首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 0 毫秒
1.
The primary mode of action of petroleum spray oils (PSOs) on pest insects is through direct contact. Indirect effects are, however, also possible, and deposits of the oils may influence pest populations by killing insects and/or by influencing their behaviour. The indirect effects of deposits of a new nC24 oil against the cotton aphid, Aphis gossypii Glover, were therefore determined. The effects of oil deposits on the acceptance of cotton as host plant by the aphids were assessed, as well as aphid mortality rates and their success in the establishment of colonies. The efficacy of deposits of a heavier oil (nC27) was also evaluated. Deposits of PSO were toxic to A. gossypii and remained effective until 8 days after spraying. Mortality decreased with time, so that, the older the deposit, the lower was the mortality. Significantly higher aphid mortalities were achieved on younger leaves than on mature ones. Thus, leaf age proved a significant factor in the efficacy of the deposits. Consecutive prophylactic applications (at 9 day intervals) did not have a cumulative effect, and their killing power proved to be independent of one another. Thus, applying the oil prior to aphid infestations would confer only minimal protection. The mortality inflicted by the deposits was not improved by increasing the molecular mass of the oil used (nC27 oil), but the toxic life of the oil deposit was increased. Oil deposits did not deter alates from landing on oil-sprayed plants. Oil deposits did, however, affect subsequent alate and nymphal survival, and thus the establishment of aphid colonies. The impact that the oils could have on the longer-term development of aphid populations in the field was thus demonstrated. First- and second-instar nymphs were the most susceptible life stages, with > 50% mortality compared with < 10% for the other stages. These nymphs did not show the typical signs of oil-induced mortality observed in aphids killed by direct oil applications, which suggests an alternative mode of action to that of the directly applied oil. Anoxia does not seem to be involved in either process, and alternative modes of action of the oil deposits are discussed. The implications of these findings for cotton aphid control are also considered, primarily in relation to the timing and frequency of oil application.  相似文献   

2.
棉蚜是棉花的重要害虫,广双瘤蚜茧蜂是棉蚜的重要寄生性天敌,可有效控制棉蚜的数量.寄生蜂调节寄主的脂质合成代谢已多有报道,但在广双瘤蚜茧蜂与棉蚜的相互作用中脂质合成相关基因的变化尚不清楚.本研究针对脂肪酸合成通路、甘油酯合成通路、糖酵解以及氨基酸代谢通路共包含36个与棉蚜脂质合成相关的基因,利用实时荧光定量PCR技术研究...  相似文献   

3.
6种农药对瓜蚜的毒力测定及田间药效   总被引:1,自引:0,他引:1  
为了筛选防治西瓜瓜蚜的有效药剂,用6种药剂进行了室内毒力测定和田间药效试验。结果表明,1.8%阿维菌素EC对瓜蚜的毒力最高,60g/L乙基多杀菌素SC毒力最低,48hLC50分别为0.38mg/L和2 225.63mg/L。6种药剂毒力大小依次为阿维菌素溴氰虫酰胺氟啶虫胺腈啶虫脒吡虫啉乙基多杀菌素。田间试验结果表明,1.8%阿维菌素EC 3 000倍、10%溴氰虫酰胺OD 2 000倍、22%氟啶虫胺腈SC 4 000倍对瓜蚜速效性及持效性均较好,3~14d防效均达到90%以上,防效差异不显著;20%啶虫脒WP 3 000倍和10%吡虫啉WP 3 000倍速效性及持效性均较差,1d防效分别为31.31%和6.66%,14d防效分别为57.39%和47.80%;60g/L乙基多杀菌素SC 1 000倍防效最差,药后14d的最高防效仅为34.70%。推荐田间轮换使用阿维菌素、溴氰虫酰胺、氟啶虫胺腈防治瓜蚜。  相似文献   

4.
棉蚜抗药性及其化学防治   总被引:11,自引:0,他引:11  
棉蚜[Aphis gossypii(Glover)]属半翅目蚜科,是一种世界性的害虫,主要通过取食植物汁液和传播病毒给农业生产造成严重损失。长期以来,棉蚜的防治一直以化学防治为主,棉蚜对有机氯、有机磷、氨基甲酸酯、拟除虫菊酯、新烟碱类等多种杀虫药剂已经产生了抗性。本文主要从棉蚜抗药性发展历史、抗药性机制以及棉蚜的化学防治等方面进行论述,期望能为农业生产上延缓棉蚜抗药性产生、有效治理棉蚜提供指导。  相似文献   

5.
石丹丹  张帅  梁沛 《植物保护》2023,49(5):270-278
棉蚜Aphis gossypii Glover是农业生产上最重要的害虫之一。化学杀虫剂一直以来都是棉蚜综合防治体系中的重要组成部分, 但化学杀虫剂的不合理使用导致棉蚜对多种杀虫剂均产生了高水平抗性。现有研究表明, 靶标位点突变、解毒酶基因的过表达以及某些肠道共生菌丰度的变化是导致棉蚜对杀虫剂产生抗性的主要机制。针对棉蚜抗性发展现状及其抗药性机制, 制定科学合理的抗性治理策略, 是充分发挥化学防治的优势、实现棉蚜可持续治理的关键。本文主要从棉蚜的抗药性现状、抗性机制和抗性治理策略3个方面对近10多年的主要进展进行了综述, 旨在为棉蚜抗药性长效治理和科学施策提供理论依据。  相似文献   

6.
Strain selection based on temperature may be warranted when choosing an isolate for development as a microbial control agent. To this end, the effects of three temperature regimes, namely 20, 25 and 30°C, on the virulence of four Beauveria and two Metarhizium isolates against the cotton aphid, Aphis gossypii, were investigated under controlled conditions, 65–70% relative humidity, and a photoperiod of 12:12 (light: dark) hours. The isolates did vary significantly in their activities of efficacy over a range of temperatures. The highest mortality and lowest survival times were observed at 25°C for DLCO41 and at 30°C for DLCO87; while mortality decreased and survival time increased at temperatures of 20°C. Besides the tested fungal isolate DLCO87 had the lowest LC50 value (6.84 × 105 conidia mL?1) at 30°C. The promising result of this study should enable us to conduct further studies to determine the potential use of the fungus as an agent against Aphis gossypii both in greenhouse and under field conditions.  相似文献   

7.
5种药剂对枸杞棉蚜室内毒力及田间防效   总被引:1,自引:0,他引:1  
王芳  陈佳斌  刘秉阳  牛浩  刘畅  何嘉  张蓉 《植物保护》2021,47(3):294-298
为了明确5种药剂对枸杞棉蚜的适宜施药剂量,开展了室内毒力测定和田间药效试验.结果 表明,1%甲维盐EC对枸杞棉蚜的毒力最高,50%噻虫嗪WG毒力最低,24 h LC50分别为2.44 mg/L和1875.69 mg/L.5种药剂毒力大小依次为甲维盐>啶虫脒>吡蚜酮>呋虫胺>噻虫嗪.田间试验结果表明,随着施药时间的延长,...  相似文献   

8.
为建立干旱胁迫对棉花害虫种群增长影响的评价方法,本研究设置1%、3%和5%聚乙二醇6000(PEG-6000)溶液处理4叶期棉花苗,分别模拟轻度、中度、重度干旱胁迫,系统测定并比较分析了棉花植株生理特性及棉蚜种群密度。结果显示:随着PEG-6000浓度增加,棉花地上部分生物量和叶片相对含水量逐渐降低,而棉花植株上的棉蚜种群增长能力和平均密度明显下降。分析表明,干旱胁迫不利于棉花植株生长,进而对棉蚜种群增长产生负面影响。本研究为后续系统研究干旱胁迫对棉花-害虫-天敌互作关系的长期影响及其机制奠定了重要基础。  相似文献   

9.
为防治绿肥作物毛叶苕子上蚜虫危害, 筛选出对毛叶苕子蚜虫高效配方, 选择作用机理不同的吡虫啉和苦参碱, 开展了最佳配比筛选及田间防治效果评价。结果表明, 吡虫啉和苦参碱4种混配组合(有效成分含量之比分别为1∶10、1∶20、1∶40和1∶80)对毛叶苕子上棉蚜的毒力均表现为增效作用, 其中1∶20组合的共毒系数最高, 为376.14。选择该配比进行的田间药效试验表明, 该混剂组合在有效成分用量为5.94 g/hm 2时, 药后3、7 d的防治效果均显著高于单剂, 最高防效近80%, 可作为今后混剂的开发或生产中防治毛叶苕子蚜虫的推荐药剂。  相似文献   

10.
11.
BACKGROUND: Parthenogenetic clones of the green peach aphid, Myzus persicae (Sulzer), and the cotton aphid, Aphis gossypii Glover, were tested with the anthranilic diamide insecticide cyantraniliprole (i.e. DuPont? Cyazypyr?) in systemic‐uptake bioassays to investigate potential for cross‐resistance conferred by mechanisms of insecticide resistance to organophosphates, carbamates and pyrethroids and, in the case of M. persicae, reduced sensitivity to neonicotinoids. These data were compared with the response of field samples of M. persicae and A. gossypii collected from around Europe. RESULTS: Cyantraniliprole was not cross‐resisted by any of the known insecticide resistance mechanisms present in M. persicae or A. gossypii. The compound was equally active against resistant and susceptible aphid strains. The responses of the M. persicae field samples were very consistent with a maximum response ratio of 2.9 compared with a standard laboratory clone. The responses of the A. gossypii field samples were more variable, although a majority of the responses were not statistically different. CONCLUSION: Cyantraniliprole is currently the only anthranilic diamide (IRAC MoA 28) insecticide targeting aphid species such as M. persicae and A. gossypii. There is no evidence to suggest that the performance of this compound is affected by commonly occurring mechanisms that confer resistance to other insecticide chemistries. Cyantraniliprole is therefore a valuable tool for managing insecticide resistance in these globally important pests. Copyright © 2011 Society of Chemical Industry  相似文献   

12.
Nuclear polyhedrosis virus (NPV) and Bacillus thuringiensis (Bt) are the most commonly used biopesticides for the control of Helicoverpa spp. larvae on cotton crops in Australia. The performance of NPV and Bt against Helicoverpa spp. larvae on cotton crops, is inconsistent and at times totally unsatisfactory against high densities of Helicoverpa spp. larvae. We determined the effect of mixing petroleum spray oils, containing ultra-violet light absorbing compounds, with NPV and Bt for efficacy against Helicoverpa spp. larvae, levels of cotton plant damage, and persistence of efficacy. The study showed that the efficacy and persistence of NPV and Bt were increased when mixed with petroleum spray oil (PSO?–?Canopy®) at the rate of 2% (v/v). In the field experiments, mixing NPV with 1 and 2% (v/v) PSO, increased Helicoverpa spp. mortality from 25.9 to 31.5 and 44.8%, respectively. Similarly, the mortality caused by Bt, when mixed with 1 and 2% (v/v) PSO, was increased from 31.5 to 36.0 and 48.2%, respectively. In addition, 1 and 2% PSO mixtures with NPV increased persistence of efficacy from 1.1 to 1.6 and 2.5 days, respectively, whilst persistence of Bt was increased from 1.5 to 1.8 and 2.6 days, respectively. In another study using potted cotton plants, in which the plants were left outdoors throughout the study, the average NPV induced mortality of first instar Helicoverpa larvae was increased from 20.9% to 35.9 and 43.4% by 1 and 2% (v/v) PSO, respectively. Persistence of NPV efficacy was enhanced by 2 and 3.1 times by 1 and 2% (v/v) PSO, respectively. Similarly, Bt induced mortality of Helicoverpa larvae was increased by 1 and 2% PSO from 68.1 to 78.8 and 83.2%, respectively, and the persistence of Bt efficacy was enhanced 1.3?–?2.0 times, respectively. In a mesh house study, young cotton plants, treated with a PSO/biopesticide mixture, suffered less leaf damage than cotton plants treated with the biopesticides alone. In conclusion, the results of this study showed synergies from the combined use of UV protected PSO and NPV or Bt, against Helicoverpa spp. larvae on cotton. Such a biopesticide-PSO combinations could be a useful tool for IPM program in cotton.  相似文献   

13.
14.
We determined the effects of petroleum spray oil (PSO) (Caltex Canopy®) on oviposition responses of Helicoverpa armigera Hubner and Ostrinia nubilalis Hubner adults, and larval survival of the pest moths on cotton and maize plants in the laboratory. Application of 2% (v/v) of the PSO deterred H. armigera oviposition. Increasing the rate from 2 to 5% (v/v) did not significantly reduce the number of eggs laid by H. armigera on the treated plants. In contrast, the minimum rate at which the oil could deter oviposition of O. nubilalis on maize plants was 5% (v/v). Increasing the rate from 5 to 10% (v/v) did not significantly reduce the number of eggs laid per plant. However, a reduction in the rate of the PSO from 5 to 3% (v/v) resulted in a 73.9% increase in oviposition activity on the maize plants. In wind tunnel bioassay tests, all mated H. armigera females tested could detect and settle on plants treated with water but with plants treated with PSO at various times, only 50% of tested females settled on the plants 4?–?5 days after treatment (DAT) and none on the plants 0?–?2 DAT. A solid phase micro-extraction (SPME) test to determine the effect of the PSO on volatiles released by the cotton plants showed that the quantity of volatiles released by the cotton plants treated with PSO was lower than for water treated plants. This indicates that the PSO sprays may be suppressing or masking the leaf surface volatiles of the cotton plants, thereby deterring oviposition of H. armigera. Larval survival data show that PSO sprays can cause direct mortality of first, second and third instar O. nubilalis larvae. PSOs may have the potential to be integrated into pest management programme targeting H. armigera and O. nubilalis on cotton and maize crops, respectively.  相似文献   

15.
16.
Insecticides are the most commonly used tactic to control western flower thrips (WFT), Frankliniella occidentalis Pergande (Thysanoptera: Thripidae), on greenhouse cucumber. However, WFT has developed resistance to several of the insecticides presently in use. In addition, some of these insecticides adversely affect greenhouse biological control agents used to control WFT, resulting in subsequent pest resurgence. Therefore, there is a need to identify novel insecticides with unique modes of action for use in integrated pest management (IPM) programs to effectively control WFT with minimal impact on associated biological control agents. In laboratory bioassays conducted in 2001, immature and adult WFT and three associated greenhouse biological control agents: Amblyseius cucumeris Oudemans (Acarina: Phytoseiidae), Orius insidiosus Say (Hemiptera: Anthocoridae) and Encarsia formosa Gahan (Hymenoptera: Aphelinidae) were exposed to direct, direct/residual, and residual contact applications of the novel biopesticide, spinosad (Conserve 120 SC), and the industry standard for whitefly control, endosulfan (Thiodan 50 WP). In all three types of assay, spinosad was effective against immature and adult WFT life stages. It showed low toxicity to A. cucumeris, moderate toxicity to O. insidiosus and high toxicity to E formosa. Greenhouse studies involving exposure of immature and adult WFT and adult biological control agents to cucumber leaves sprayed previously with spinosad supported the laboratory data. Spinosad showed low toxicity to A. cucumeris exposed to leaves 1 day after treatment (DAT), moderate toxicity to O. insidiosus 1 and 8 DAT, and high toxicity to E. formosa up to 28 DAT. These data, along with spinosad's unique mode of action, suggest it would be a valuable reduced-risk control agent for greenhouse cucumber IPM programs.  相似文献   

17.
18.
19.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号