首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Eucalyptus globulus sapwood and heartwood were delignified at 130°, 150°, or 170°C by kraft pulping. Pulp yields of heartwood were lower than those of sapwood (46.5% vs. 50.4% at 170°C). Delignification was modeled using consecutive and simultaneous kinetic models. The modeling was similar for heartwood and sapwood, and either approach could be used, with both yielding good correlations between experimental and model data. The consecutive model identified two delignification phases with similar reaction rates and activation energies for heartwood and sapwood at 150° and 170°C. At 130°C only one phase was identified. Three reactive types of lignin fractions were identified using the simultaneous model, without differences between heartwood and sapwood. Their reaction rates were 0.152, 0.138, and 0.003 min−1 at 170°C, and the activation energies were 132, 119, and 102 kJ.mol−1. The presence of heartwood did not influence the kinetic development of delignification. The negative impact of heartwood in pulping is related to the higher content of extractives (9.8% vs. 3.9% in heartwood and sapwood) and to their influence on the process, namely in the heating-totemperature phase when a substantial mass loss occurs (30% vs. 20% for heartwood and sapwood).  相似文献   

2.
There are indications that the drying process may have negative effects on the natural durability of wood. The impact of various drying processes on the durability of Scots pine lumber has been evaluated with mass loss in a decay test with brown rot fungus, Coniophora puteana, as measure of the decay resistance of sapwood and inner and outer heartwood. Drying with or without steam conditioning was performed in six different series: air drying, kiln drying at temperature ranges commonly used in Swedish sawmills at 70°C and 90°C with two different regulation principles, and one high-temperature drying at 110°C. Durability varied considerably both between and within boards. Sapwood showed considerable less durability than heartwood. No difference in durability was found between inner heartwood and outer heartwood. Air-dried heartwood showed the highest durability compared to other drying series. The lowest durability in sapwood and heartwood was found for series dried at the 90°C temperature level with high material temperature early in drying. The interpretation is that the duration of high material temperature at high moisture content (MC) is the critical combination for decay resistance in heartwood. Steam conditioning after drying decreased durability in sapwood.  相似文献   

3.
Binderless particleboards were manufactured from sugi (Cryptomeria japonica D. Don) heartwood and sapwood by hot-pressing (pressure: 5 MPa; temperatures: 180°, 200°, and 220°C; times: 10, 20, and 30 min), and the board properties [internal bonding (IB), thickness swelling (TS), water absorption (WA)] were investigated to evaluate the self-bonding ability. The IB, TS, and WA of the boards from sugi heartwood were better than those of the boards from sugi sapwood at any hot-pressing condition. Therefore, it was suggested that the self-bonding ability of sugi heartwood was superior to that of sugi sapwood. Then, sugi heartwood and sapwood powder with grain size 10 βm were used as a binder for plywoods. Four kinds of plywood were manufactured from the combination of powder and veneer, both of which were prepared from sugi heartwood and sapwood under the same hot-pressing conditions as the binderless particleboard, and the adhesive shear strength and wood failure of the plywood were investigated. As a result, the plywood composed of sugi heartwood veneer met the second grade of JAS for plywood, when either powder was used as a binder, when they were pressed at 200°C for 20–30 min and 220°C for 10 min.  相似文献   

4.
Japanese cedar wood specimens were steamed at 80°, 100°, and 120°C over 14 days, and their equilibrium moisture content (M) at 20°C and 60% relative humidity, longitudinal dynamic Young’s modulus (E), bending strength (σ max), and breaking strain (ε max) were compared with those of unheated specimens. Steaming for a longer duration at a higher temperature resulted in a greater reduction in M, σ max, and ε max. The E of wood was slightly enhanced by steaming at 100°C for 1–4 days and 120°C for 1–2 days, and thereafter it decreased. The slight increase in the E of sapwood was attributable to the reduction in hygroscopicity, while sufficient explanation was not given for a greater increase in the heartwood stiffness. Irrespective of the steaming temperature, the correlations between M and the mechanical properties of steamed wood were expressed in terms of simple curves. M values above 8% indicated a slight reduction in E and s max, whereas M values below 8% indicated a marked decrease in the mechanical performances. In addition, the e max decreased almost linearly with a decrease in the value of M. These results suggest that hygroscopicity measurement enables the evaluation of degradation in the mechanical performances of wood caused by steaming at high temperatures.  相似文献   

5.
The kinetics of color changes in keyaki (Zelkova serrata Makino) and sugi (Cryptomeria japonica D. Don) wood during heat treatment were examined. The color of wood specimens treated at 90, 120, 150, and 180 °C was measured by an imaging spectrophotometer and expressed using CIELAB color parameters. At any treatment temperature, values for L* and $ \Updelta E_{ab}^{*} $ decreased and increased in both wood species, respectively, with increased treatment time. Changes in a* and b* varied depending on wood species and treatment temperature. The color changes were successfully analyzed using the kinetic approach applying time–temperature superposition method. This approach elucidated and accurately predicted color changes during heat treatment.  相似文献   

6.
The effects of temperature and moisture content on selected mechanical properties associated with the chipping process were evaluated. In chipping, mechanical properties such as shear parallel to the grain, cleavage, and bending are involved. Matched samples of heartwood and sapwood were obtained from freshly harvested logs of black spruce and balsam fir to determine the variation of the studied mechanical properties between ?30 and 20 °C, at intervals of 10 °C. Moisture content (MC), basic density (BD), and annual ring width (RW) were measured for each sample. For both wood species, temperature had a significant effect on all mechanical properties under freezing conditions (below 0 °C). This effect was more important for sapwood than for heartwood, which was explained by the difference in MC between these two types of wood. Between 0 and 20 °C, temperature and type of wood did not show any significant effect on the mechanical properties. Multiple regression models were obtained to predict the mechanical properties. These regressions showed that MC was the most important factor to explain the mechanical properties below 0 °C. However, for temperatures of 0 °C and higher, BD was the principal factor to predict the mechanical properties. RW was not a significant factor to predict any mechanical property. Cleavage was the most sensitive one to changes in temperature followed by shear, modulus of rupture, and modulus of elasticity. These results could be of great importance in the chipping process.  相似文献   

7.
Heat treatments change the chemical and physical properties of wood and dimensional stability and hygroscopicity are affected as a result of modifications of wood cell components. This study evaluated the water absorption of wood specimens treated with boron compounds followed by heat treatment. Sugi (Cryptomeria japonica D. Don) sapwood specimens treated with either boric acid (BA) or disodium octoborate tetrahydrate (DOT) solutions were heat-modified at either 180° or 220°C for 2 or 4 h. Carbohydrate composition and water absorption of the specimens were then measured and compared with those of untreated and unheated specimens. Wood carbohydrates were significantly degraded in the specimens after heat treatment. The heat treatment evidently decreased the water absorption and the heat-modified specimens absorbed less water than unheated specimens. The higher the treatment temperature and the longer the treatment time, the lower the amount of absorbed water. The boron-treated and heat-modified specimens, however, showed increased water absorption due to the hygroscopic properties of BA and DOT.  相似文献   

8.
Optimisation of a two-stage heat treatment process: durability aspects   总被引:1,自引:1,他引:1  
Heat treatment of wood at relatively high temperatures (in the range of 150–280°C) is an effective method to improve biological durability of wood. This study was performed to investigate the effect of heat treatment process optimisation on the resistance against fungal attack, including basidiomycetes, molds and blue stain fungi. An industrially used two-stage heat treatment method under relatively mild conditions (<200°C) was used to treat the boards. Heat treatment of radiata pine sapwood revealed a clear improvement of the resistance against the brown rot fungi Coniophora puteana and Poria placenta. Increasing process temperature and/or effective process time during the first process stage, the hydro thermolysis, appeared to affect the resistance against C. puteana attack, but the effect on the resistance against P. placenta was rather limited. Heat treated radiata pine showed a limited resistance against the white rot fungus Coriolus versicolor and process variations during the hydro thermolysis stage appeared not to affect this resistance. A clear difference between the resistance of heat treated Scots pine sapwood and heartwood against fungal attack is observed. Scots pine heartwood showed a higher resistance against C. puteana and P. placenta but also against the white rot fungus C. versicolor. Similar results were obtained when heat treated birch was exposed to brown and white rot fungi. Heat treatment showed an improved resistance against C. puteana attack, especially at higher temperatures during the hydro thermolysis stage. A clear improvement of the durability was also observed after exposure to the white rot fungus C. versicolor and especially Stereum hirsutum. Increasing the process temperature or process time during the hydro thermolysis stage appeared to have a limited effect on the resistance against C. versicolor attack. Heat treated radiata pine and Norway spruce were still susceptible to mold growth on the wood surface, probably due to the formation of hemicelluloses degradation products (e.g. sugars) during heat treatment. Remarkable is the absence of blue stain fungi on heat treated wood specimen, also because the abandant blue stain fungi were observed on untreated specimen. Molecular reasons for the resistance of heat treated wood against fungal attack are discussed in detail contributing to a better understanding of heat treatment methods.  相似文献   

9.
Test samples of Japanese larch (Larix leptolepis) heartwood and Japanese beech (Fagus crenata) sapwood were heated for 22 h at constant temperatures (50°–180°C) under three water content conditions. Raman spectra of the samples were recorded before and after the heat treatments, and spectral changes in the range from 1000 cm−1 to 1800 cm−1 were evaluated using the difference spectrum method. For both wood species, the Raman band intensity at 1655–1660 cm−1 due mainly to the C=C and C=O groups in lignin clearly decreased with increasing heat-treatment temperature (HTT). The spectral change was thought to reflect the progress of condensation reactions of lignin molecules during the heat treatment. Moreover, the decrease in band intensity was considerably facilitated by the presence of water in the cell wall, suggesting that the condensation is closely related to the softening of lignin. From the spectral changes in the wavenumber region of 1200–1500 cm−1, it was considered that wood constituents are partially decomposed at the higher HTT. Part of this article was presented at the 53rd Annual Meeting of the Japan Wood Research Society, Fukuoka, March 2003  相似文献   

10.
This study aimed to evaluate physical and mechanical properties and colour changes of fast-growing Gympie messmate wood subjected to two-step steam-heat treatments. To achieve this, Gympie messmate wood was thermally treated under different conditions. Combined steam (127°C and ~0,1471 MPa) and heat treatments in an oven (180–240°C for 4 hours) were performed. Physical and mechanical properties were evaluated by weight loss, equilibrium moisture content, specific gravity, volumetric and linear swelling and static bending tests, while colour changes were studied using CIEL*a*b* technique. The main findings showed that the steam pre-treatment in autoclave influenced most of the technological properties evaluated, mainly for heat treatments performed in low temperatures (180–200°C). The most significant changes after thermal treatments were observed for dimensional stability, which increased as a function of temperature of treatment. On the other hand, mechanical strength of thermally modified wood was significantly affected, while stiffness did not change. Colour modifications due to the application of two-step steam-heat treatments confirm the possibility to using these samples for aesthetic purposes.  相似文献   

11.
Wood modification, of which thermal modification is one of the best-known methods, offers possible improvement in wood properties without imposing undue strain on the environment. This study investigates improvement of the properties of heat-treated solid wood. Scots pine (Pinus sylvestris) was modified in two stages: impregnation with modifiers followed by heat treatment at different temperatures. The impregnation was done with water glass, melamine, silicone, and tall oil. The heat treatment was performed at the temperatures of 180°C and 212°C for three hours. The modified samples were analyzed using performance indicators and scanning electron microscope micrographs. The mechanical and physical properties were determined with water absorption, swelling, bending strength, and impact strength tests. All the modifiers penetrated better into sapwood than hardwood; however, there were significant differences in the impregnation behavior of the modifiers. As regards the effect of heat treatment, generally the moisture properties were improved and mechanical strengths impaired with increasing treatment temperature. In contrast to previous studies, the bending strength increased after melamine impregnation and mild heat treatment. It is concluded that the properties of impregnated wood can be enhanced by moderate heat treatment.  相似文献   

12.
The objectives of this study were to evaluate the effect of heat treatment of eucalypt wood (Eucalyptus grandis Hill ex Maiden) on the dynamic modulus of elasticity by using the stress wave nondestructive method and also to determine the air-dry density variation, weight loss and equilibrium moisture content following treatment. Heat treatments were performed at four different temperatures (180, 200, 215 and 230°C) and for three different durations (15?min, 2 and 4?h). The results revealed a significant reduction in air-dry density following heat treatment independent of temperature and time. A significant weight loss was observed between and within treatments. The treatment at 230°C for 2 and 4?h produced a weight loss of 20.5 and 26.5%, respectively, which was statistically different from other treatment conditions. The dynamic modulus of elasticity decreased by about 13% in the most severe treatment (230°C for 4?h). Depending on the temperature and time, the equilibrium moisture content was significantly reduced within the range of 40–74%.  相似文献   

13.
ABSTRACT

This research was aimed to investigate mechanical properties, color and cell-wall components changes, and durability of pre-dried rubberwood (Hevea brasiliensis) after superheated steam (SS) treatment. Wood samples were treated at different SS temperatures (140–180°C) for 1–3?h. The highest compression strength parallel-to-grain, hardness and impact strength were found for samples treated at 160°C for 3?h (30.7% higher than untreated), at 150°C for 1?h (26.6% higher than untreated) and at 150°C for 2?h (52.6% higher than untreated), respectively. The surface color became darker after each treatment in comparison with the untreated wood. The number of accessible hydroxyl groups decreased and the relative cellulose crystallinity increased with SS temperature, indicating decreased hygroscopicity of the treated wood. Also, SEM micrographs of wood surface showed consistent decrease in starch particles with treatment temperature. Both decay and termite resistances of treated rubberwood improved with treatment temperature. All the analyzes showed that dried rubberwood treated with SS had some improvements in the mechanical properties, decreased hygroscopicity, and increase resistance to decay.  相似文献   

14.
Peroxidase activity and isoenzymes of fresh wood samples of the third shoot of 12-year old trees and from the sapwood, transition zone and heartwood of c. 60-year old stems of Scots pine (Pinus sylvestris L.) were investigated. Wood samples were ground at −30°C, extracted, and the extracts concentrated c. 20-fold for peroxidase activity assays (guaiacol method) and for IEF-PAGE. At least 11 major isoenzymes could be found in the gels. Even the heartwood contained some peroxidase isoenzymes. Isoenzyme patterns of the juvenile wood did not change with the season. However, juvenile wood showed the highest peroxidase activity at the end of the growing season. Peroxidase activity decreased from the outer sapwood towards the heartwood. Thin sections of different wood zones stained for peroxidase revealed activity in ray parenchyma and resin canal epithelial cells. Intensive staining was localised in the bordered pits of vertical and ray tracheids, and in the end walls of ray parenchyma cells.  相似文献   

15.
山杨小径木超微结构及其与干燥皱缩的关系   总被引:1,自引:0,他引:1  
彭海源  丁汉喜 《林业科学》1989,25(6):583-587
前言山杨(Populus Dividiana Dode)小径木是黑龙江省尚志具帽儿山次生林区主要的间伐树种之一。该树种在干燥时易产生皱缩等缺陷,我们设想与其结构有关,故利用扫描电镜观察其超微结构,以期洞悉其中的奥秘。 W.R.Perng研究颤杨(Populus tremuloides)解剖构造与液体传导的关系,在电镜下观察时,指出颤杨心材中存在侵填体,这些侵填体使导管闭塞,因而液体流动困难。他又对此木材进行聚合物渗透,而心材导管中几乎无聚合物沉积,说明心材导管全部被侵填体堵塞,聚合物难以在心材沉积。  相似文献   

16.
On the loss factor of wood during radio frequency heating   总被引:2,自引:0,他引:2  
 The radial direction loss factor of full-size western hemlock sapwood and heartwood, as well as western red cedar heartwood timbers was measured using the direct calorimetric method with a laboratory-scale radio frequency/vacuum dryer at the frequency of 13.56 MHz, moisture content range between 10 and 80%, temperature range between 25 and 55 °C, and root mean square (rms) electrode voltages of 0.8 and 1.1 kV, respectively. The results indicated that the moisture content, temperature, electric field strength and wood type significantly affected the loss factor. Empirical regression equations were derived based on the experimental data that made possible the calculation of the loss factor and power density within wood during RF heating. Received 18 January 1997  相似文献   

17.
采用高频真空干燥、常规窑干和高温干燥3种方法对杉木人工林木材的心、边板材进行干燥处理,用毛细管上升法评价干燥后试样的浸注性能,用半薄切片法测定干燥试样具缘纹孔的闭塞率,最后用扫描电子显微镜观察干燥试样微观构造的变化,比较分析3种干燥方法对杉木人工林木材浸注性的影响机理.结果表明:对于杉木边材,经高频真空干燥后试样的浸注性显著高于常规干燥和高温干燥后试样的浸注性,后2种干燥方法对试样浸注性影响的差异并不显著;对于杉木心材,高频真空干燥与高温干燥后试样的浸注性存在显著差异,而高频真空干燥与常规干燥之间、高温干燥与常规干燥之间对试样浸注性的影响差异均不显著;3种干燥方法处理后,杉木边材的浸注性均显著高于心材的浸注性;具缘纹孔的闭塞率较低以及部分具缘纹孔周缘破裂是高频真空干燥后木材浸注性提高的主要原因.  相似文献   

18.
Abstract

Thermal modification has been developed for an industrial method to increase the biological durability and dimensional stability of wood. In this study the effects of thermal modification on resistance against soft- and brown-rot fungi of sapwood and heartwood of Scots pine and Norway spruce were investigated using laboratory test methods. Natural durability against soft-rot microfungi was determined according to CEN/TS 15083-2 (2005) by measuring the mass loss and modulus of elasticity (MOE) loss after an incubation period of 32 weeks. An agar block test was used to determine the resistance to two brown-rot fungi using two exposure periods. In particular, the effect of the temperature of the thermal modification was studied, and the results were compared with results from untreated pine and spruce samples. The decay resistance of reference untreated wood species (Siberian larch, bangkirai, merbau and western red cedar) was also studied in the soft-rot test. On average, the soft-rot and brown-rot tests gave quite similar results. In general, the untreated heartwood of pine was more resistant to decay than the sapwood of pine and the sapwood and heartwood of spruce. Thermal modification increased the biological durability of all samples. The effect of thermal modification seemed to be most effective within pine heartwood. However, very high thermal modification temperature over 230°C was needed to reach resistance against decay comparable with the durability classes of “durable” or “very durable” in the soft-rot test. The brown-rot test gave slightly better durability classes than the soft-rot test. The most durable untreated wood species was merbau, the durability of which could be evaluated as equal to the durability class “moderately durable”.  相似文献   

19.
Heartwood, sapwood and bark content of teak trees grown in Karnataka, India   总被引:1,自引:0,他引:1  
We evaluated heartwood, sapwood and bark content in teak trees. A total of 27 sample plots were laid out in teak plantations raised by State Forest Department in Karnataka covering different age groups...  相似文献   

20.
Eight pieces of sapwood and heartwood from Scots pine, before and after linseed oil impregnation, were used to make 16 near-infrared hyperspectral images (90–200 pixels wide × 466–985 pixels long × 239 wavelengths: 982–2,480 nm). The wood pieces were selected according to a 2 × 2 experimental design using radial–tangential cut and heartwood–sapwood as factors with two replicates. A first mosaic of 16 images was cleaned and analyzed by image principal component analysis. Interpretation was realized by studying score images and score plots by brushing interaction. In the resulting T1–T2 score plot, the untreated pieces formed a dense cluster, while the impregnated ones showed larger variation. The good separation of treated and impregnated clusters was confirmed by PLSDA showing low false negatives and positives. Analysis of the eight impregnated wood pieces clearly showed regions of wrong impregnation in one wood piece. Loadings resembling linseed oil spectra indicated that this was due to badly polymerized linseed oil. After removing the outlier piece, a new model was made on the seven-piece mosaic showing in the T1–T2 score plot that heartwood and sapwood absorbed the linseed oil differently. This difference was not detected in the untreated wood, so it had to come from the impregnation process. Edges reacted differently from surfaces to the impregnation process as seen in the T1–T4 score plot. These findings show that a future online quality inspection of both raw wood and impregnated pieces would be feasible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号