首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Air containing nitrogen-15 ammonia: foliar absorption by corn seedlings   总被引:4,自引:0,他引:4  
Thirty-day-old corn seedlings, grown in the greenhouse with different concentrations of supplemental nitrate nitrogen, were moved to a constant-temperature growth chamber and sealed in a 560-liter tent made of polyvinyl chloride. The plants were exposed to air containing ammonia labeled with nitrogen-15 (1, 10, and 20 parts per million) for 24 hours and then harvested. The nitrogen-15 content of the tops and roots showed that at 1 part per million 43 percent of the ammonia was absorbed, whereas at 10 and 20 parts per million, 30 percent of the ammonia was absorbed. The results demonstrate that growing plants may be a natural sink for atmospheric ammonia.  相似文献   

2.
An experiment has been carried out at the bevatron on the nuclear fragmentation of nitrogen-14 ions at an energy of 2.1 billion electron volts (Gev) per nucleon. Because of the near equality of the velocities of the nitrogen-14 beam and the fragmentation products at an angle of 0 degrees , we find it possible to identify the nuclear fragments isotopically.  相似文献   

3.
The stony-iron meteorites Bencubbin and Weatherford contain nitrogen with a ratio of nitrogen-15 to nitrogen-14 larger than normal by as much as a factor of 2. The excess nitrogen-15 may be due either to a nucleosynthetic origin or to extreme isotopic fractionation. In the former case, it may reflect failure to homogenize nitrogen-15 produced in nova explosions. In the latter case, it may reflect chemical processing at temperatures below 40 K in a presolar molecular cloud.  相似文献   

4.
Concentrations of potassium, rubidium, strontium, barium, and rareearth elements have been determined by mass spectrometric isotope dilution for eight Apollo 11 lunar samples and for some separated phases. Potassiumn and ritbidium are at chondritic levels, strontium at 15 times, and barium and rare earths at 30 to 100 times chondritic levels. There are trace element similarities between the lunar samples and basaltic achondrites, terrestrial dredge basalts and the bulk earth. The trace element data appear to be consistent with these lunar samples being the result of limited partial fusion of some material similar to the brecciated eucrite meteorites.  相似文献   

5.
Although only part of the information from the x-ray fluorescence geochemical experiment has been analyzed, it is clear that the experiment was highly successful. Significant compositional differences among and possibly within the maria and highlands have been detected. When viewed in the light of analyzed lunar rocks and soil samples, and the data from other lunar orbital experiments (in particular, the Apollo 15 gamma-ray spectroscopy experiment), the results indicate the existence of a differential lunar highland crust, probably feldspathic. This crust appears to be related to the plagioclase-rich materials previously found in the samples from Apollo 11, Apollo 12, Apollo 14, Apollo 15, and Luna 16.  相似文献   

6.
Data from total melt and step-by-step heating experiments on the Apollo 11 lunar samples suggest a close affinity between lunar and meteoritic rare gases. Trapped neon-20/neon-22 ratios range from 11.5 to approximately 15, resembling those for the gas-rich meteorites. Trapped krypton and xenon in the lunar fines and in the carbonaceous chondrites are similar except for an interesting underabundance of the heavy isotopes in both lunar gases which suggests that the fission component found in carbonaceous chondrites is depleted in lunar material. Spallation gases are in most cases quite close to meteoritic spallation gases in isotopic composition.  相似文献   

7.
Data on six lunar crystalline rocks give an apparent Rb-Sr isochron age of 4.42 +/- 0.24 x 10(9) years (95 percent confidence limits) and initial (87)Sr/(86)Sr ratio similar to that in a basaltic achondrite. Relationships between K, Rb, Sr, and Ba and depletion of Eu in these samples point to plagioclase separation from the melts that produced these rocks. The abundance of (157)Gd in the three lunar samples is similar to terrestrial abundance within < 0.2 percent, thus setting a limit of < 6 x 10(15) neutrons per square centimeter for the integrated thermal neutron flux difference between lunar and terrestrial materials.  相似文献   

8.
A clast of spinel troctolite containing 8 percent cordierite (Mg(2)Al(4)Si(5)O(18)) has been identified among the constituents of Apollo 15 regolith breccia 15295. The cordierite and associated anorthite, forsteritic olivine, and pleonaste spinel represent a new, Mg-rich lunar highlands lithology that formed by metamorphism of an igneous spinel cumulate. The cordierite-forsterite pair in the assemblage is stable at a maximum pressure of 2.5 kilobars, equivalent to a depth of 50 kilometers, or 10 kilometers above the lunar crust-mantle boundary. The occurrence of the clast indicates that spinel cumulates are a more important constituent of the lower lunar crust than has been recognized. The rarity of cordierite-spinel troctolite among lunar rock samples suggests that it is excavated only by large impact events, such as the one that formed the adjacent Imbrium Basin.  相似文献   

9.
A linear correlation between concentrations of Sm and ratios of Sm to Eu for nine lunar samples suggests that those samples could correspond to liquids from equilibrium partial melting of a common source. On the basis of partition coefficients in terrestrial systems, the fraction of melting would not have exceeded about 15 percent and the immediate source could have been composed of olivine, orthopyroxene, and opaque minerals plus at least 25 percent feldspar, with at most a few percent calcic clinopyroxene and less than 1 percent apatite. The large Eu depletions could also have been produced by fractional crystallization if the ratio of Eu(2+) to Eu(3+) in lunar magmas significantly exceeds the values for terrestrial magmas.  相似文献   

10.
Measurements of nitrate concentration and relative enrichment in nitrogen-15 were made on samples of the surface waters of a typical Illinois corn belt watershed and the effluent of the subterranean tiles that drain the cropped land in the region. From these measurements, we estimate that at the time of peak nitrate concentration in the spring of 1970 a minimum of 55 to 60 percent of the nitrogen found as nitrate in the surface waters of this watershed originated from fertilizer nitrogen  相似文献   

11.
Organics found in comet 81P/Wild 2 samples show a heterogeneous and unequilibrated distribution in abundance and composition. Some organics are similar, but not identical, to those in interplanetary dust particles and carbonaceous meteorites. A class of aromatic-poor organic material is also present. The organics are rich in oxygen and nitrogen compared with meteoritic organics. Aromatic compounds are present, but the samples tend to be relatively poorer in aromatics than are meteorites and interplanetary dust particles. The presence of deuterium and nitrogen-15 excesses suggest that some organics have an interstellar/protostellar heritage. Although the variable extent of modification of these materials by impact capture is not yet fully constrained, a diverse suite of organic compounds is present and identifiable within the returned samples.  相似文献   

12.
Appreciable natural thermoluminescence with glow curve peaks at about 350 degrees centigrade for lunar fines and breccias and above 400 degrees centigrade for crystalline rocks has been recognized in lunar samples. Plagioclase has been identified as the principal carrier of thermoluminescence, and the diference in peak temperatures indicates compositional or structural differences between the feldspars of the different rock types. The present thermoluminescence in the lunar samples is probably the result of a dynamic equilibrium between acquisition from radiation and loss in the lunar thermal environment. A progressive change in the glow curves of core samples with depth below the surface suggests the use of thermoluminescence disequilibrium to detect surfaces buried by recent surface activity, and it also indicates that the lunar diurnal temperature variation penetrates to at least 10.5 centimeters.  相似文献   

13.
Major and selected minor elements were determined in seven whole rock fragments, five portions of pulverized lunar rock, and the lunar soil. Three different rock types were represented: vesicular, fine-grained basaltic rocks; medium to coarse-grained, vuggy gabbroic rocks; and breccia. The ranges (in percent) for the major constituents of the lunar samples are: SiO(2), 38 to 42; Al(2)O(3), 8 to 14; total iron as FeO, 15 to 20; MgO, 6 to 8; CaO, 10 to 12; Na(2)O, 0.5 to 1; K(2)0, 0.05 to 0.4; TiO(2), 8 to 13; MnO, 0.2 to 0.3; and Cr(2)O(3), 0.2 to 0.4. The high reducing capacity of the samples strongly suggests the presence of Ti(III).  相似文献   

14.
Nuclear gamma resonance measurements for the nuclide (57)Fe in lunar material were made in transmission on lunar fines and in scattering on intact lunar rock chips. No appreciable amnount of ferric iron was detected. Resonances were observed for ilmenite in all samples. Strong resonances attributed to ferrous iron in silicates, including pyroxenes and, in some samples, glasses and olivine, were also present. Metallic iron, alloyed with nickel, and troilite were also detected in the lunar fines. Differences in the spectra of various samples of lunar material and their significance are discussed.  相似文献   

15.
Lunar samples contain mercury, which may be volatilized at lunar daytime temperatures. Such mercury may constitute part of the tenuous lunar atmosphere. If mercury can escape from the atmosphere by a nonthermal mechanism, an interior reservoir or exterior sources (such as meteorite infall or solar wind, or both) are required to replenish it. Core samples exhibit an increase in surface-related mercury with depth, which suggests that a cold trap exists below the surface. The orientation of rocks on the lunar surface may be inferred by differences in the amounts of surface-related mercury found on exterior and interior samples.  相似文献   

16.
Nitrogen uptake, dissolved organic nitrogen release, and new production   总被引:3,自引:0,他引:3  
In oceanic, coastal, and estuarine environments, an average of 25 to 41 percent of the dissolved inorganic nitrogen (NH(4) (+) and NO(3) (-)) taken up by phytoplankton is released as dissolved organic nitrogen (DON). Release rates for DON in oceanic systems range from 4 to 26 nanogram-atoms of nitrogen per liter per hour. Failure to account for the production of DON during nitrogen-15 uptake experiments results in an underestimate of gross nitrogen uptake rates and thus an underestimate of new and regenerated production. In these studies, traditional nitrogen-15 techniques were found to underestimate new and regenerated production by up to 74 and 50 percent, respectively. Total DON turnover times, estimated from DON release resulting from both NH(4) (+) and NO(3) (-) uptake, were 10 +/- 1, 18 +/- 14, and 4 days for oceanic, coastal, and estuarine sites, respectively.  相似文献   

17.
Luminescence measurements were made of four lunar rocks, two terrestrial rocks (granite and gabbro), and one terrestrial mineral (willemite) by comparing the spectral curves with the curve of a barium sulfate standard. Efficiencies with 3000 angstrom excitation were < 6 x 10(-5) for the lunar samples, < 8 x 10(-5) for gabbro of very similar composition to the lunar samples, approximately 10(-4) for granite, and approximately 2 X 10(-2) for willemite. If these are typical values for other ultraviolet excitation wavelengths, the Apollo 11 site appears to contribute little to the observed lunar luminescence.  相似文献   

18.
The spectral reflectivity (0.30 to 2.50 microns) of several lunar areas was measured with ground-based telescopes. A narrow absorption band centered at 0.95 micron was revealed for the first time. No other absorption bands appear in the spectrum. The reflectivity continues to rise at longer wavelengths throughout the spectral region studied. A comparison of the telescope measurements of an area 15 kilometers in diameter that includes Tranquillity Base with laboratory measurements of Apollo 11 soil samples reveals remarkable agreement, an indication that properties determined for fairly large lunar areas are relevant to local conditions. The spectra are interpretable in terms of surface mineralogy. The absorption band varies in both depth and shape and the overall slope of the curve changes with lunar area, an indication of differences in the composition and opacity of surface material. However, the lack of variety in the band position suggests there are no major differences (say, from mostly pyroxenes to mostly olivines) in the mineralogy at those sites studied.  相似文献   

19.
The hydrogen-bonding status of His57 in the catalytic triad (Asp-His-Ser) of serine protease has important mechanistic implications for this class of enzymes. Recent nitrogen-15 nuclear magnetic resonance (NMR) studies of alpha-lytic protease find His57 and Ser195 to be strongly hydrogen-bonded, a result that conflicts with the corresponding crystallographic studies, thereby suggesting that the crystal and solution structures may differ. This discrepancy is addressed and resolved in a nitrogen-15 NMR study of the enzyme in the crystalline state. The results show that the His-Ser and Asp-His interactions are identical in crystals and solutions, but that in crystals His57 titrates with a pKa of 7.9, nearly one pKa unit higher than in solution. This elevated pKa accounts for the absence of the His-Ser hydrogen bond in previous x-ray studies.  相似文献   

20.
We have determined the abundances of 16O, 17O, and 18O in 31 lunar samples from Apollo missions 11, 12, 15, 16, and 17 using a high-precision laser fluorination technique. All oxygen isotope compositions plot within +/-0.016 per mil (2 standard deviations) on a single mass-dependent fractionation line that is identical to the terrestrial fractionation line within uncertainties. This observation is consistent with the Giant Impact model, provided that the proto-Earth and the smaller impactor planet (named Theia) formed from an identical mix of components. The similarity between the proto-Earth and Theia is consistent with formation at about the same heliocentric distance. The three oxygen isotopes (delta17O) provide no evidence that isotopic heterogeneity on the Moon was created by lunar impacts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号