首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 365 毫秒
1.
A simple and modified electrospinning technique was utilized to prepare aligned and heat treated Polyacrylonitrile nanofibers by using a rotating drum fixed on top of syringe needles and applying upward hot air flow which can facilitate to heat nanofibers in electrospinning zone. Polyacrylonitrile nanofibers were electrospun from its 14 wt% solution in dimethylformamide under practical conditions. Angular power spectrum analysis showed better fiber alignment with increasing take up speed, although SEM studies demonstrated wider diameters of nanofibers being produced by modified method. The glass transition temperature of all prepared samples were determined between 70 °C and 90 °C using DSC technique. The Quantitative analysis of WAXD patterns has revealed the positive effect of modified method on the degree of crystallization of nanofibers heat treated at higher take up speed. The maximum chain orientation factor of 0.27 was determined for nanofibers collected at linear velocity of 114.5 m/min in the modified set up using Raman Spectroscopy technique.  相似文献   

2.
Polyethylene terephthalate (PET)/biomedical polyurethane (BPU) composite nanofibers with modulated mechanical properties are electrospun by varying the weight ratios of PET and BPU polymers in the mixture. The effect of BPU content on the morphology, porosity, thermal properties, and crystalline structures are systematically investigated. It is shown that uniform PET/BPU nanofibers can be formed through optimization. When the content of BPU is low (0?C7 %), better elongation of the nanofibrous mats is obtained with the increase of BPU content, whereas further increasing the BPU polymer (up to 15 %) results in a decreased breaking elongation as well as the mechanical strength of composites. The formed nanofibrous mats may find potential applications in tissue engineering and vascular graft.  相似文献   

3.
Semicrystalline poly(ethylene terephthalate) (cPET)/amorphous poly(ethylene terephthalate) with isophthalic acid (aPET) blends with 100/0, 75/25, 50/50, 25/75, and 0/100 by weight ratios were dissolved in a mixture of trifluoroacetic acid (TFA)/methylene chloride (MC) (50/50, v/v) and electrospun via the electrospinning technique. Solution properties such as solution viscosity, surface tension and electric conductivity were determined. The solution viscosity slightly decreased as aPET content increased, while there was no difference in surface tension with respect to aPET composition. The characteristics of the electrospun cPET/aPET blend nonwovens were investigated in terms of their morphology, pore size and gas permeability. All these measurements were carried out before and after heat treatment for various blend weight ratios. The average diameter of the fibers decreased with increasing aPET composition due to the decrease in viscosity. Also, the morphology of the electrospun cPET/aPET blend nonwovens was changed by heat treatment. The pore size and pore size distribution varied greatly from a few nanometers to a few microns. The gas permeability after heat treatment was lower than that before heat treatment because of the change of the morphology.  相似文献   

4.
High-speed melt spinning of syndiotactic polystyrene was carried out using high and low molecular weight polymers, HMs-PS and LMs-PS, at the throughput rates of 3 and 6 g/min. The effect of take-up velocity on the structure and properties of as-spun fibers was investigated. Wide angle X-ray diffraction (WAXD) patterns of the as-spun fibers revealed that the orientation-induced crystallization started to occur at the take-up velocities of 2–3 km/min. The crystal modification wasα-form. Birefringence of as-spun fibers showed negative value, and the absolute value of birefringence increased with an increase in the take-up velocity. The cold crystallization temperature analyzed through the differential scanning calorimetry (DSC) decreased with an increase in the take-up velocity in the low speed region, whereas as the melting temperature increased after the on-set of orientation-induced crystallization. It was found that the fiber structure development proceeded from lower take-up velocities when the spinning conditions of higher molecular weight and lower throughput rate were adopted. The highest tensile modulus of 6.5 GPa was obtained for the fibers prepared at the spinning conditions of LMs-PS, 6 g/min and 5 km/min, whereas the highest tensile strength of 160 MPa was obtained for the HMs-PS fibers at the take-up velocity of 2 km/min. Elongation at break of as-spun fibers showed an abrupt increase, which was regarded as the brittle-ductile transition, in the low speed region, and subsequently decreased with an increase in the take-up velocity. There was a universal relation between the thermal and mechanical properties of as-spun fibers and the birefringence of as-spun fibers when the fibers were still amorphous. The orientation-induced crystallization was found to start when the birefringence reached — 0.02. After the starting of the orientation-induced crystallization, thermal and mechanical properties of as-spun fibers with similar level of birefringence varied significantly depending on the processing conditions.  相似文献   

5.
This study aims to develop the new Hanji paper composite nonwovens that positively affect the antimicrobial activity, deodorization, and comfort functionality of natural materials of cotton and rayon that have high consumer preference and to manufacture new sanitary goods and facial mask sheets utilizing the hydroentanglement process. The results of the study through the evaluation analysis of functionality and properties of the composite nonwovens developed in this study are as follows. The manufactured composite nonwovens have improved functionalities of absorption velocity, antimicrobial activity, and deodorization from the base materials of C45 (Cotton (45 g/m2)) and R53 (Rayon/PET (53 g/m2)). Also, physical properties such as tensile strength, breaking extension, and tearing strength have improved significantly. The texture of composite nonwovens of Mulberry 70 %/Pulp 30 %(15) of Hanji paper weight 15 g/m2 with base material did not show a significant difference compared to the nonwovens of C45 and R53. However, the soft texture of composite nonwovens of Mulberry 70 %/Pulp 30 %(25) of Hanji paper weight 25 g/m2 with base material showed somewhat of a decrease compared to the nonwovens of C45 and R53. When considering the marketability, the composite nonwovens of Mulberry 70 %/Pulp 30 %+C45 and Mulberry 70 %/Pulp 30 %+R53 were estimated to be a positive development for use in female sanitary products and facial mask sheet products. These newly developed Hanji composite nonwovens could contribute to the development of high value added products that would satisfy the consumers.  相似文献   

6.
In this study, the polyacrylonitrile (PAN)-based precursor was produced by electrospinning for the fabrication of oxidized nanofiber nonwovens. The parameters adopted for the oxidation process were chosen from the thermal analysis results obtained using DSC and TGA. The oxidation temperatures of 270, 300, and 330 oC were selected for heating times of 30, 50, and 70 min at three levels of tension. The variations in yield rate, breaking strength, shrinkage and stiffness of the oxidized PAN-based electrospun nonwovens were examined in this article. The results indicate that the physical properties of electrospun nonwovens were affected by the oxidation conditions. In addition, the limit oxygen index (LOI) was found to increase with increasing heat treatment temperature and time. In addition, the optimum oxidation condition was found to be heating temperature of 300 °C for a duration of 70 min. Under this condition, high-quality PAN-based oxidized electrospun nonwovens were produced with aromatization index (AI) of 62 % and LOI of 44 %.  相似文献   

7.
Layered fabric systems with electrospun polyurethane fiber web layered on spunbonded nonwoven were developed to examine the feasibility of developing protective textile materials as barriers to liquid penetration using electrospinning. Barrier performance was evaluated for layered fabric systems, using pesticide mixtures that represent a range of surface tension and viscosity. Air permeability and water vapor transmission were assessed as indications of thermal comfort performance. Protection performance and air/moisture vapor transport properties were compared for layered fabric systems and existing materials for personal protective equipment (PPE). Layered fabric systems with electrospun nanofiber web showed barrier performance in the range between microporous materials and nonwovens used for protective clothing. Layered fabric structures with the web area density of 1.0 and 2.0 g/m2 exhibited air permeability higher than most PPE materials currently in use; moisture vapor transport was in a range comparable to nonwovens and typical woven work clothing fabrics. Comparisons of layered fabric systems and currently available PPE materials indicate that barrier/transport properties that may not be attainable with existing PPE materials could be achieved from layered fabric systems with electrospun nanofibrous web.  相似文献   

8.
This paper focused on using response surface methodology (RSM) and artificial neural network (ANN) to analyze production rate of electrospun nanofibers. The three important electrospinning factors were studied including polymer concentration (wt %), applied voltage (kV) and the nozzle-collector distance (cm). The predicted production rates were in agreement with the experimental results in both ANN and RSM techniques. High regression coefficient between the variables and the response (R 2=0.975) indicates excellent evaluation of experimental data by second-order polynomial regression model. The regression coefficient was 0.988, which indicates that the ANN model was shows good fitting with experimental data. The obtained results indicate that the performance of ANN was better than RSM. It was concluded that applied voltage plays an important role (relative importance of 42.8 %) against production rate of electrospun nanofibers. The RSM model predicted the 2802.3 m/min value of the highest production rate at conditions of 15 wt % polymer concentration, 16 kV of the applied voltage, and 15 cm of nozzle-collector distance. The predicted value showed only 4.4 % difference with experimental results in which 2931.0 m/min at the same setting was observed.  相似文献   

9.
In this study, two kinds of polyacrylonitrile (PAN) (carbon fiber grade PAN and oxidized fiber grade PAN) are used as the raw materials for a PAN-based nanofiber nonwoven that is prepared using electrospinning. A high-temperature erect furnace is then used, which uses oxidization processes to prepare oxidized nanofiber nonwovens in a continuous manufacturing process. The parameters used for the oxidation process are oxidation temperatures of 150, 200, 250, 275, 300 and 300 °C, which correspond to a production rate of 3, 5 and 10 cm/min at 5-cN tension. The variation in the yield rate, the breaking strength and the shrinkage of the oxidized PAN based electrospun nonwovens are examined in this study. The results demonstrate that the limit oxygen index (LOI) and aromatization index (AI) increase as the production rate decreases. Under the optimum oxidation conditions, higher quality oxidized electrospun nonwovens are produced using carbon fiber grade PAN with AI of 61 % and LOI of 42 %.  相似文献   

10.
Electrospinning is a process of producing micro- and nanoscale fibers using electrostatically charged polymeric solutions under various conditions. Most synthetic and naturally occurring polymers can be electrospun using appropriate solvents and/or their blends. Because of the fascinating properties of electrospun fibers, electrospinning has recently attracted enormous attention worldwide. Initially, this method did not receive much industrial attention due to lower production rates, costs, and lack of interest in size, shape, and flexibility of electrospun nanofibers. However, with the advancement of needleless electrospinning, multiple needles in series, near-field electrospinning techniques, and nanotechnology in particular, this is no longer an issue. This paper outlines the recent progress on the production of various sizes and shapes of fibers using conventional and non-conventional electrospinning processes (e.g., rotating drum and disc, translating spinnerets, rotating strings of electrodes in polymeric solutions, and forcespinning) and presents a complete view of electrospun fiber productions techniques and the resultant products’ applications in different fields to date.  相似文献   

11.
In this study, two biodegradable polymers, polycaprolactone (PCL) and polyvinyl alcohol (PVA) were used to fabricate nanofiber nonwovens (NFNs). Also, the silver nanoparticles (AgNPs) successfully reduced by using tea polyphenols (TP) and incorporated in the NFNs via electrospinning. The morphologies of the NFNs and AgNPs were analyzed by scanning electron microscopy (SEM), transmission electron microscopy (TEM), respectively. The PCL nanofibers and PVA nanofibers interweaved each other, and AgNPs with average diameter 1.53±0.15 nm were embedded in the PVA nanofibers. The properties of electrospun NFNs were characterized by pore property, swelling/weight loss, water contact angle, mechanical property, and antibacterial activity. The nanofibers cross-linked to each other forming the 3Dnetwork porous structure with diameter about 1-1.5 μm. Although the hydrophobic PCL was added in the hybrid NFNs, the NFNs still showed hydrophilic propriety, high swelling degree (i.e. swelling degree is 330 % for 48 h), and low weight loss (i.e. weight loss is 22.4 % for 48 h). Also, the hybrid PCL/PVA/AgNPs NFNs exhibited a suitable mechanical property for wound dressings (i.e. tensile strength is 4.27 MPa, and breaking elongation is 88 %). Moreover, the hybrid NFNs effectively inhibited growth of Escherichia coli and Staphylococcus aureus. In summary, this PCL/PVA/AgNPs NFNs may provide a promising candidate for accelerating wound healing.  相似文献   

12.
A novel self-colored polyethylene terephthalate (PET) was synthesized using a synthesized dye, 4-amino-N-propanoic acid-1,8-naphthalimide. For this purpose, the prepared naphthalimide dye was added upon the polycondensation step and then a self-colored PET was prepared by step-growth polymerization. The characterization of synthesized self-colored PET and naphthalimide dye were carried out using TLC, FTIR, 1HNMR, DSC, UV-visible and Fluorometery. Results indicated that, the novel fluorescent yellow-green PET with appropriate properties was obtained. The glass transition temperature of self-colored PET was 70 °C and it was measured by differential scanning calorimeter, which revealed that addition of dye to the chains of polymer did not affect the context of glass transition of polymer. UV-visible spectrum indicated that, 99 percent of dye was incorporated in polymer chains chemically. Furthermore, the intrinsic viscosity of self-colored PET was 0.556 dl/g and molecular weight of polymer was around 35000 (g/mol) and measured using the viscometer technique.  相似文献   

13.
Flexible tubular structures fabricated from solution electrospun fibers are finding increasing use in tissue engineering applications. However it is difficult to control the deposition of fibers due to the chaotic nature of the solution electrospinning jet. By using non-conductive polymer melts instead of polymer solutions the path and collection of the fiber becomes predictable. In this work we demonstrate the melt electrospinning of polycaprolactone in a direct writing mode onto a rotating cylinder. This allows the design and fabrication of tubes using 20 μm diameter fibers with controllable micropatterns and mechanical properties. A key design parameter is the fiber winding angle, where it allows control over scaffold pore morphology (e.g. size, shape, number and porosity). Furthermore, the establishment of a finite element model as a predictive design tool is validated against mechanical testing results of melt electrospun tubes to show that a lesser winding angle provides improved mechanical response to uniaxial tension and compression. In addition, we show that melt electrospun tubes support the growth of three different cell types in vitro and are therefore promising scaffolds for tissue engineering applications.  相似文献   

14.
In this paper, novel electrospun LA-PA/PET/Ag phase change composite fibers with different amount of Ag nanoparticles were prepared via the technique of electrospinning followed by UV irradiation method. The morphological structure, thermal energy storage properties, thermal energy storage and release rates of prepared LA-PA/PET/AgNO3 and LA-PA/PET/Ag composite fibers were investigated by scanning electron microscope (SEM), high-resolution transmission electron microscope (HR-TEM), differential scanning calorimeter (DSC), and the measurement of melting and freezing times, respectively. The SEM images revealed that electrospun LA-PA/PET/AgNO3 and LA-PA/PET/Ag composite fibers possessed the smooth morphologies with cylindrical shape. The corresponding average fiber diameters gradually decreased with increasing content of the AgNO3 in the solutions, and slightly smaller than those of the LA-PA/PET composite fibers with oblate morphology and wrinkled surfaces. Yellow-brown coloration of electrospun LA-PA/PET/Ag phase change composite fibers were observed after UV irradiation treatment, which demonstrated that Ag ions were successfully reduced to Ag nanoparticles. The TEM images revealed that these reduced Ag nanoparticles were homogenously dispersed within the composite fibers. The results from DSC measurements indicated that the phase change temperatures and enthalpies of electrospun LA-PA/PET/Ag phase change composite fibers with different Ag content have not be influenced by the UVirradiation treatment. The thermal energy storage and release rates of electrospun LA-PA/PET/Ag phase change composite fibers were also improved due to the combination of reduced Ag nanoparticles. These UV-irradiated electrospun phase change composite fibers with excellent thermal energy storage properties can be acted as a novel form-stable PCMs for the applications related to storage and retrieval of thermal energy.  相似文献   

15.
In this study, electrospinning of poly(ε-caprolactone) (PCL) and its optimum preparation conditions were examined in detail using various solvent systems, such as formic acid, dichloromethane/dimethyl formamide (DMF), chloroform/DMF, and dichloroethane. The average fiber diameter of the electrospun PCL mat was controlled by the solvent used with a proper concentration of PCL dope solution. Different fiber sizes (0.1, 0.8, 1.9, and 3.4 μm) of uniform PCL mats were fabricated and the effects of fiber size on surface morphology, tensile properties and cell behavior were investigated. Here, we manipulated much broader range of average fiber diameter of the mats, from nano to several micron size of fiber. It was found that the fiber diameter greatly affected topology (surface roughness) and mechanical properties of the electrospun PCL mat and consequently, they influenced the cell behavior (adhesion and proliferation) significantly. We expect that these results will provide more feasible application of electrospun PCL scaffold in tissue engineering through the co-relations in structure and property of PCL fiber mat on cell behavior.  相似文献   

16.
In this study, nonwoven fabrics were developed for the replacement of polyurethane foams in car interiors, in particular, cushioning materials for car seats. Polyethylene terephthalate (PET) hollow fibers and two types of bicomponent binder fibers were used to manufacture automotive nonwovens by carding processes and then post-bonding processes, such as needle punching or thermal bonding. The physical and mechanical properties of nonwovens were thoroughly investigated with respect to the effects of binder fibers and bonding processes. The tensile strength and elongation for nonwovens were found to be significantly improved by combined needle punching and thermal bonding processes. In addition, the nonwoven cushioning materials were characterized in terms of hardness, support factors, and compressive and ball rebound resilience. The nonwovens showed greater hardness than the flexible PU foam. However, support factors over 2.8 for the nonwovens indicated improved seating comfort, along with better seating characteristics of greater resilience and air permeability in comparison with the PU foam.  相似文献   

17.
A comparison of poly(trimethylene terephthalate)(PTT) and poly(ethlene terephthalate)(PET) fibers spun at various take-up speeds was presented. Fiber characterization included tensile and thermal properties, optical birefringence, density, sonic modulus, boil-off shrinkage, and wide-angle X-ray diffraction. The phenomenon of stress-induced crystallization was inferred from the X-ray diffraction diagrams for fibers spun with take-up speeds over 4000 m/min. The tenacity and elongation of PTT and PET fiber showed typical results, but the initial modulus of PTT fiber was nearly unchanged over the entire take-up speed range (2000–7000 m/min), whereas that of PET, as expected, increased monotonically with increasing take-up speed. This divergent behavior could be explained by the different molecular deformations in the c-axis as determined from X-ray diffraction patterns. The fiber crystallinity, density, and heat of fusion of both polymers increased with take-up speed. The boil-off shrinkage decreased with increasing take-up speed. The optical birefringence of the two fiber types showed a maximum level at a take-up speed of ca. 5000 m/min. The melting temperature behavior of PTT fiber was different from that of PET fibers. It was found that PTT is less sensitive to stress induced changes at high spinning speeds than is PET.  相似文献   

18.
Untreated polyethylene terephthalate has limitation in some medical applications, such as wound dressing due to the hydrophobic property. Thereby, Tragacanth Gum (TG) as a natural polysaccharide utilized in polymer solution led to novel semi-bionanofibers of PET/TG blends (15:1, 15:2 and 15:3) through electrospinning method. Fourier transform infrared spectroscopy results confirmed the existence of hydrophilic groups of TG such as hydroxyl groups. Moreover, twice water uptake of PET/TG comparing with PET nanofibers indicated the hydrogel properties, also PET/TG nanofibers possessed high surface wettability through reduction of contact angle from 113 to 0°. Further, differential scanning calorimetry analysis indicated the alteration in the crystalline structure of PET/TG nanofibers that led to faster degradation in various pH values. The SEM images of PET/TG nanofibers displayed the greater average diameter with increasing TG content (283 nm) comparing with PET nanofibers (193 nm). Also introducing more TG in the nanofibers exhibited lower mechanical properties.  相似文献   

19.
In this study, micro-porous carboxymethyl cellulose (CMC) nonwovens were prepared by carboxymethylation of cellulose nonwovens produced by a wet-laid process and their properties were investigated for potential applications as adhesion prevention barriers. After carboxymethylation, the thickness and mean pore size of the cellulose nonwovens were increased, whereas their pore size distribution became narrower. Tensile strength of cellulose nonwovens was proportional to basis weight, and dramatically increased after carboxymethylation. CMC nonwovens immediately absorbed a phosphate buffered saline solution and showed swollen phase within 1 min. It was found that the thickness and pore size distribution of CMC nonwovens could be easily controlled by the wet-laid process. It is expected that the CMC nonwovens can be used as adhesion prevention barriers.  相似文献   

20.
Synthesis of biocompatible polymer nanofibers is valuable, due to their use as a cover for burns and as a replacement for bandage because of their antimicrobial properties. In this study, electrospinning of chitosan(Ch) and nanofibers synthesis with antibacterial properties was investigated. Nanofibers with antibacterial properties were synthesized by electrospun of Ch/poly(L-lactide)(PLA)/Imipenem(Imi) polymer solution. The results showed that the optimized ratio of Ch/PLA polymer solution was ratio of 50:50 and Ch 2 wt% and PLA 10 wt% polymer solution was the best weight percentage for nanofiber preparation. Also, the average diameter of Ch/PLA/Imi nanofibers was 143 nm and measured with ImageJ software. Afterwards, the antibacterial properties of Imi as additives (with different percentages) was studied in the polymer solution. The scanning electron microscopy (SEM) images and antibacterial tests were showed that the electrospun of Ch/PLA/Imi polymeric nanofibers were effective against Gram negative bacteria Escherichia coli (E. coli) and inhibited growth of E. coli. The growth and viability percentage of fibroblast cells with nanofibers in αMEM culture are at desirable levels after 6 days.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号