首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Stochastic late accretion to Earth, the Moon, and Mars   总被引:1,自引:0,他引:1  
Core formation should have stripped the terrestrial, lunar, and martian mantles of highly siderophile elements (HSEs). Instead, each world has disparate, yet elevated HSE abundances. Late accretion may offer a solution, provided that ≥0.5% Earth masses of broadly chondritic planetesimals reach Earth's mantle and that ~10 and ~1200 times less mass goes to Mars and the Moon, respectively. We show that leftover planetesimal populations dominated by massive projectiles can explain these additions, with our inferred size distribution matching those derived from the inner asteroid belt, ancient martian impact basins, and planetary accretion models. The largest late terrestrial impactors, at 2500 to 3000 kilometers in diameter, potentially modified Earth's obliquity by ~10°, whereas those for the Moon, at ~250 to 300 kilometers, may have delivered water to its mantle.  相似文献   

2.
The long-standing problem of the excess abundances of siderophile elements in the mantle can be resolved by considering an equilibrium core-mantle differentiation in the earth at 3000 to 3500 kelvin. This high-temperature differentiation results in mantle siderophile element abundances that closely match the observed values. Some lithophile (light) elements could enter the core in this process as is necessary to account for its low density. The abundances of siderophile elements in the mantle are consistent with the conclusion derived from the recent physical models that the earth was molten during accretion.  相似文献   

3.
Late accretion of primitive chondritic material to Earth, the Moon, and Mars, after core formation had ceased, can account for the absolute and relative abundances of highly siderophile elements (HSEs) in their silicate mantles. Here we show that smaller planetesimals also possess elevated HSE abundances in chondritic proportions. This demonstrates that late addition of chondritic material was a common feature of all differentiated planets and planetesimals, irrespective of when they accreted; occurring ≤5 to ≥150 million years after the formation of the solar system. Parent-body size played a role in producing variations in absolute HSE abundances among these bodies; however, the oxidation state of the body exerted the major control by influencing the extent to which late-accreted material was mixed into the silicate mantle rather than removed to the core.  相似文献   

4.
The abundances of siderophile elements in the Earth's silicate mantle are too high for the mantle to have been in equilibrium with iron in the core if equilibrium occurred at low pressures and temperatures. It has been proposed that this problem may be solved if equilibrium occurred at high pressures and temperatures. Experimental determination of the distribution of siderophile elements between liquid metal and liquid silicate at 100 kilobar and 2000 degrees C demonstrates that it is unlikely that siderophile element abundances were established by simple metal-silicate equilibrium, which indicates that the segregation of the core from the mantle was a complex process.  相似文献   

5.
Samarium-neodymium isotope data for six lunar basalts show that the bulk Moon has a 142Nd/144Nd ratio that is indistinguishable from that of chondritic meteorites but is 20 parts per million less than most samples from Earth. The Sm/Nd formation interval of the lunar mantle from these data is 215(-21)(+23) million years after the onset of solar system condensation. Because both Earth and the Moon likely formed in the same region of the solar nebula, Earth should also have a chondritic bulk composition. In order to mass balance the Nd budget, these constraints require that a complementary reservoir with a lower 142Nd/144Nd value resides in Earth's mantle.  相似文献   

6.
Chlorine stable isotope compositions (delta37Cl) of 22 mid-ocean ridge basalts (MORBs) correlate with Cl content. The high-delta37Cl, Cl-rich basalts are highly contaminated by Cl-rich materials (seawater, brines, or altered rocks). The low-delta37Cl, Cl-poor basalts approach the composition of uncontaminated, mantle-derived magmas. Thus, most or all oceanic lavas are contaminated to some extent during their emplacement. MORB-source mantle has delta37Cl 相似文献   

7.
Recent studies are leading to a better understanding of the formation of the earth's metal core. This new information includes: better knowledge of the physics of metal segregation, improved geochemical data on the abundance of siderophile and chalcophile elements in the silicate part of the earth, and experimental data on the partitioning behavior of siderophile and chalcophile elements. Extensive melting of the earth as a result of giant impacts, accretion, or the presence of a dense blanketing atmosphere is thought to have led to the formation of the core. Collision between a planet-sized body and the earth may have also produced the moon. Near the end of accretion, core formation evidently ceased as upper mantle conditions became oxidizing. The accumulation of the oceans is a consequence of the change to oxidizing conditions.  相似文献   

8.
The lunar mare basalt 15555 from the edge of Hadley Rille has been dated at 3.3x10(9) years by both rubidium-strontium and potassium-argon techniques. Age and trace element abundances closely resemble those of the Apollo 12 mare basalts. Data from lunar basalts obtained thus far indicate that they cannot be derived by simple fractionation from a homogeneous source.  相似文献   

9.
The niobium-92-zirconium-92 ((92)Nb-(92)Zr) extinct radioactive decay system (half-life of about 36 million years) can place new time constraints on early differentiation processes in the silicate portion of planets and meteorites. Zirconium isotope data show that Earth and the oldest lunar crust have the same relative abundances of (92)Zr as chondrites. (92)Zr deficits in calcium-aluminum-rich inclusions from the Allende meteorite constrain the minimum value for the initial (92)Nb/(93)Nb ratio of the solar system to 0.001. The absence of (92)Zr anomalies in terrestrial and lunar samples indicates that large silicate reservoirs on Earth and the moon (such as a magma ocean residue, a depleted mantle, or a crust) formed more than 50 million years after the oldest meteorites formed.  相似文献   

10.
To explain the elevated osmium isotope (186Os-187Os) signatures in oceanic basalts, the possibility of material flux from the metallic core into the crust has been invoked. This hypothesis conflicts with theoretical constraints on Earth's thermal and dynamic history. To test the veracity and uniqueness of elevated 186Os-187Os in tracing core-mantle exchange, we present highly siderophile element analyses of pyroxenites, eclogites plus their sulfides, and new 186Os/188Os measurements on pyroxenites and platinum-rich alloys. Modeling shows that involvement in the mantle source of either bulk pyroxenite or, more likely, metasomatic sulfides derived from either pyroxenite or peridotite melts can explain the 186Os-187Os signatures of oceanic basalts. This removes the requirement for core-mantle exchange and provides an effective mechanism for generating Os isotope diversity in basalt source regions.  相似文献   

11.
Concentrations of potassium, rubidium, strontium, barium, and rareearth elements have been determined by mass spectrometric isotope dilution for eight Apollo 11 lunar samples and for some separated phases. Potassiumn and ritbidium are at chondritic levels, strontium at 15 times, and barium and rare earths at 30 to 100 times chondritic levels. There are trace element similarities between the lunar samples and basaltic achondrites, terrestrial dredge basalts and the bulk earth. The trace element data appear to be consistent with these lunar samples being the result of limited partial fusion of some material similar to the brecciated eucrite meteorites.  相似文献   

12.
Multispectral images of the lunar western limb and far side obtained from Galileo reveal the compositional nature of several prominent lunar features and provide new information on lunar evolution. The data reveal that the ejecta from the Orientale impact basin (900 kilometers in diameter) lying outside the Cordillera Mountains was excavated from the crust, not the mantle, and covers pre-Orientale terrain that consisted of both highland materials and relatively large expanses of ancient mare basalts. The inside of the far side South Pole-Aitken basin (>2000 kilometers in diameter) has low albedo, red color, and a relatively high abundance of iron- and magnesium-rich materials. These features suggest that the impact may have penetrated into the deep crust or lunar mantle or that the basin contains ancient mare basalts that were later covered by highlands ejecta.  相似文献   

13.
It has been assumed that Nb and Ta are not fractionated during differentiation processes on terrestrial planets and that both elements are lithophile. High-precision measurements of Nb/Ta and Zr/Hf reveal that Nb is moderately siderophile at high pressures. Nb/Ta values in the bulk silicate Earth (14.0 +/- 0.3) and the Moon (17.0 +/- 0.8) are below the chondritic ratio of 19.9 +/- 0.6, in contrast to Mars and asteroids. The lunar Nb/Ta constrains the mass fraction of impactor material in the Moon to less than 65%. Moreover, the Moon-forming impact can be linked in time with the final core-mantle equilibration on Earth 4.533 billion years ago.  相似文献   

14.
Results for multielement analysis of lunar soil and of seven rocks returned by Apollo 11 are presented. Sixty-six elements were determined with spark source mass spectrography and neutron activation. U. S. Geological Survey standard W-1 was used as a comparative stanadard. Results indicate an apparent uniformity of composition among the samples. Comparison with solar, meteoritic, and terrestrial abundances reveals depletiozt of volatile elements and enrichment of the rare earths titaniunm, zirconium, yttriuntm, and hafnium. Althouglh there is an overall similarity of the lunar material to basaltic achondrites amid basalts, the differences suggest detailed geochemical processes to the history of this material.  相似文献   

15.
Abundance and distribution of iron on the moon   总被引:3,自引:0,他引:3  
The abundance and distribution of iron on the moon is derived from a near-global data set from Clementine. The determined iron content of the lunar highlands crust ( approximately 3 percent iron by weight) supports the hypothesis that much of the lunar crust was derived from a magma ocean. The iron content of lower crustal material exposed by the South Pole-Aitken impact basin on the lunar farside is higher ( approximately 7 to 8 percent by weight) and consistent with a basaltic composition. This composition supports earlier evidence that the lunar crust becomes more mafic with depth. The data also suggest that the bulk composition of the moon differs from that of the Earth's mantle. This difference excludes models for lunar origin that require the Earth and moon to have the same compositions, such as fission and coaccretion, and favors giant impact and capture.  相似文献   

16.
The use of hafnium-tungsten chronometry to date the Moon is hampered by cosmogenic tungsten-182 production mainly by neutron capture of tantalum-181 at the lunar surface. We report tungsten isotope data for lunar metals, which contain no 181Ta-derived cosmogenic 182W. The data reveal differences in indigenous 182W/184W of lunar mantle reservoirs, indicating crystallization of the lunar magma ocean 4.527 +/- 0.010 billion years ago. This age is consistent with the giant impact hypothesis and defines the completion of the major stage of Earth's accretion.  相似文献   

17.
Uquid metal-liquid silicate partition coefficients for several elements at 100 kilobars and temperatures up to about 3000 kelvin in carbon capsules experimentally converge on unity with increasing temperature. The sense of change of the partition coefficients with temperature resembles the extrapolation of Murthy and may partially contribute to, but by no means provide a complete resolution of, the "excess" siderophile problem in the Earth's mantle. Sulfur and perhaps carbon successfully compete with oxygen for sites in the metallic liquid at these temperatures and pressures. This observation casts doubt upon the hypothesis that oxygen is the light element in the Earth's core.  相似文献   

18.
Lunar seismic data from artificial impacts recorded at three Apollo seismometers are interpreted to determine the structure of the moon's interior to a depth of about 100 kilomneters. In the Fra Mauro region of Oceanus Procellarum, the moon has a layered crust 65 kilometers thick. The seismic velocities in the upper 25 kilometers are consistent with those in lunar basalts. Between 25 and 65 kilometers, the nearly constant velocity (6.8 kilometers per second) corresponds to velocities in gabbroic and anorthositic rocks. The apparent velocity is high (about 9 kilometers per second) in the lunar mantle immediately below the crust.  相似文献   

19.
Hotspots, basalts, and the evolution of the mantle   总被引:2,自引:0,他引:2  
The trace element concentration patterns of continental and ocean island basalts and of mid-ocean ridge basalts are complementary. The relative sizes of the source regions for these fundamentally different basalt types can be estimated from the trace element enrichment-depletion patterns. Their combined volume occupies most of the mantle above the 670 kilometer discontinuity. The source regions separated as a result of early mantle differentiation and crystal fractionation from the resulting melt. The mid-ocean ridge basalts source evolved from an eclogite cumulate that lost its late-stage enriched fluids at various times to the shallower mantle and continental crust. The mid-ocean ridge basalts source is rich in garnet and clinopyroxene, whereas the continental and ocean island basalt source is a garnet peridotite that has experienced secondary enrichment. These relationships are consistent with the evolution of a terrestrial magma ocean.  相似文献   

20.
Samples of igneous "gabbro," "basalt," and lunar regolith have compositions fundamentally different from all meteorites and terrestrial basalts. The lunar rocks are anhydrous and without ferric iron. Amounts of titanium as high as 7 weight percent suggest either extreme fractionation of lunar rocks or an unexpected solar abundance of titanium. The differences in compositions of the known, more "primitive" rocks in the planetary system indicate the complexities inherent in defining the solar abundances of elemizents and the initial compositions of the earth and moon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号