kg/ha-mm) as compared to DSR (3.5 kg/ha-mm) and PTR (3.6 kg/ha-mm) under upland ecology. In lowland ecology, also SRI (6.2 kg/ha-mm) resulted in higher TWP as compared to other two methods. However, DSR gave significantly higher TWP as compared to PTR. Among cultivars, hybrid Arize 6444 recorded the highest TWP in both upland and lowland production ecologies across crop establishment methods. Hence, growing of hybrid Arize 6444 with SRI method can enhance rice productivity and water-use efficiency in lowland and upland production ecologies of Eastern Indo-Gangetic Plains and in other similar regions.  相似文献   

11.
A field experiment was conducted in 2005 to investigate the effects of modified rice cultivation methods on: water use efficiency, the uptake of nutrients (N, P and K) by plants, and their distribution within plants and their internal use efficiency. The treatments were modified methods of irrigation, transplanting, weeding, and nutrient management, comparing the System of Rice Intensification (SRI) with standard rice-growing methods including traditional flooding (TF). Results showed that the uptake of N, P, and K by rice plants during their growth stages was greater with SRI management compared to TF, except during the tillering stage. At maturity stage, SRI plants had taken up more nutrients in their different major organs (leaves, stems, and sheaths; panicle axis; and seeds), and they translocated greater amount of nutrients to the grain. Under SRI, the ratio of N, P, and K in seed grain to total plant N, P, and K was 4.97, 2.00, and 3.01% higher, respectively, than with TF. Moreover, under SRI management, internal use efficiency of the three macronutrients (N, P, and K) was increased by 21.89, 19.34, and 16.96%, respectively, compared to rice plants under TF management. These measurements calibrate the crop’s physiological response to differences in cultural practices, including the maintenance of aerobic versus anaerobic environment in the root zones. With SRI, irrigation water applications were reduced by 25.6% compared to TF. Also, total water use efficiency and irrigation water use efficiency was increased with SRI by 54.2 and 90.0%, respectively. Thus, SRI offered significantly greater water saving while at the same time producing more grain yield, in these trials 11.5% more compared to TF.  相似文献   

12.
This communication reports on separate research efforts in India and Indonesia to evaluate the effects that modifying methods of plant, soil, water and nutrient management could have on populations of soil organisms, particularly on those that can have beneficial consequences for crop growth and yield. Comparison of these parallel studies (Table 7) draws attention to the impacts that management can have on the soil biota, given that certain organisms are known to have positive implications for plants’ nutrition, health, and productivity. Data from the three studies show SRI management associated with some significant differences in soil microbial populations; higher levels of enzyme activity in SRI plant rhizospheres, indicative of increased N and P availability; and more soil microbial C and N, which would enlarge the nutrient pool for both plants and microbes. The studies reported, although more exploratory than conclusive, show enough similarity to suggest that SRI practices, which make paddy soils more aerobic and enhance soil organic matter, are supportive of enhanced populations of beneficial soil organisms. If this relationship is confirmed by further assessments, it could help researchers and practitioners to improve paddy production in resource-conserving, cost-effective ways. This review was written to encourage more studies to assess these kinds of soil biotic relationships and dynamics.  相似文献   

13.
Yield advantage of hybrid rice in the tropics has been reported recently as the result of higher biomass accumulation and better biomass partitioning over the whole crop growth. Considering that increasing biomass accumulation is the main target for higher yield potential in sub-tropical and temperate conditions, it is relevant to investigate in a wide range of growing conditions in the tropics if improved biomass partitioning plays a significant and consistent role in higher yield of hybrids. The growth pattern of two high-yielding and popular hybrid (H1) and inbred (I1) of the same maturity group was compared under six contrasted growing conditions to evaluate traits related to sink regulation. Grain yield of H1 was consistently higher than that of I1 by 16–32% with respect to the situation. Higher partitioning coefficients of the hybrid to key organs were confirmed over the whole crop growth for this set of environments whereas crop growth rates of hybrid were not consistently higher than that of inbreds. Sink strength index, as a way to express sink regulation at maturity more efficiently than harvest index, was higher with hybrids in five out of six environments. In search for promising traits related to sink regulation, higher specific leaf area of hybrids at very early stage was associated with higher leaf area, and earlier cessation of tiller production with hybrids coincided with higher partitioning of biomass to early culm growth: yet, maximum tiller number ranged from 548 to 962 tiller m−2 with H1 and from 629 to 1427 tiller m−2 with I1 while culm dry weight at 55 days after sowing ranged from 65 to 81 g m−2 with H1 and from 46 to 53 g m−2 with I1. This analysis strongly reinforced the pertinence of improving sink regulation for increasing yield potential in the tropics.  相似文献   

14.
Hybrid indica rice (Oryza sativa L.) cultivars play an important role in rice production system due to its heterosis, resistance to environmental stress, large panicle and high yield potential. However, no attention has been given to its yield responses to rising atmospheric [CO2] in conjunction with nitrogen (N) availability. Therefore we conducted a free air CO2 enrichment (FACE) experiment at Yangzhou, Jiangsu, China (119°42′0′′E, 32°35′5′′N), in 2004–2006. A three-line hybrid indica rice cv. Shanyou 63 was grown at ambient and elevated (ca. 570 μmol mol−1) [CO2] under two levels of supplemental N (12.5 g Nm−2 and 25 g Nm−2). Elevated [CO2] had no effect on phenology, but substantially enhanced grain yield (+34%). The magnitude of yield response to [CO2] was independent of N fertilization, but varied among different years. On average, elevated [CO2] increased the panicle number per square meter by 10%, due to an increase in maximum tiller number under enrich [CO2], while productive tiller ratio remained unaffected. Spikelet number per panicle also showed an average increase of 10% due to elevated [CO2], which was supported by increased plant height and stem dry weight per tiller. Meanwhile, elevated [CO2] caused a significant enhancement in both filled spikelet percentage (+5%) and individual grain weight (+4%). Compared with the two prior FACE studies on rice, hybrid indica rice cultivar appears to profit much more from elevated [CO2] than japonica rice cultivar (ca. +13%), not only due to its stronger sink generation, but also enhanced capacity to utilize the carbon sources in a high [CO2] environment. The above data has significant implication with respect to N strategies and cultivar selection under projected future [CO2] levels.  相似文献   

15.
Dry-seeded rice has been introduced as an alternative to puddled hand-transplanted rice in the north Indian states of Punjab and Haryana. In dry-seeded rice, weed flora tends to be more diverse and weeds emerge in several flushes during the crop growth cycle and substantial yield reductions due to weed competition are quite common. The efficacy and compatibility of tank mixtures of different herbicides for the control of diverse weed flora in dry-seeded rice was evaluated in field experiments during the summer seasons of 2012 and 2013. The tank mixture of fenoxaprop with ethoxysulfuron improved the control of Echinochloa crus-galli and Echinochloa colona by 43–69% as compared to fenoxaprop alone while the tank-mix of azimsulfuron with fenoxaprop was antagonistic and reduced the control of Leptochloa chinensis by 86% as compared to fenoxaprop alone. Addition of azimsulfuron or ethoxysulfuron to bispyribac did not improve the control of grass weeds as compared to bispyribac alone. Weed control with the mixture of bispyribac and fenoxaprop varied over the two years. In 2012, bispyribac and fenoxaprop mixture was antagonistic for the control of Dactyloctenum aegyptium, Acrachne racemose, and L. chinensis but in 2013, there was no apparent antagonism and the addition of bispyribac to fenoxaprop reduced grass weed biomass as compared to fenoxaprop alone. In 2013, there was a strong negative correlation (r = −0.95, P < 0.001) between weed dry matter at 45 days after sowing and rice grain yield. According to the linear regression, rice crop is likely to produce no grain yield when weed dry matter exceeds 400 g m−2. Over the two seasons, fenoxaprop-ethoxysulfuron tank-mix produced similar grain yields (5.6–6.2 t ha−1) to the weed-free check (5.6–7.1 t ha−1). At the farmer fields, rice grain yield in the plots treated with pendimethalin followed by post-emergence bispyribac or a tank-mix of fenoxaprop + ethoxysulfuron ranged from 6.2 to 7.7 t ha−1 as compared to 5.3–5.6 t ha−1 in the plots treated with pendimethalin alone. The tank mixture of fenoxaprop with bispyribac needs further evaluation as this mixture has the potential to effectively control aerobic and aquatic grasses in dry-seeded rice. Single hand weeding prevented crop yield loss from weeds that escaped herbicide treatments only when it was performed within six weeks of sowing.  相似文献   

16.
Rice is a major staple food in Afghanistan, and its production contributes to the food security for millions of Afghans. However, over the past four decades, increases in rice cultivation in the Amu Darya River Basin in the northeastern part of the country are contributing to head/tail inequities in irrigation water-sharing, both at river basin and at canal levels. Since 2007, the Participatory Management for Irrigation System project has been experimenting with the System of Rice Intensification (SRI) as an alternative to the highly water-consumptive traditional method of rice cultivation by inundation of fields. The aim is to introduce a water-saving method for upstream rice-growing farmers to improve the water access for downstream users. To the extent that such a method improves yield, this gives upstream farmers an incentive to switch to this new method which benefits them and, indirectly, other farmers downstream. In 2009, 42 farmers who are cooperating with the Aga Khan Foundation practiced SRI, facilitated through the project’s participatory technology development (PTD) approach. Their average SRI yield, 9.3 tons ha−1, was considerably higher than that obtained with their traditional rice-growing practices. Those farmers who had 2 years of experience with SRI methods and who greater mastery of the techniques got, on average, 65% higher yield than first-year SRI farmers. More-experienced farmers improved their rice production by 27% in comparison to their previous results in 2008. The PTD approach engages the experienced farmers as resource persons to assist new volunteers, promoting local transfer of knowledge. The primary factor in yield improvement was an increase in the number of grains per panicle (+47%). A 10% increase in the number of tillers per square meter, despite lowered plant population, was the second major factor. Yields appeared to be very responsive to an increased number of mechanical weedings. Challenges still remain to be dealt with on the way toward up-scaling, especially as the security situation remains problematic. However, the PTD approach is facilitating work in the field as is cooperation with government personnel.  相似文献   

17.
This study aimed to investigate the effects of the selenium (Se) application via soil (SeVI) and leaf (SeIV and SeVI) on agronomic attributes of rice and the spatial distribution of Se and other elements in biofortified rice grains. For this, a field trial was conducted using six Se rates (0, 5, 10, 20, 40, and 80 g ha−1). Physiological evaluations in rice leaves, rice grain yield, and Se and other elements content were assessed. Spatial distributions of Se and other elements were visualized mapping the biofortified rice grains with μXRF. The results showed that the strategies and rates of Se applied to the plants were effective for producing Se-rich rice grains. Although Se application did not change the rice yield, it affected some enzyme activities, improving the antioxidant system of the plant. The spatial distribution of the different elements found in the biofortified rice grains varied substantially, with Se accumulations mainly in the endosperm, whereas P, K, Fe, and Zn accumulate in the embryo. Agronomic biofortification of rice with Se, via soil or leaf, is a promising strategy to be adopted in tropical soils in order to produce rice grains with adequate Se contents for human consumption.  相似文献   

18.
This paper reports on several research findings on rice root responses, in terms of growth and physiology, manifested when applying System of Rice Intensification water management principles under semi-field and field conditions, in conjunction with variations in plant density and microbial density in the soil. The research aimed to learn about causal relationships, if any, between rice root and shoot growth at different growth stages of the rice plant’s development and their cumulative effect on yield, which is affected by both biotic and abiotic influences. It was seen that greater root length density and a higher rate of root activity affected the yield-contributing parameters in all of the trials, whether conducted under semi-field or field conditions. At the same time, both root parameters were significantly affected by the water regime, soil microbial density, and planting pattern, the three main factors considered. The most important finding observed under semi-field conditions was that enhanced microbial density in the soil improved the sink capacity of the rice plants under all water regimes evaluated. Positive correlations were found between the chlorophyll content of the flag leaf and the duration of grain filling, between the chlorophyll content of plants’ lower leaves and their roots’ oxidizing activity rate, and the roots’ oxidizing activity rate at later growth stage and the available soil nitrogen. These relationships can significantly improve rice plants’ physiological efficiency and hence grain yield, provided that soil nutrients are not a limiting factor and when source–sink demand is maintained simultaneously. To realize the highest crop yield per hectare, both planting pattern and spacing are factors that need to be optimized. This paper in its conclusion considers the relevance of exploiting roots’ potential for plasticity to enhance crop productivity in the context of impending water constraints and climate-change effects.  相似文献   

19.
《Field Crops Research》1999,63(3):187-198
Rice is subjected to excessive waterlogging and flash-flooding on large areas in south and south-east Asia. Besides cultivars, submergence tolerance of plants is influenced by various agronomic practices. A field experiment was conducted at Cuttack, India during 1994–1995 to study the effect of method of stand establishment (direct seeding and transplanting), vigour of seed (low and high-density) or seedlings (N-fertilized and unfertilized), plant population (normal and 50% more) and N fertilizer (single basal and split application) on yield performance of lowland rice under conditions of natural submergence and simulated flash-flooding (impounding up to 90 ± 3 cm depth for 10 days at vegetative stage). Flooding reached a maximum depth of 80 cm in 1994 and 52 cm in 1995 under natural submergence. The crop performance was better in 1994 due to timely sowing in dry soil and delayed accumulation of water (43 days after sowing) than in 1995 when sowing was done late in saturated soil followed by early water accumulation (28 days after sowing). Grain yield of rice decreased by 30.0–33.6% due to simulated flash-flooding compared with natural submergence, and by 21.4–33.1% due to transplanting in July compared with direct seeding in May-end/early June. The yield of direct-sown crop increased by using high-density seed of 22.9–23.0 mg weight (5.2–9.0%), higher seed rate of 600 m−2 (2.2–2.3%) and basal fertilization at 40 kg N ha−1 (19.4–25.7%) compared with low-density seed (19.4–20.1 mg), 400 seed m−2 and no N, respectively. The yield of transplanted crop increased by using N-fertilized seedlings of 0.49–1.65 g weight (29.5–38.5%), higher number of seedlings at 155 m−2 (3.5–16.7%) and basal fertilization at 40 kg N ha−1 (31.9–32.5%) compared with unfertilized seedlings (0.19–0.79 g), 115 seedlings m−2 and no N. Split application of 40 kg N ha−1 — 50% each at basal and top dressing (105–115 days of growth after flash-flooding) — improved yield significantly (10.1–13.1%) over single basal application under simulated flash-flooding, but not under natural submergence conditions. Regression analysis indicated that relative contribution of various factors in increasing grain yield was in order: N fertilizer > seed density > seed m−2 in direct-sown rice, and N fertilizer > seedlings m−2 > seedling dry weight in transplanted rice. It was concluded that grain yield of flood-prone lowland rice can be increased by establishing the crop early through direct seeding using high-density seed and basal N fertilization.  相似文献   

20.
This paper is the first of a series that investigates whether new cropping systems with permanent raised beds (PRBs) or Flat land could be successfully used to increase farmers’ incomes from rainfed crops in Lombok in Eastern Indonesia. This paper discusses the rice phase of the cropping system. Low grain yields of dry-seeded rice (Oryza sativa) grown on Flat land on Vertisols in the rainfed region of southern Lombok, Eastern Indonesia, are probably mainly due to (a) erratic rainfall (870–1220 mm/yr), with water often limiting at sensitive growth stages, (b) consistently high temperatures (average maximum = 31 °C), and (c) low solar radiation. Farmers are therefore poor, and labour is hard and costly, as all operations are manual. Two replicated field experiments were run at Wakan (annual rainfall = 868 mm) and Kawo (1215 mm) for 3 years (2001/2002 to 2003/2004) on Vertisols in southern Lombok. Dry-seeded rice was grown in 4 treatments with or without manual tillage on (a) PRBs, 1.2 m wide, 200 mm high, separated by furrows 300 mm wide, 200 mm deep, with no rice sown in the well-graded furrows, and (b) well-graded Flat land. Excess surface water was harvested from each treatment and used for irrigation after the vegetative stage of the rice. All operations were manual. There were no differences between treatments in grain yield of rice (mean grain yield = 681 g/m2) which could be partly explained by total number of tillers/hill and mean panicle length, but not number of productive tillers/hill, plant height or weight of 1000 grains. When the data from both treatments on PRBs and from both treatments on Flat land, each year at each site were analysed, there were also no differences in grain yield of rice (g/m2). When rainfall in the wet season up to harvest was over 1000 mm (Year 2; Wakan, Kawo), or plants were water-stressed during crop establishment (Year 1; Wakan) or during grain-fill (Year 3: Kawo), there were significant differences in grain yield (g/1.5 m2) between treatments; generally the grain yield (g/1.5 m2) on PRBs with or without tillage was less than that on Flat land with or without tillage. However, when the data from both treatments on PRBs and from both treatments on Flat land, each year at each site, were analysed, the greater grain yield of dry-seeded rice on Flat land (mean yield 1 092 g/1.5 m2) than that on PRBs (mean 815 g/1.5 m2) was mainly because there were 25% more plants on Flat land. Overall when the data in the 2 outer rows and the 2 inner rows on PRBs were each combined, there was a higher number of productive tillers in the combined outer rows (mean 20.7 tillers/hill) compared with that in the combined inner rows on each PRB (mean 18.2 tillers/hill). However, there were no differences in grain yield between combined rows (mean 142 g/m row). Hence with a gap of 500 mm (the distance between the outer rows of plants on adjacent raised beds), plants did not compensate in grain yield for missing plants in furrows. This suggests that rice (a) also sown in furrows, or (b) sown in 7 rows with narrower row-spacing, or (c) sown in 6 rows with slightly wider row-spacing, and narrower gap between outer rows on adjacent beds, may further increase grain yield (g/1.5 m2) in this system of PRBs. The growth and the grain yield (y in g/m2) of rainfed rice (with rainfall on-site the only source of water for irrigation) depended mainly on the rainfall (x in mm) in the wet season up to harvest (due either to site or year) with y = 1.1x − 308; r2 = 0.54; p < 0.005. However, 280 mm (i.e. 32%) of the rainfall was not directly used to produce grain (i.e. when y = 0 g/m2). Manual tillage did not affect growth and grain yield of rice (g/m2; g/1.5 m2), either on PRB or on Flat land.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号