首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Water volume is a key parameter affecting the individual rearing of male Siamese fighting fish (Betta splendens Regan, 1910). In this study, minimization of water volume was pursued by assessing growth, feed utilization, digestive enzyme activities, color coordinates, muscle quality, and carcass composition. One-month-old solid-red male fish (0.97?±?0.01 g initial body weight) were distributed individually into glass aquaria with five alternative water volumes (100, 150, 200, 250, and 300 mL), comprising 15 fish per treatment (n?=?15), over 8 weeks duration. No mortality of the reared fish was found during the study. Growth performance and feed utilization of the fish reared in 150 mL water were superior to the other treatments. The water volume significantly affected specific activities of the digestive enzymes (P ? 0.05), except for amylase, and no differences in enzyme activities were observed between fish reared in 150 and in 300 mL water. The preferred treatment maintained skin lightness (L*) and had the highest redness (a* and a*/b*) among the treatments. Protein synthesis (RNA concentration) and its turnover rate (RNA/protein ratio) and myosin and actin in muscle also benefited from this treatment. Carcass composition, in terms of moisture, crude protein, and crude ash, was maintained, but the amount of crude lipid fluctuated with water volume. Based on our experiments, the preferred minimal water volume for individual rearing of male Siamese fighting fish should be about 150 mL.  相似文献   

2.
Seeking alternatives to the depleting fish oil are crucial for marine fish aquaculture, which is currently dependent on fish oil as the primary source of n-3 long-chain polyunsaturated fatty acids (n-3 LC-PUFAs). Five isonitrogenous (46% crude protein) and isolipidic (16% crude lipid) feed diets (FO, ISO2.9, ISO4.8, ISO6.7, ISO8.6) were formulated by partially replacing fish oil with microalgae Isochrysis galbana. These diets were fed to triplicate tanks of Trachinotus ovatus (mean initial weight 1.92 g) for 80 days. This work demonstrates that a moderate inclusion (around 4.5–5.0 wt%, equivalent to the replacement of 24–26 wt% fish oil) of I. galbana biomass in fish diet improves fish growth performance, lipid deposition and enhances total n-3 fatty acids, DHA, and EPA contents in neutral and polar lipids (PLs) of fish muscle and liver of T. ovatus. The results disclosed in this study suggest that I. galbana microalgae represents a potential high-quality substitute for fish-based ingredients in aquaculture feeds, which can be a promising sustainable solution to resolve the depleting fish oil resource in a cost-effective manner.  相似文献   

3.
This study examined the effects of two probiotics (Virgibacillus proomii and Bacillus mojavensis) on the digestive enzyme activity, survival and growth of Dicentrarchus labrax at various ontogenetic stages in three separate experiments. These probiotics were incorporated as single or mixed into fish feed for a period of 60 days. The growth parameters, proximate composition of whole body, digestive enzymes and gut microbiology were monitored at regular. The increments in length and weight and the survival were significantly higher (P < 0.05), and the values of food conversions were significantly lower (P < 0.05) in fishes fed the probiotic. The administration of V. proomii and B. mojavensis in diet resulted in an increase (P > 0.05) in body ash and protein content and in the specific activity of phosphatase alkaline and amylase in the digestive tract of all the fishes. V. proomii and B. mojavensis persisted in the fish intestine and in the feed in high numbers during the feeding period (group 1: 5.8 × 104 CFU/ml, group 2: 9.6 × 104 CFU/ml, and group 3: 9.8 × 104 CFU/ml day 60). The two probiotics V. proomii and B. mojavensis were adequate for improved growth performance and survival and for healthy gut microenvironment of the host.  相似文献   

4.
This study aimed to evaluate the effect of Lactococcus lactis K-C2 on the growth performance, microbial diversity, and release of free amino acids in the intestinal tract and the edible parts of young amberjack, Seriola dumerili. Fish were fed a diet with or without strain K-C2 (2?×?1010 cfu/g feed) for 25 days. The results indicated that the growth performance of fish in the treated group was significantly higher than those in the control group (p?<?0.05). The amount of five amino acids (aspartate, sarcosine, taurine, alanine, and arginine) in the gut content and 13 of 21 amino acids in the edible parts of fish in the treated group were significantly higher (p?<?0.05) than those in the control group. Sphingomonas, Propionibacterium, and Mycobacterium were observed in gut microflora of fish in both the control and treated groups. Staphylococcus and Kocuria were detected in one sample from the control and treated groups; Acinetobacter and Acidobacteria were found in one sample from the control group. L. lactis was only found in one sample in the treated group. In conclusion, the dietary administration of probiotic L. lactis stimulated growth, reduced feed consumption, and improved the nutritional value of cultured amberjack.  相似文献   

5.
This study was conducted to evaluate the effects of Euphorbia hirta leaf extract on the growth performance, hematological and organosomatic indices of hybrid catfish, Clarias macrocephalus?×?C. gariepinus. The fish were treated with 0 (control), 300, 500 and 800 mg/kg (ppm) for 90 days. The weight gain, average daily growth rate, and specific growth rate were at significantly higher levels in fish from all the treatment groups on days 75 and 90, while the feed efficiency and protein efficiency ratio were consistently higher in fish from all the treatment groups from day 60 up until day 90. The feed conversion rate significantly decreased from day 60 until day 90 in all treatment groups when compared with the control group, and the survival rate was significantly different from day 30 until day 90; a consistently higher rate was observed in fish fed 800 mg/kg. The highest viscerosomatic index and intraperitoneal fat were observed in the group fed 500 mg/kg (p?<?0.05). The hepatosomatic index was significantly increased alongside increasing levels of E. hirta extract. The total white blood cell count in the control group was significantly higher on day 30, but on day 90 all the treatment groups showed higher levels. Hematocrit percentage was significantly different on days 30 and 90. Lymphocyte, eosinophil and thrombocyte levels were shown to be significantly different (p?<?0.05) when different groups of fish were compared. In conclusion, 300 mg/kg of E. hirta leaf extract could improve growth performance, hematological and some organosomatic indices in hybrid catfish.  相似文献   

6.
Fairy shrimp is known as a nutritional food for fish and crustaceans in aquaculture. In most hatcheries, the microalga Chlorella sp. appears to be the most common, suitable, and nutritious food to feed fairy shrimp. In this study, we attempted to determine other alternative algal diets for cultivation of fairy shrimp Branchinella thailandensis. Seven experimental diets including three treatments of dried Spirulina sp. at 0.75 (S1), 1.5 (S2), and 3.0 mg dry weight individual?1 (S3); three treatments of Chlorococcum humicola at 5 × 105 (Ch1), 1 × 106 (Ch2), and 2 × 106 cells mL?1 (Ch3); and a control diet (Chlorella vulgaris at 1 × 106 cells mL?1) were fed to 5-day-old shrimp for 15 days. Evaluation of growth performance, egg production, survival percentage, and nutritional and carotenoid content of the experimental fairy shrimp revealed that Ch3 is the most suitable algal diet. Our results suggest that C. humicola is the best alternative food source for the cultivation of B. thailandensis. In addition, dried Spirulina powder is also a good choice when live algae are not available and can be used as an alternative feed in fairy shrimp cultures.  相似文献   

7.
Growth hormone (GH) transgenic (T) coho salmon consistently show remarkably enhanced growth associated with increased appetite and food consumption compared to non-transgenic wild-type (NT) coho salmon. To improve understanding of the mechanism by which GH overexpression mediates food intake and digestion in T fish, feed intake and gastric evacuation rate (over 7 days) were measured in size-matched T and NT coho salmon. T fish displayed greatly enhanced feed intake levels (~ 2.5-fold), and more than 3-fold increase in gastric evacuation rates relative to NT coho salmon. Despite the differences in feed intake, no differences were noted in the time taken from first ingestion of food to stomach evacuation between genotypes. These results indicate that enhanced feed intake is coupled with an overall increased processing rate to enhance energy intake by T fish. To further investigate the molecular basis of these responses, we examined the messenger RNA (mRNA) levels of several genes in appetite- and gastric-regulation pathways (Agrp1, Bbs, Cart, Cck, Glp, Ghrelin, Grp, Leptin, Mc4r, Npy, and Pomc) by qPCR analyses in the brain (hypothalamus, preoptic area) and pituitary, and in peripheral tissues associated with digestion (liver, stomach, intestine, and adipose tissue). Significant increases in mRNA levels were found for Agrp1 in the preoptic area (POA) of the brain, and Grp and Pomc in pituitary for T coho salmon relative to NT. Mch and Npy showed significantly lower mRNA levels than NT fish in all brain tissues examined across all time-points after feeding. Mc4r and Cart for T showed significantly lower mRNA levels than NT in the POA and hypothalamus, respectively. In the case of peripheral tissues, T fish had lower mRNA levels of Glp and Leptin than NT fish in the intestine and adipose tissue, respectively. Grp, Cck, Bbs, Glp, and Leptin in stomach, adipose tissue, and/or intestine showed significant differences across the time-points after feeding, but Ghrelin showed no significant difference between T and NT fish in all tested tissues.  相似文献   

8.
The present study was carried out to evaluate the effect of dietary taurine (Tau) on performance, digestive enzymes, antioxidant activity, and resistance of common carp, Cyprinus carpio L., fry to salinity stress. Fish (0.97?±?0.033 g) were fed on different taurine levels of 0.0 (control), 5, 10, 15, or 20 g/kg diet up to satiation twice daily for 8 weeks. At the end of the feeding trial, fish were stressed by exposure to 10 ppt salinity for 3 days during which fish mortality was observed. Fish performance was significantly (P?<?0.05) improved by dietary taurine up to 15 g Tau/kg diet after which fish growth and feed intake were almost the same. Also, taurine supplementation significantly (P?<?0.05) elevated activities of intestinal amylase, lipase, and protease resulting in an improving in feed intake giving better performance. Furthermore, Tau-stimulated antioxidant activity of common carp was observed in a dose-related manner, where activities of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) were significantly (P?<?0.05) higher, but malondialdehyde (MDA) value was significantly (P?<?0.05) lower in Tau-fed fish groups than those fed the control diet. In salinity stress experiment, highest survival rate was observed at fish fed Tau-supplemented diets without significant (P?>?0.05) differences over fish fed the control diet. It appears that taurine could be used as a feed supplement to confer better growth and health of common carp fry with optimal level of 15 g/kg diet.  相似文献   

9.
A feeding experiment was conducted to investigate the effects of exogenous non-starch polysaccharide (NSP)-degrading enzymes in diets containing Gracilaria lemaneiformis (GL) on growth performance and digestive enzyme activities of white-spotted snapper Lutjanus stellatus Akazaki (initial mass 8.0 ± 0.1 g). A basal diet (D0) containing a mixed protein source (fish meal, soybean meal and GL meal) was used as the control. Two diets supplemented with 0.5 g (D1) and 1 g (D2) exogenous NSP-degrading enzymes per kilogram of diet were formulated. Each diet was assigned to triplicate groups of fish in a total of nine floating sea cages (270 fish, 30 fish per cage). After a 60-day feeding trail, significantly higher weight gain, specific growth ratio and feed efficiency ratio were observed in fish fed D2 diet compared to those of control (P < 0.05). Body lipid, moisture and ash contents were not significantly affected by NSP-degrading enzyme supplementation, but significantly higher protein content was noticed in fish fed D2 diet compared to that of control (P < 0.05). The amylase activity in the stomach and intestine was significantly higher in fish fed D2 diet (P < 0.05), but no significant differences were observed in pepsin and lipase activities in the stomach or trypsin and lipase activities in the intestine between all treatments. The results suggested that addition of 1 g kg?1 NSP-degrading enzymes in diet could efficiently improve seaweed feed utilization and growth performance of white-spotted snapper fish.  相似文献   

10.
Partial substitutions of fish meal by 5, 15, or 25 % of Gracilaria cornea or Ulva rigida in experimental diets were evaluated to study their effects on biodiversity of intestinal microbiota composition in gilthead seabream (Sparus aurata) juveniles. The diets were offered to duplicate groups of 15 juvenile fish (14.0 ± 0.5 g) for 70 days, and at the end of the experiment the intestinal microbiota from four specimens of each treatment was analysed by denaturing gel gradient electrophoresis. Results showed that the substitution of fish meal by algae meal induced important modifications in the intestinal microbiota community, as a big reduction of the biodiversity when the highest percentage (25 %) of U. rigida was included. On the contrary, an increase on the number of species was detected when a 15 % of algae was included. Various Lactobacillus delbrueckii subspecies were selectively stimulated when G. cornea was included in the feed, and other bacterial species, such as those included in the Vibrio genus, were reduced.  相似文献   

11.
We evaluated the effects of diets incorporating the red algae Pyropia yezoensis, prepared by several different extraction methods, on the growth of juvenile Japanese flounder Paralichthys olivaceus. We assessed growth performance, as well as the levels of amino acids, fatty acids, insulin-like growth factor I (IGF-I) and interleukins (ILs). Four experimental diets were developed based on different methods of processing P. yezoensis. A commercial feed, laver powder (P), high-pressure heat extraction of laver (HPHE) and acid hydrolysis extraction of laver were used as the experimental diets. Three experimental replicates were established for each diet (40 fish/group, body weight 123.7 ± 1.1 g), and the fish were fed for 6 weeks. We found no significant differences in weight gain, specific growth rate or feeding efficiency among the groups (P > 0.05); however, the fish fed HPHE had the greatest growth performance. Fish fed the laver extracts exhibited the highest protein efficiency ratio compared with the control and P groups. The experimental groups fed P. yezoensis extracts had significantly higher levels of IGF-I (P < 0.05) than those of the control group. High levels of IL-2 were found in the P and HPHE groups, IL-12 in the HPHE group, and IL-6 in all experimental groups. Therefore, these results suggest that a P. yezoensis extract improved the growth performance and immunity of Japanese flounder. In particular, the high-pressure heating process was a useful extraction method for preparing a P. yezoensis extract, which had beneficial effects as a dietary supplement in Japanese flounder.  相似文献   

12.
The feeding experiment was conducted to evaluate the efficacy of locally available feed resources for Tra catfish (Pangasianodon hypophthalmus) cultured a series of 21 hapa net cages installed in the earthen pond during a 4-month period. The reference diet contained fish meal as the main crude protein (CP) source, whilst in the seven test diets 20–100 % of the fish meal CP was replaced with CP from local feed ingredients: groundnut cake (GNC), cassava leaf meal (CSLM), sweet potato leaf meal (SPLM), soybean meal (SBM), golden apple snail meal (GASM) and shrimp head meal. There were differences (p < 0.05) among diets in final body weight, total weight gain, daily weight gain, specific growth rate, viscera-somatic weight (VSI%), hepato-somatic index (HIS%) and intra-peritoneal fat (IPF%). The respective values for the shrimp head meal diet were numerically highest, followed in descending order by the reference, GASM, GNC, SPLM, CSLM and SBM diet. Food conversion ratio, fish survival rate, total feed intake, feed utilisation, fish fillet and kidney proportions did not differ among the reference and test diets (p > 0.05). However, the viscera-somatic, hepato-somatic, kidney and intra-peritoneal fat indices differed among treatments (p < 0.05). These data show that fish meal protein can be replaced with protein from locally available plant and animal feed ingredient resources in feed cultured in net cages in pond for Tra catfish fingerlings in effectively compromising growth performance, feed utilisation or carcass traits of fish.  相似文献   

13.
14.
This study was conducted to investigate the effects of dietary chitosan on growth performance, hematological parameters, intestinal histology, stress resistance and body composition in the Caspian kutum (Rutilus frisii kutum, Kamenskii, 1901) fingerlings. Fish (1.7 ± 0.15 g) were fed diets containing chitosan at different levels (0, 0.25, 0.5, 1 and 2 g kg?1 diet) for a period of 60 days. Results showed that the feed conversion ratio significantly decreased in fish fed diet containing 1 g kg?1 of chitosan compared to the other groups (P < 0.05), but there were no significant differences between treatments in terms of specific growth rate and condition factor (P > 0.05). Leukocyte increased in fish fed diet containing 2 g kg?1 of chitosan compared to the other groups (P < 0.05). Lymphocytes, eosinophils and neutrophils did not significantly change among dietary treatments (P > 0.05). Also, the chitosan supplementation did not affect the whole-fish body composition (P > 0.05). Light microscopy demonstrated that the intestinal villus length increased in fish fed diet containing 1 g kg?1 of chitosan compared to control group (P < 0.05). While 11 and 13 ‰ salinity and 30 °C thermal stress had no effect, 1 g kg?1 of chitosan (P < 0.05) showed highest survival rate (70 %) in 34 °C thermal stress. The results showed that chitosan in the diet of the Caspian kutum fingerlings could improve feed conversion ratio, the nonspecific defense mechanisms and resistance to some of the environmental stresses.  相似文献   

15.
To investigate the effects of starvation and acclimation temperature on the escape ability of juvenile rose bitterling (Rhodeus ocellatus), we measured the fast-start escape and constant acceleration swimming performance of fish fasted for 0 (control), 1 and 2 weeks and half-lethal periods (6 or 4 weeks) at two temperatures (15 and 25 °C). Fish acclimated at a high temperature exhibited shorter response latency (R), higher maximum linear velocity (V max) and longer escape distance during escape movement (D 120ms) than those at the low temperature. Starvation resulted in a significant decrease in V max and D 120ms at either low or high temperature and a significant increase in R at only the high temperature in the half-lethal period groups (P < 0.05). The relationship between V max (Y, m s?1) and starvation time (X, week) was Y 15 = ?0.062X + 1.568 (r = ?0.665, n = 36, P < 0.001) at low temperature and Y 25 = ?0.091X + 1.755 (r = ?0.391, n = 40, P = 0.013) at high temperature. The relationship between U cat (Y, cm s?1) and starvation time (X, week) was Y 15 = ?1.649X + 55.418 (r = ?0.398, n = 34, P = 0.020) at low temperature and Y 25 = ?4.917X + 62.916 (r = ?0.793, n = 33, P < 0.001) at high temperature. The slopes of equations showed a significant difference between low and high temperature (F 1,63 = 9.688, P = 0.003), which may be due to the different energy substrate utilization when faced with food deprivation at different temperatures.  相似文献   

16.
Environmental stressors caused by inadequate aquaculture management strategies suppress the immune response of fish and make them more susceptible to diseases. Therefore, efforts have been made to relieve stress in fish by using various functional feed additives in the diet, including probiotics. The present work evaluates the effects of Lactobacillus rhamnosus (LR) on physiological stress response, blood chemistry and mucus secretion of red sea bream (Pagrus major) under low salinity stress. Fish were fed four diets supplemented with LR at [0 (LR0), 1 × 102 (LR1), 1 × 104 (LR2) and 1 × 106 (LR3) cells g?1] for 56 days. Before stress, blood cortisol, urea nitrogen (BUN) and total bilirubin (T-BIL) showed no significant difference (P > 0.05), whereas plasma glucose and triglyceride (TG) of fish-fed LR2 and LR3 diets were significantly lower (P < 0.05) than those of the other groups. Plasma total cholesterol (T-CHO) of fish-fed LR3 diet was significantly (P < 0.05) lower than that of the other groups. Furthermore, total plasma protein, mucus myeloperoxidase activity and the amount of mucus secretion were significantly enhanced in LR-supplemented groups when compared with the control group (P < 0.05). After the application of the low salinity stress test, plasma cortisol, glucose, T-CHO and TG contents in all groups showed an increased trend significantly (P < 0.01) compared to the fish before the stress challenge. However, plasma total protein and the amount of secreted mucus showed a decreased trend in all groups. On the other hand, BUN, T-BIL and mucus myeloperoxidase activity showed no significant difference after exposure to the low salinity stress (P > 0.05). In addition, the fish that received LR-supplemented diets showed significantly higher tolerance against low salinity stress than the fish-fed LR-free diet (P < 0.05). The physiological status and the detected immune responses, including total plasma protein and mucus myeloperoxidase activity in red sea bream, will provide a more comprehensive outlook of the effects of probiotics to relieve stress in fish.  相似文献   

17.
In this study, the molecular mobility of fish flesh was measured by low field nuclear magnetic resonance (LF-NMR) relaxation. Sardine, tuna and mackerel were frozen at ?40 °C and stored for 1 day (24 h); and then these samples were thawed at room temperature (20 °C). The relaxation of water protons in fish flesh was measured for fresh (i.e., before freezing) and multi-cycle freeze–thaw samples (i.e., up to 12 times). Three domains from different pools of protons (i.e., low-mobile, medium-mobile and high-mobile) were identified from the relaxation curve. The T 2b (low-mobile), T 21 (medium-mobile) and T 22 (high-mobile) indicated the proton populations in the protein molecules, strongly bound water molecules, and weakly bound water molecules, respectively. In all cases, the relaxation time (T 2b: sardine r = 0.736 and p < 0.01, tuna r = 0.857 and p < 0.001, mackerel r = 0.904 and p < 0.001; and T 22: sardine r = 0.956 and p < 0.0001, tuna r = 0.927 and p < 0.0001, mackerel r = 0.890 and p < 0.0001) increased with the freeze–thaw cycles and it reached a nearly constant value after 6 freeze–thaw cycles. The increased relaxation time (i.e., higher mobility) up to 6 freeze–thaw cycles could be due to the increase in proton mobility. However, relaxation time (T 21: sardine r = ?0.510 and p > 0.05, tuna r = 0.162 and p > 0.5, mackerel r = 0.513 and p > 0.01) showed insignificant change with the increase of freeze–thaw cycles, which indicated minimal change in the medium-mobile protons. The results in this study revealed that the changes in proton mobility in the fish flesh during freeze–thaw cycles could be identified using T 2b and T 22 relaxation of LF-NMR.  相似文献   

18.
Transferrin (Tf) plays an important function in iron homeostasis and metabolism of organisms. In this study, we identified and characterized the Tf gene in Megalobrama amblycephala and evaluated its expression in basal conditions as well as after iron overload and experimental infection with Aeromonas hydrophila. Furthermore, we studied the iron binding properties of recombinant Tf. The full-length M. amblycephala Tf complementary DNA (cDNA) (GenBank accession no.: KX698308) of 2245 bp was cloned and contained a 1953 bp open reading frame (ORF) encoding 650 amino acid residues and flanked by a 68 bp 5′ and a 204 bp 3′ untranslated regions (UTR). Predicted conservative structure illustrated that M. amblycephala Tf consisted of two conservative Tf domains. Amino acid sequence alignment revealed that M. amblycephala Tf had high similarity with that of cyprinids deposited in Genbank, and phylogenetic analysis showed that M. amblycephala Tf clustered with Ctenopharyngodon idella and Hypophthalmichthys molitrix. Tissue expression pattern analyses demonstrated that the liver was the main Tf mRNA expressing organ, being significantly higher than other tissues (p < 0.05). In the liver, Tf mRNA expression in fish artificially injected with the pathogenic bacteria A. hydrophila was significantly upregulated, reaching a peak at 12 h post injection (hpi) and then decreasing afterward. The expression in FeCl3-injected fish showed a similar tendency, but reached a peak at 8 hpi. Meanwhile, fish serum iron significantly decreased following A. hydrophila injection, but increased to peak at 4 hpi and then decreased in FeCl3-injected fish. The recombinant M. amblycephala Tf showed iron binding capacity using CAS analysis. These results are helpful to understand the structure and regulation of expression of Tf, as well as the specific function of Tf for both immune responses and iron homeostasis.  相似文献   

19.
Despite a worldwide boom in tilapia aquaculture, South Africa has failed to follow suit, resulting in a small, very much undeveloped local industry. Much of the justification for this reality lies on the inadequacy of the species used and the stringent legislation preventing the use of the Nile tilapia, Oreochromis niloticus. With momentum gained in recent years, the local industry lobbying for the legalization of the O. niloticus has made great progress and its use in certain systems has recently been facilitated. This study was conducted to compare the growth performance between the indigenous Mozambique tilapia, Oreochromis mossambicus, another African alternative gaining momentum in Zambia, the Three Spot tilapia, Oreochromis andersonii, and the globally reputable O. niloticus. The study was conducted in a biofloc technology (BFT) system, showing great potential as an environmentally friendly technology. The trial was run for 10 weeks with 60 fish/tank stocked into four repeats tanks per species. Fish were sampled on six occasions with a regression fitted to the mass data. Oreochromis niloticus showed a significantly higher growth rate with an average daily gain of 0.693 ± 0.018 g/day and the lowest feed conversion ratio (FCR) of 1.01 ± 0.05, followed by O. mossambicus with average daily gain of 0.405 ± 0.025 g/day and FCR of 2.24 ± 0.16, and then O. andersonii with an average daily gain of 0.185 ± 0.025 g/day and an FCR of 2.53 ± 0.28, respectively. From this study, O. niloticus therefore appears to be the most adequate species for use in BFT systems in South Africa.  相似文献   

20.
The effects of galactooligosaccharide (GOS) and a combination of yeast and β-glucan (YβG) supplementation of dietary soybean meal (SBM) on the growth and digestive performance of striped catfish Pangasianodon hypophthalmus were evaluated. Four isonitrogenous (30% protein) and isocaloric (19 MJ/kg diet) diets were formulated to contain 100% fish meal (FM) protein, 55% FM protein/45% SBM protein, FM-SBM supplemented with 1% GOS, and a combination of 1% yeast and 0.1% β-glucan, respectively. Each diet was fed for 12 weeks to three groups of 30 striped catfish fingerlings (average weight 16.45?±?0.07 g) maintained in circular fiberglass tanks (600 l). Growth, feed utilization, and muscle protein composition of fish improved significantly after supplementation with either GOS or YβG compared to the unsupplemented SBM diet, but were similar to those of fish fed the FM diet. Nutrient digestibility, digestive enzyme activities, villi and microvilli length were significantly increased in fish fed the supplemented SBM diets. The gut microbiota ranking profile showed that supplementing the SBM diet with YβG and GOS gave a ranking of Verrucomicrobia, Spirochaetes, Bacteriodetes, and Actinobacteria phyla similar to that of the FM diet. Thus, diet containing 45% protein from soybean supplemented with either GOS or YβG can be recommended to improve the growth and digestive performance of striped catfish.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号