首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 46 毫秒
1.
针对农村低压电网中广泛应用的剩余电流保护装置,只能检测到剩余电流有效值的大小作为唯一动作判据,不能自动识别剩余电流与触电故障类型之间所具有的非线性映射规律的难题,提出了一种基于小波包变换和量子神经网络的触电故障类型识别模型。首先应用小波包变换明确了生物体触电故障时,剩余电流中312.475 Hz以下低频带的能量谱波动明显,其中39.062 5~78.125 Hz和119.2~156.25 Hz两频带的波动幅度达9.05和9.00,提取了剩余电流的小波包能量谱8维度特征向量,同时应用特征频带能量占有比之差的平均变化率,实现了生物体发生触电故障的准确检测。然后以小波包能量特征向量为有效信息源,利用量子计算的态叠加思想和神经网络计算的自适应性结合,建立了一种量子神经网络作为触电故障类型识别模型,该网络采用多个量子能级的量子神经元,在学习1 437次时误差精度达到0.000 998 92,快速高效地实现了触电故障类型的识别,其仿真试验准确率达100%。该研究对于研发新一代基于生物体触电电流分量动作的自适应型剩余电流保护装置具有重要的参考价值。  相似文献   

2.
针对从低压电网的剩余电流中提取触电电流的难题,该文提出局部均值分解(local mean decomposition,LMD)与盲源分离相结合提取触电电流的方法。利用LMD算法自适应的将剩余电流信号分解为若干个PF(product function)分量,计算各分量与原始信号的相似系数,选取相似系数最大且大于0.8的模态分量构造虚拟通道,与剩余电流信号一起构建盲源分离的2个通道,再利用FastICA算法从剩余电流信号中提取触电电流。试验结果表明:相较于经验模态分解(empirical mode decomposition,EMD)时间0.129 s,LMD分解时间为0.032 s,速度更快;在单相电路触电时,基于LMD-FastICA算法和EMD-FastICA算法提取的触电电流与原始触电电流的平均相关系数分别为0.937 4和0.925 3,平均相对误差分别为0.096 2和0.109 8;在三相电路触电时,基于LMD-FastICA算法和EMD-FastICA算法提取的触电电流与原始触电电流的平均相关系数分别为0.962 4和0.948 9,平均相对误差分别为0.056 4和0.081 55;LMD-FastICA与EMD-FastICA两种算法分解信号的峰值因子的相对误差范围分别为0.001~0.103和0.012~0.155,且抑制端点效应更好。研究结果可为开发基于触电电流动作的新型剩余电流保护装置奠定理论基础。  相似文献   

3.
针对未来低压电网剩余电流保护技术中,生物触电故障诊断与剩余电流之间具有不确定的潜在规律及关系映射,提出了一种基于剩余电流固有模态能量特征的生物触电故障诊断模型。首先应用Hilbert-Huang变换明确了生物触电故障时,剩余电流各固有模态能量在时间和各种频率尺度上的分布,其中低频IMF分量的能量占有率高达86.35%,建立了剩余电流固有模态能量特征的提取方法;然后以选取剩余电流各IMF分量5维度能量特征向量,为生物触电故障诊断模型提供有效特征的信息源,利用量子遗传计算的快速寻优性和神经计算的自适应性有机结合,建立了一种量子遗传模糊神经网络作为触电故障模式分类归属的决策系统,仿真试验准确率达到100%。为研发基于人体触电电流而动作的新型剩余电流保护装置,提供可靠的理论依据和方法支撑。  相似文献   

4.
基于小波分析和BP神经网络的触电信号检测模型   总被引:2,自引:6,他引:2  
针对从农村低压电网总泄漏电流中检测和判断触电电流信号的难题,该文提出一种基于小波变换和BP神经网络的触电信号检测方法。首先用触电物理实验平台对动物触电信号进行实测,选择合适的小波基和分解尺度对触电实验中总泄漏电流及触电电流进行小波多分辨分析,实现原始信号的预处理;再将预处理后的波形作为样本进行神经网络学习和训练,建立从总泄漏电流波形中提取触电电流波形的神经网络耦合模型,并用此模型对未训练的样本进行触电信号的检测,检测值与实际值的平均相对误差为3.93%,说明该方法能够从总泄漏电流中检测出触电电流信号,对于  相似文献   

5.
基于参数优化的最小二乘支持向量机触电电流检测方法   总被引:4,自引:5,他引:4  
针对如何从低压电网总泄漏电流中检测出生物体触电电流信号的难题,提出了一种基于网格搜索和交叉验证的最小二乘支持向量机的触电电流信号检测方法。首先在剩余电流动作保护装置触电物理试验系统平台上通过故障录波器获得生物体在3个典型时刻(电源电压最大时刻、电源电压过零时刻及电源电压任意时刻)发生触电过程的总泄漏电流和触电电流波形,并截取触电前1个周期和触电后3个周期共800个采样点的信号数据作为触电试验样本数据;然后将触电试验样本数据进行滤波预处理,预处理后的多个样本采样点的总泄漏电流组合成特征向量输入最小二乘支持向量机(least square-support vector machine,LS-SVM),相应样本采样点的触电电流作为其输出,并通过网格搜索与交叉验证相结合的方法来优化最小二乘支持向量机参数,利用输出最优参数组合对触电电流与总泄漏电流的关系进行训练,从而建立了触电电流的检测模型;最后利用该方法对10组测试样本数据进行了检测,检测结果为:当训练样本数据为20组时,检测均方误差为14.0040,当训练样本数据为40组时,检测均方误差为11.7469,当训练试验数据为65组时,检测均方误差为11.1849。与径向基(radial basis function,RBF)神经网络方法相比,最小二乘支持向量机方法比径向基神经网络方法检测均方误差分别低3.7272、1.9132、0.1556,从而可较准确地从总泄漏电流中检测出生物体触电电流信号,为开发新一代基于生物体触电电流分量而动作的自适应型剩余电流保护装置提供理论依据。  相似文献   

6.
基于Hilbert-Huang变换的混流泵流动诱导振动试验   总被引:1,自引:1,他引:0  
混流泵水力诱导的机组振动是混流泵运行失稳的重要因素之一,为了研究混流泵水力激振诱导的机组振动情况,基于本特利408数据采集系统,测量获得了空载和负载工况下混流泵泵体和泵体基座不同位置处的振动信号,通过希尔伯特-黄变换对原始振动信号进行经验筛分分解,获得了不同模函数分量的频谱分布。研究结果表明,相比空载运行,混流泵负载工况运行时水力诱导的机组振动明显加剧,但在不同方向上,水力激振引起的振动各不相同。X方向上2个工况下的振动频谱分布基本相似,而在Y方向、Z方向和混流泵底座上,负载工况下波形的频带分布变窄,能量分布较为集中,且Z方向的原始振幅要明显大于Y方向,约为Y方向原始振幅的2倍。混流泵负载工况运行时,低频振动占据主要振动能量分布,使得不同模函数分量的主频向低频方向移动,水力诱导混流泵机组的振动以中低频振动为主。该研究可为有效降低或防止混流泵水力诱导的机组振动恶化提供参考。  相似文献   

7.
李寒  王库  边昊一 《农业工程学报》2010,26(13):182-186
该文提出了一种基于Mean-shift和提升小波变换的具有复杂背景的棉花叶片边缘检测算法。该方法首先用Mean-shift算法对彩色图像进行平滑,然后对平滑后的图像进行提升小波变换,以将平滑后的图像进行灰度增强。最后基于Canny算子对图像进行边缘检测。该算法能有效减少非边缘噪声,并且能够有效提取相互重叠叶片的边缘。与传统边缘检测方法边缘检测结果进行对比,该方法能够更加鲁棒地提取复杂背景下的重叠叶片边缘,其有效性和准确性是很明显的。  相似文献   

8.
基于小波变换的稻米爆腰检测技术研究   总被引:5,自引:0,他引:5  
稻谷裂纹(俗称爆腰)是导致大米在加工过程中破碎的重要原因,爆腰的检测对裂纹的研究和控制有重要意义。本文提出了一种新的爆腰检测方法。它利用小波变换在图像边缘提取和去噪中的优越性,通过对二进尺度下图像小波变换局部极大值的检测,提取边缘特征,去除噪声,对糙米爆腰图像中的裂纹进行了有效识别。从而实现爆腰率的自动检测,准确率达到92%以上。与传统的检测算子相比,取得了更为良好的效果。  相似文献   

9.
在噪声污染严重情况下实现暂态电能质量扰动准确定位非常困难,该文提出了一种将希尔伯特-黄变换与小波去噪相结合的新方法来解决这一难题。该方法首先利用希尔伯特移相处理信号,获得含噪声的扰动信号包络,再利用小波去噪方法去除噪声信号,从而获得可准确定位扰动起止时刻的扰动信号,并通过扰动定位算法实现扰动起止时刻定位。算例表明,该方法在噪声较高的情况下可替代提升小波方法实现准确定位,通过比较,这种先提取、后去噪的方法比先去噪、后提取的方法定位精度高、稳定性好,该研究可为电力系统故障诊断及暂态保护提供参考。  相似文献   

10.
基于改进YOLO-V4网络的浅海生物检测模型   总被引:4,自引:4,他引:0  
海洋生物智能检测是海洋牧场战略的一部分,而利用水下机器人在复杂的海洋环境中快速、准确地检测海洋生物是关键问题。由于海底环境复杂、亮度分布不均匀、海洋生物与其生存环境的区分性差、生物被遮蔽或半隐蔽等原因,准确识别海洋生物是一个巨大的挑战。随着卷积神经网络的发展,基于深度学习的目标检测算法成为主流,出现了如EfficientDet、RetinaNet和YOLO-V4等典型算法。这些基于深度学习的算法都不是完全尽善尽美的,不能完全满足海洋生物识别的需求。在探测精度、运算速度、密集目标探测效果等方面都有提高的空间。该研究建立了一个海洋生物数据集,采集了原始图片1 810张,数据增强后得到7 240张图片,它们被分成训练集(80%)和测试集(20%)。其次,通过引入跨阶段局部网络的概念,构建了嵌连接EC(Embedded Connection)部件,并将其嵌入到YOLO-V4网络的末端,得到改进的YOLO-V4网络。最后,该研究提出了基于改进YOLO-V4网络的海洋生物检测模型MOD(Marine Organism Detection)。试验结果表明,MOD模型的mAP50、mAP75(交并比阈值为0.5、0.75的精度均值)分别为0.969和0.734,计算量为35.328BFLOPs(十亿浮点运算数),检测帧速为139 ms(具有图形加速器GeForce GTX1650上)。与原始YOLO-V4模型相比,MOD模型的mAP50和mAP75提高了0.9和4.8个百分点,而计算量仅提高0.2%。此外,对比两种模型的准确率-召回率曲线,MOD模型的精确度与召回率的平衡点更接近(1,1),因此MOD模型能学习精度和效率的平衡性更好。该研究直接面向浅海生物的目标检测问题,所提供的方法可以为水下机器人精准执行智能捕捞等任务提供有益参考。  相似文献   

11.
针对实测触电故障信号具有非平稳特性而不易被辨识问题,提出了一种基于泄漏电流时频奇异谱和模糊聚类的触电故障诊断方法。首先,利用平滑伪威格纳-维尔分布(smoothed pseudo wigner-ville distribution,SPWVD)对触电故障信号进行时频分析并依据信号的能量分布特征选择时频区域;然后对选择的时频区域进行奇异谱分析,以获取的局部时频矩阵奇异值作为触电信号的特征量输入FCM,即可实现触电信号的故障诊断。对剩余电流保护装置试验平台上获取的实测触电故障信号的时频矩阵奇异值进行模糊C均值聚类,结果表明该方法识别准确率为97.50%,平均识别时间为0.008 5 s,其中植物和动物触电测试样本识别准确率分别为100%,95.00%,从而验证了基于泄漏电流时频奇异谱和模糊聚类的触电故障诊断方法的有效性,该研究可为研发新一代基于触电故障诊断的剩余电流保护装置提供理论依据和方法参考。  相似文献   

12.
昆虫刺吸电位(electricalpenetrationgraph,EPG)技术在研究刺吸式昆虫取食行为、昆虫与植物的关系、昆虫传毒机制、作物抗虫机制等方面得到了广泛的应用,然而EPG信号的识别和分析一直是靠人工进行,亟需波形自动识别系统以提高分析效率。刺吸式昆虫取食植物时,产生的EPG波形跟昆虫和植物的种类有关,不同类别的刺吸式昆虫EPG波形差别很大,即使是同种类型的EPG波形其幅值和频率间也会有差异,这给EPG波形的机器识别带来了困难。该文以蚜虫的EPG信号为研究对象,对np波、pd波、E1波、E2波、G波、C波和F波的特征提取和分类识别进行了研究,提出了一种基于分形维数、希尔伯特-黄变换(hilbert-huang transform,HHT)和决策树的EPG波形识别方法。首先对EPG仪器采集得到的信号进行去噪预处理,分别提取分形维数和HHT共10维特征,组成不同维数的特征向量进入决策树分类器进行对比试验。试验结果表明,可采用分形盒维数、Hurst指数、前2层的谱质心和加权频率融合的6维特征向量获得较高的识别率。在EPG波形的机器识别中采用6维特征向量输入的决策树进行分类,通过对4组不同样本进行测试,得到了92.14%、89.29%、95%和89.29%的识别率,平均识别率为91.43%。研究结果表明该文提出的基于分形维数和HHT的特征提取方法以及构建的决策树分类器具有一定的可行性,可为研发EPG信号自动识别分析系统提供理论参考。  相似文献   

13.
基于有限脉冲反应和径向基神经网络的触电信号识别   总被引:8,自引:7,他引:1  
针对农村低压电网剩余电流保护与动作技术中,如何检测总泄漏电流中人体触电支路电流的难题,该文利用严格线性相位与任意幅度特性的FIR(finite impulse response)数字滤波技术和具有自适应性与最佳逼近特性的RBF(radial basis function)神经网络有机结合,提出一种基于FIR数字滤波的RBF神经网络作为触电电流信号的检测方法。首先,采用FIR数字滤波器选定合适的窗函数和滤波阶数,对触电试验获得的总泄漏电流及触电电流进行滤波预处理;然后,将预处理后的信号波形作为样本集,选定适合的RBF函数,建立从总泄漏电流中提取触电电流波形的3层RBF神经网络模型。仿真试验结果表明:该方法速度快且稳定,检测值与实际值的平均相对误差为3.76%,具有良好的适应性和实用性,对于研制新一代剩余电流保护动作装置具有重要意义。  相似文献   

14.
基于局部均值分解的触电故障信号瞬时参数提取   总被引:2,自引:3,他引:2  
针对如何快速、准确地提取生物体触电故障暂态信号中的电力参数问题,提出了一种基于局部均值分解(local mean decomposition, LMD)的生物体触电时总泄漏电流信号瞬时参数提取方法,该方法首先利用局部均值分解将生物体触电时的总泄漏电流信号分解为一组乘积函数分量之和,每个乘积函数(product function, PF)分量可以表示为一个调幅信号和一个调频信号的乘积,然后由调幅信号和调频信号分别计算得到信号的瞬时幅值和瞬时频率。与采用希尔伯特黄变换方法相比,LMD具有瞬时频率曲线波动小和瞬时幅值函数端部失真小等优点。仿真信号分析结果表明:对测试信号进行LMD和经验模态分解(empirical mode decomposition, EMD)分解分别得到3个PF分量和5个IMF(intrinsic mode function)分量,分解前后信号的能量变化值分别为0.2851、0.5633,且LMD比EMD所需分解时间短0.0743s,与Hilbert变换相比,该文方法计算的瞬时幅值和瞬时频率更为平滑,在一定程度上避免了Hilbert 变换计算过程中的负频率和端点效应现象。试验信号分析结果表明:对消噪后的总泄漏电流信号进行LMD和EMD分解,分别得到5和6个分量,分解前后信号的能量变化值各为0.5574、0.8896,所用分解时间分别为0.0835、0.2479 s;在求取瞬时频率方面,LMD方法求取的主导分量瞬时频率可判定生物体触电时刻,而经Hilbert变换求取的瞬时频率不仅无法判定生物体触电时刻,还出现了负的频率值,无法解释其物理意义;在求取瞬时幅值方面,该文方法与Hilbert变换求取的触电前总泄漏电流信号的瞬时幅值的平均值分别为11.3240、12.3728 mA,与原生物体无触电时总泄漏电流的幅值11.3538 mA的绝对误差分别为0.0298、1.0190 mA,另外,2种方法求取的生物体触电后总泄漏电流信号的瞬时幅值与原生物体触电后总泄漏电流的幅值的绝对误差分别为0.4340、0.6643 mA。因此,仿真信号和试验信号分析结果均证明所提方法是有效和可行的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号