首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Long-term potentiation (LTP) of synaptic strength, the most established cellular model of information storage in the brain, is expressed by an increase in the number of postsynaptic AMPA receptors. However, the source of AMPA receptors mobilized during LTP is unknown. We report that AMPA receptors are transported from recycling endosomes to the plasma membrane for LTP. Stimuli that triggered LTP promoted not only AMPA receptor insertion but also generalized recycling of cargo and membrane from endocytic compartments. Thus, recycling endosomes supply AMPA receptors for LTP and provide a mechanistic link between synaptic potentiation and membrane remodeling during synapse modification.  相似文献   

2.
In invertebrate nervous systems, some long-lasting increases in synaptic efficacy result from changes in the presynaptic cell. In the vertebrate nervous system, the best understood long-lasting change in synaptic strength is long-term potentiation (LTP) in the CA1 region of the hippocampus. Here the process is initiated postsynaptically, but the site of the persistent change is unresolved. Single CA3 hippocampal pyramidal cells receive excitatory inputs from associational-commissural fibers and from the mossy fibers of dentate granule cells and both pathways exhibit LTP. Although the induction of associational-commissural LTP requires in the postsynaptic cell N-methyl-D-aspartate (NMDA) receptor activation, membrane depolarization, and a rise in calcium, mossy fiber LTP does not. Paired-pulse facilitation, which is an index of increased transmitter release, is unaltered during associational-commissural LTP but is reduced during mossy fiber LTP. Thus, both the induction and the persistent change may be presynaptic in mossy fiber LTP but not in associational-commissural LTP.  相似文献   

3.
Cholinergic neurons are widespread, and pharmacological modulation of acetylcholine receptors affects numerous brain processes, but such modulation entails side effects due to limitations in specificity for receptor type and target cell. As a result, causal roles of cholinergic neurons in circuits have been unclear. We integrated optogenetics, freely moving mammalian behavior, in vivo electrophysiology, and slice physiology to probe the cholinergic interneurons of the nucleus accumbens by direct excitation or inhibition. Despite representing less than 1% of local neurons, these cholinergic cells have dominant control roles, exerting powerful modulation of circuit activity. Furthermore, these neurons could be activated by cocaine, and silencing this drug-induced activity during cocaine exposure (despite the fact that the manipulation of the cholinergic interneurons was not aversive by itself) blocked cocaine conditioning in freely moving mammals.  相似文献   

4.
Presynaptic inhibition: primary afferent depolarization in crayfish neurons   总被引:1,自引:0,他引:1  
Inhibition of transmission between tactile sensory neurons and interneurons in the crayfish was investigated by intracellular recording int the presynaptic processes. Inhibition is correlated with a depolarization of the presynaptic process, as in the mammalian spinal cord; the depolarization is accompanied by a conductance increase, and is mediated by interneurons that can be excited by a variety of routes.  相似文献   

5.
Years of intensive investigation have yielded a sophisticated understanding of long-term potentiation (LTP) induced in hippocampal area CA1 by high-frequency stimulation (HFS). These efforts have been motivated by the belief that similar synaptic modifications occur during memory formation, but it has never been shown that learning actually induces LTP in CA1. We found that one-trial inhibitory avoidance learning in rats produced the same changes in hippocampal glutamate receptors as induction of LTP with HFS and caused a spatially restricted increase in the amplitude of evoked synaptic transmission in CA1 in vivo. Because the learning-induced synaptic potentiation occluded HFS-induced LTP, we conclude that inhibitory avoidance training induces LTP in CA1.  相似文献   

6.
To elucidate mechanisms that control and execute activity-dependent synaptic plasticity, alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptors (AMPA-Rs) with an electrophysiological tag were expressed in rat hippocampal neurons. Long-term potentiation (LTP) or increased activity of the calcium/calmodulin-dependent protein kinase II (CaMKII) induced delivery of tagged AMPA-Rs into synapses. This effect was not diminished by mutating the CaMKII phosphorylation site on the GluR1 AMPA-R subunit, but was blocked by mutating a predicted PDZ domain interaction site. These results show that LTP and CaMKII activity drive AMPA-Rs to synapses by a mechanism that requires the association between GluR1 and a PDZ domain protein.  相似文献   

7.
Brief repetitive activation of excitatory synapses in the hippocampus leads to an increase in synaptic strength that lasts for many hours. This long-term potentiation (LTP) of synaptic transmission is the most compelling cellular model in the vertebrate brain for learning and memory. The critical role of postsynaptic calcium in triggering LTP has been directly examined using three types of experiment. First, nitr-5, a photolabile nitrobenzhydrol tetracarboxylate calcium chelator, which releases calcium in response to ultraviolet light, was used. Photolysis of nitr-5 injected into hippocampal CA1 pyramidal cells resulted in a large enhancement of synaptic transmission. Second, in agreement with previous results, buffering intracellular calcium at low concentrations blocked LTP. Third, depolarization of the postsynaptic membrane so that calcium entry is suppressed prevented LTP. Taken together, these results demonstrate that an increase in postsynaptic calcium is necessary to induce LTP and sufficient to potentiate synaptic transmission.  相似文献   

8.
The roles of endocannabinoid signaling during central nervous system development are unknown. We report that CB(1) cannabinoid receptors (CB(1)Rs) are enriched in the axonal growth cones of gamma-aminobutyric acid-containing (GABAergic) interneurons in the rodent cortex during late gestation. Endocannabinoids trigger CB(1)R internalization and elimination from filopodia and induce chemorepulsion and collapse of axonal growth cones of these GABAergic interneurons by activating RhoA. Similarly, endocannabinoids diminish the galvanotropism of Xenopus laevis spinal neurons. These findings, together with the impaired target selection of cortical GABAergic interneurons lacking CB(1)Rs, identify endocannabinoids as axon guidance cues and demonstrate that endocannabinoid signaling regulates synaptogenesis and target selection in vivo.  相似文献   

9.
The site of induction of long-term potentiation (LTP) at mossy fiber-CA3 synapses in the hippocampus is unresolved, with data supporting both pre- and postsynaptic mechanisms. Here we report that mossy fiber LTP was reduced by perfusion of postsynaptic neurons with peptides and antibodies that interfere with binding of EphB receptor tyrosine kinases (EphRs) to the PDZ protein GRIP. Mossy fiber LTP was also reduced by extracellular application of soluble forms of B-ephrins, which are normally membrane-anchored presynaptic ligands for the EphB receptors. The application of soluble ligands for presynaptic ephrins increased basal excitatory transmission and occluded both tetanus and forskolin-induced synaptic potentiation. These findings suggest that PDZ interactions in the postsynaptic neuron and trans-synaptic interactions between postsynaptic EphB receptors and presynaptic B-ephrins are necessary for the induction of mossy fiber LTP.  相似文献   

10.
Long-term potentiation (LTP) of synaptic transmission after coincident pre- and postsynaptic activity is considered a cellular model of changes underlying learning and memory. In intact tissue, LTP has been observed only between populations of neurons, making analysis of mechanisms difficult. Transmission between individual pre- and postsynaptic hippocampal cells was studied, suggesting quantal amplitude distributions with little variability in quantal size. LTP between such pairs is manifested by large, persistent, and synapse-specific potentiation with a shift in amplitude distribution that suggests presynaptic changes. Oscillations in amplitude of transmission, apparently of presynaptic origin, are common and can be triggered by LTP.  相似文献   

11.
Manabe T 《Science (New York, N.Y.)》2002,295(5560):1651-1653
A type of synaptic plasticity in the brain called long-term potentiation (LTP) is thought to form the molecular basis of learning and memory. In a Perspective, Manabe discusses new findings (Kovalchuk et al.) showing brain-derived neurotropic factor modulates LTP by binding to TrkB receptors on the postsynaptic neuron.  相似文献   

12.
D Muller  M Joly  G Lynch 《Science (New York, N.Y.)》1988,242(4886):1694-1697
The contributions of two subclasses of excitatory amino acid transmitter receptors to the induction and expression of long-term potentiation (LTP) were analyzed in hippocampal slices. The quisqualate/kainate receptor antagonist DNQX (6,7-dinitro-quinoxaline-2,3-dione) blocked 85% of the evoked field potential, leaving a small response that was sensitive to D-AP5 (D-2-amino-5-phosphonopentanoate), an N-methyl-D-aspartate (NMDA) receptor blocker. This residual D-AP5-sensitive response was of comparable size in control and previously potentiated inputs. High-frequency stimulation in the presence of DNQX did not result in the development of robust LTP. Washout of the drug, however, revealed the potentiation effect. Thus NMDA-mediated responses can induce, but are not greatly affected by, LTP; non-NMDA receptors, conversely, mediate responses that are not needed to elicit LTP but that are required for its expression.  相似文献   

13.
In the mammalian CNS, N-methyl-D-aspartate (NMDA) receptors serve prominent roles in many physiological and pathophysiological processes including pain transmission. For full activation, NMDA receptors require the binding of glycine. It is not known whether the brain uses changes in extracellular glycine to modulate synaptic NMDA responses. Here, we show that synaptically released glycine facilitates NMDA receptor currents in the superficial dorsal horn, an area critically involved in pain processing. During high presynaptic activity, glycine released from inhibitory interneurons escapes the synaptic cleft and reaches nearby NMDA receptors by so-called spillover. In vivo, this process may contribute to the development of inflammatory hyperalgesia.  相似文献   

14.
Interhemispheric inhibition is thought to mediate cortical rivalry between the two hemispheres through callosal input. The long-lasting form of this inhibition is believed to operate via γ-aminobutyric acid type B (GABA(B)) receptors, but the process is poorly understood at the cellular level. We found that the firing of layer 5 pyramidal neurons in rat somatosensory cortex due to contralateral sensory stimulation was inhibited for hundreds of milliseconds when paired with ipsilateral stimulation. The inhibition acted directly on apical dendrites via layer 1 interneurons but was silent in the absence of pyramidal cell firing, relying on metabotropic inhibition of active dendritic currents recruited during neuronal activity. The results not only reveal the microcircuitry underlying interhemispheric inhibition but also demonstrate the importance of active dendritic properties for cortical output.  相似文献   

15.
Brain-derived neurotrophic factor (BDNF) and other neurotrophins are critically involved in long-term potentiation (LTP). Previous reports point to a presynaptic site of neurotrophin action. By imaging dentate granule cells in mouse hippocampal slices, we identified BDNF-evoked Ca2+ transients in dendrites and spines, but not at presynaptic sites. Pairing a weak burst of synaptic stimulation with a brief dendritic BDNF application caused an immediate and robust induction of LTP. LTP induction required activation of postsynaptic Ca2+ channels and N-methyl-d-aspartate receptors and was prevented by the blockage of postsynaptic Ca2+ transients. Thus, our results suggest that BDNF-mediated LTP is induced postsynaptically. Our finding that dendritic spines are the exclusive synaptic sites for rapid BDNF-evoked Ca2+ signaling supports this conclusion.  相似文献   

16.
Most striatal and cortical interneurons arise from the basal telencephalon, later segregating to their respective targets. Here, we show that migrating cortical interneurons avoid entering the striatum because of a chemorepulsive signal composed at least in part of semaphorin 3A and semaphorin 3F. Migrating interneurons expressing neuropilins, receptors for semaphorins, are directed to the cortex; those lacking them go to the striatum. Loss of neuropilin function increases the number of interneurons that migrate into the striatum. These observations reveal a mechanism by which neuropilins mediate sorting of distinct neuronal populations into different brain structures, and provide evidence that, in addition to guiding axons, these receptors also control neuronal migration in the central nervous system.  相似文献   

17.
Inflammation and trauma lead to enhanced pain sensitivity (hyperalgesia), which is in part due to altered sensory processing in the spinal cord. The synaptic hypothesis of hyperalgesia, which postulates that hyperalgesia is induced by the activity-dependent long-term potentiation (LTP) in the spinal cord, has been challenged, because in previous studies of pain pathways, LTP was experimentally induced by nerve stimulation at high frequencies ( approximately 100 hertz). This does not, however, resemble the real low-frequency afferent barrage that occurs during inflammation. We identified a synaptic amplifier at the origin of an ascending pain pathway that is switched-on by low-level activity in nociceptive nerve fibers. This model integrates known signal transduction pathways of hyperalgesia without contradiction.  相似文献   

18.
Dendritic spikes and their inhibition in alligator Purkinje cells   总被引:3,自引:0,他引:3  
Alligator Purkinje cells generate action potentials in the peripheral dendritic tree, after synaptic depolarization via superficial parallel fibers. These action potentials are inhibited at the dendrite level by preceding parallel-fiber volleys at close intervals. We conclude that this inhibition is produced by the activation of the inhibitory interneurons of the molecular layer, the stellate cells, which establish synaptic contacts with the dendrites of the Purkinje cells.  相似文献   

19.
Oscillator neurons in crustacean ganglia   总被引:2,自引:0,他引:2  
The motor rhythm of ventilation in hermit crabs and lobsters appears to be controlled by a pair of neurons, one in each half of the subesophageal ganglion. Their membrane potentials oscillate and upon depolarization and hyperpolarization elicit spiking in two pools of motor neurons on each side, without spikes in the oscillator neurons themselves. The fact that higher order (command) interneurons can control the rate of the oscillator by means of a smoothly graded input lends support to the idea that oscillator neurons respond periodically to a constant ionic stimulus.  相似文献   

20.
Ge WP  Yang XJ  Zhang Z  Wang HK  Shen W  Deng QD  Duan S 《Science (New York, N.Y.)》2006,312(5779):1533-1537
Interactions between neurons and glial cells in the brain may serve important functions in the development, maintenance, and plasticity of neural circuits. Fast neuron-glia synaptic transmission has been found between hippocampal neurons and NG2 cells, a distinct population of macroglia-like cells widely distributed in the brain. We report that these neuron-glia synapses undergo activity-dependent modifications analogous to long-term potentiation (LTP) at excitatory synapses, a hallmark of neuronal plasticity. However, unlike the induction of LTP at many neuron-neuron synapses, both induction and expression of LTP at neuron-NG2 synapses involve Ca2+-permeable AMPA receptors on NG2 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号