首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The immediate effect of low and high severity wildfires on the main soil properties, as well as their short‐ and medium‐term evolution under field conditions, was examined. The study was performed with three pine forest soils (two Leptosols and one Humic Cambisol, developed over granite and basic schist, respectively), located in the Atlantic humid temperate zone (Galicia, NW Spain). Samples were collected from the A‐horizon (0–5 cm depth) of the burnt and the corresponding unburnt soils, immediately and 3, 6 and 12 months after the wildfires. Most properties analysed exhibit immediate fire‐induced changes and different evolution depending on fire severity and soil type. In general, immediately after the fire pH and soil properties related to nutrients availability increased and cation exchange capacity decreased, whereas properties related to soil organic matter content (C, N, Fe and Al oxides) had a variable effect depending mainly on the soil studied; all these modifications were accentuated by fire severity. These effects were attenuated in the short term in the soil affected by a low severity wildfire, but they lasted for at least 1 year in the soils affected by high severity wildfires, particularly in the Leptosols. The results showed the importance of the fire as a disturbance agent in the dynamic of nutrients and soil organic matter that is directly related with soil quality in the Galician forest ecosystems. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
Long-term effects of forest disturbance 25 yr ago on lignin and non-cellulosic polysaccharide pools in an unmanaged high-elevation Norway spruce (Picea abies L. [Karst.]) forest were investigated by comparing three dieback sites with three adjacent control sites with non-infested spruce on identical soils. Samples were taken from the forest floor and the mineral soil; one Ah horizon sample per site was physically fractionated into density and particle size fractions. Additionally, changes in the above- and belowground input of lignin and non-cellulosic polysaccharides after forest dieback were quantified. Lignin and its degree of structural alteration in plant and soil samples were assessed by CuO oxidation and subsequent analysis of the lignin phenols. Non-cellulosic polysaccharides were determined after hydrolysis with trifluoroacetic acid (TFA), derivatisation of their neutral sugar monomers by reduction to alditols, and subsequent acetylation. The total plant-derived input of lignin and non-cellulosic polysaccharides to the soil was similar for the dieback and the control sites. The chemical composition of the input has changed considerably after forest dieback, as shown by significantly higher syringyl/vanillyl (S/V) ratios and significantly lower (galactose+mannose)/(arabinose+xylose) (GM/AX) ratios. This indicates a changed plant input and a higher contribution of microbial sugars. Contents of lignin phenols in the forest floor and coarse particle size fractions of the A horizons were significantly smaller at the dieback sites (p<0.01). Moreover, larger acid-to-aldehyde ratios of vanillyl units (Ac/Al)v indicated an increased degree of lignin phenol alteration. Also contents of neutral sugars were significantly (p<0.01) smaller in the forest floor, but not in the A horizons of the dieback sites. The GM/AX mass ratios as well as the (rhamnose+fucose)/(arabinose+xylose) (RF/AX) ratios in the forest floor and coarse particle size fractions of the mineral topsoil were significantly (p<0.01) larger after forest dieback, indicating a larger relative contribution of microbial sugars. In general, the lignin phenol and neutral sugar pools of all three soil types exhibited similar response patterns to the changed site conditions. Our results demonstrate that the lignin and neutral sugar pools of humic topsoil horizons are highly sensitive to forest disturbances. However, the two compounds show different patterns in the mineral soil, with the major neutral sugar pool being stabilized against changes whereas the lignin phenol pool decreases significantly.  相似文献   

3.
Forest wildfires can dramatically affect soil communities and reduce abundance and diversity of soil fauna. The recovery of soil animals after a fire depends both on immigration from the unburnt forest and on local survival in less-burnt spots, but the relative importance of these mechanisms is poorly known. Therefore, these factors were studied with regard to soil macrofauna and soil mites seven years after a wildfire occurring in a pine forest area with shallow soil in 2001 in central Sweden. Three replicate transects, each consisting of four plots were studied. The plots were located in (i) the unburnt forest close to the fire edge; (ii) slightly burnt patches directly attached to the unburnt forest; (iii) slightly burnt patches surrounded by bare rock but connected to the unburnt forest edge by a corridor with mostly unburnt litter and vegetation; and (iv) island patches not connected with a corridor to the unburnt forest edge. The hypothesis was that that soil animals would particularly disperse from the unburnt forest to moderately burnt plots inside a burnt area via the network of less-burnt corridors. Poor dispersers would be especially few in the island patches lacking connection to the “mainland”, whereas good dispersers would be independent of gaps in connectivity. As expected, the highest abundance of both macrofauna and oribatid mites was found in the unburnt forest. Resident soil macro- and mesofauna representatives had half the abundance in the edge and corridor plots as compared to the control, but their abundance was not lower in the island plots than in the corridor plots indicating on-site survival and recovery. Mobile mesostigmatid mites did not show any significant reduction of abundance in any of the plots. The abundance of soil-dwelling oribatid mites did not differ between islands and unburnt forest, but mobile aboveground oribatids had significantly lower abundance on the islands than in the unburnt forest. The opposite was observed for aboveground and belowground oribatid mite species richness. In conclusion, belowground animals showed mainly local survival and seemed to be independent of corridors presence, whereas most aboveground and mobile macro- and mesofauna seemed to be more responsive to isolation induced by forest fires. Soil and litter corridors connecting unburnt patches inside the burnt forests with the unburnt edges were important mainly for less mobile groups of soil macrofauna. This supports the idea that there is a relatively slow process of soil ecosystem recovery and that external colonization of the burnt areas dominates over the local survival and recovery from refuges.  相似文献   

4.
典型红壤丘陵区土壤氮素含量及其分布的演变规律   总被引:2,自引:0,他引:2  
通过对湖南省桃源县典型区域高密度采样分析和历史资料调研,探明了红壤丘陵区不同土地利用类型13年来(19902~2003)土壤氮素含量及其分布的变化:1)典型区域2003年的稻田氮素含量为1.94±0.02.g/kg,比1990年提高4.9%,主要分布区间由1990年的1.25~2.00.g/kg(分布频率为59.1%,下同)上升到2003年的1.50~2.25g/kg(77.1%),曲线图上呈近似正态分布向右偏态分布的演变趋势;2)旱土2003年的氮素含量为1.57±0.14.g/kg,比1990年提高18.0%,1990和2003年主要分布区间都为0.75~1.50.g/kg(58.2%~58.8%),但2003年分布在1.50~2.00.g/kg区间的频率为33.6%,比1990年的高出12.7个百分点,曲线图上由呈现左偏态分布向正态分布的演变趋势;3)以坡地橘园为主的林果地,2003年的氮素含量为1.15±0.02.g/kg,比1990年提高9.5%,两者的主要分布区间虽然均在0.75~1.50.g/kg之间,但2003年在此区间的分布频率为88.0%,比1990年的高出10.2个百分点,其演变趋势与稻田的基本一致;4)整个采样调研区域农业用地的土壤氮素含量,2003年的为1.58±0.03g/kg,比1990年提高3.3%。这表明在当前的施肥方式与经营管理条件下,红壤丘陵区农业用地的土壤氮素含量稳定并有增加的趋势。  相似文献   

5.
We combine mist-net data from 24 disturbance treatments taken from seven studies on the responses of understorey Amazonian birds to selective logging, single and recurrent wildfires, and habitat fragmentation. The different disturbance treatments had distinct effects on avian guild structure, and fire disturbance and the isolation of forest patches resulted in bird communities that were most divergent from those in continuous, undisturbed forest in terms of their species composition. Although low-intensity logging treatments had the least noticeable effects, the composition of understorey birds was still markedly different from the composition in undisturbed forest. This analysis demonstrates the importance of preventing habitat fragmentation and the spread of fires in humid tropical forests, and highlights the need for more research to determine the long-term suitability of large areas of degraded forest for forest birds.  相似文献   

6.
Sandy soil samples collected from under a woody/grass savanna in the Lamto experimental area (6°13N, 5°20W; Côte dIvoire, West Africa), were fractionated according to particle size with the aim of measuring the natural abundance of 15N and determining the contents and composition of hydrolysable carbohydrates of soil organo-mineral particles for a better understanding of the contribution of each individual fraction to the soil function. The contributions of the fractions <20 m to the total pool of organic matter were 77% for C and 84% for N. Larger amounts of carbohydrates were found in the clay and silt fractions (3,784–6,043 g g–1 soil). The carbohydrate composition indicated that microbe-derived carbohydrates [e.g. galactose (Gal) and mannose (Man)] accumulated preferentially in the fine fractions while plant-derived sugars [e.g. arabinose (Ara) and xylose (Xyl)] were dominant in coarse fractions. A negative relationship was observed between C:N ratio and 15N natural abundance on the one hand, and on the other hand between C:N and (Gal+Man):(Ara+Xyl), Man:(Ara+Xyl) and Man:Xyl ratios, clearly indicating that the chemistry of the organic materials of the particle-size fractions reflects a change from soil chemistry dominated by plant materials to that dominated by microbial biomass and metabolites. The contribution of a given fraction to soil microbial activity is controlled by the quality or quantity of associated soil organic matter, its microbial biomass and also by the accumulation of microbial-derived carbohydrates which can be resynthesized or recycled.  相似文献   

7.
Climate warming is projected to increase the frequency and severity of wildfires in boreal forests, and increased wildfire activity may alter the large soil carbon (C) stocks in boreal forests. Changes in boreal soil C stocks that result from increased wildfire activity will be regulated in part by the response of microbial decomposition to fire, but post-fire changes in microbial decomposition are poorly understood. Here, we investigate the response of microbial decomposition to a boreal forest fire in interior Alaska and test the mechanisms that control post-fire changes in microbial decomposition. We used a reciprocal transplant between a recently burned boreal forest stand and a late successional boreal forest stand to test how post-fire changes in abiotic conditions, soil organic matter (SOM) composition, and soil microbial communities influence microbial decomposition. We found that SOM decomposing at the burned site lost 30.9% less mass over two years than SOM decomposing at the unburned site, indicating that post-fire changes in abiotic conditions suppress microbial decomposition. Our results suggest that moisture availability is one abiotic factor that constrains microbial decomposition in recently burned forests. In addition, we observed that burned SOM decomposed more slowly than unburned SOM, but the exact nature of SOM changes in the recently burned stand are unclear. Finally, we found no evidence that post-fire changes in soil microbial community composition significantly affect decomposition. Taken together, our study has demonstrated that boreal forest fires can suppress microbial decomposition due to post-fire changes in abiotic factors and the composition of SOM. Models that predict the consequences of increased wildfires for C storage in boreal forests may increase their predictive power by incorporating the observed negative response of microbial decomposition to boreal wildfires.  相似文献   

8.
The goal of the present study was to determine whether the habitat preference of collembolan species is more influenced by soil properties or by microclimate and whether the preference for a given soil matches the preference for the corresponding microclimate. To answer these questions, we set up a soil core transfer experiment between a forest and an adjacent pasture. We first eliminated the entire soil fauna from forest and pasture soil cores and inoculated them with a new community originated from forest or pasture. After enclosing them, in order to prevent exchanges of soil animals between treated soil and surrounding environment, soil cores were transplanted back to the field for four months and a half. The experimental design comprises every combination of three factors (community origin, soil nature and microclimate) for a total of 8 treatments. Twenty-two species were present in the experiment, 16 of which were present in more than 10% of the experimental soil cores. We determined habitat preference for these 16 species using a large dataset comprised of field observations in the same region. Results showed that most forest species did not withstand pasture microclimate, although some of them preferred pasture soil. Likewise several pasture species were favoured by the forest microclimate, some of them also preferring forest soil. We concluded that forest species were absent (or less abundant) in pastures because they are not resistant enough to drought, while pasture species were absent (or less abundant) in forests because of food requirements, and/or soil physicochemical properties such as soil pH and organic carbon content, and/or were less competitive. Moreover, when selecting their habitat, some species are submitted to a trade-off between preferences for different habitat features.  相似文献   

9.
Mechanized forest operations have a large impact on soil systems, and may cause disruption of aggregates and exposure of previously protected soil organic matter to microbial attack. In this study, we investigated how C storage, soil structure and unprotected, physically protected and resistant C pools recover 0, 7 and 20 years after mechanical harvesting and site preparation in second rotation Pinus radiata D.Don plantations. We detected differences in dry mean weight diameter (DMWD) of aggregates, with higher DMWD in 0- and 7-year-old pine stands (8.7 and 7.5 mm, respectively) than in 20-year-old stands (4.1 mm). This was attributed to the compaction induced by heavy machinery, as reflected by the positive relationship between DMWD and bulk density (r = 0.85, P < 0.05). Organic C contents in the top 5 cm were similar 0 and 7 years after disturbance, but were twice as high after 20 years, with mean values of 25, 28 and 52 Mg C ha−1, respectively. In addition, the resistant C pool was also reduced by up to 7% after clearance. In contrast, unprotected C and physically-protected C were greatest in the youngest stands, indicating that stand establishment and harvesting with heavy machinery may have broken soil aggregates and exposed the previously protected SOM to microbial decomposition and that forest operations may create new mega-aggregates able to protect organic residues. However, the lowest physically-protected C values in 20-year-old pine stands may also be attributed to differences in SOM quality. The alkyl C/O-alkyl C ratios were highest in the oldest stands, indicating that SOM in these stands was more resistant to further decomposition. Mechanized forest operations in radiata pine stands released at least 30 t C ha−1 from the first 5 cm of the soil profile immediately after clearance, caused significant alterations in the soil structure, which lasted for a minimum of seven years, and also reduced the resistant C pool. As the Kyoto Protocol encourages forest management practices that potentially increase carbon sequestration, mechanical harvesting and site preparation in these steep slopes should be reconsidered.  相似文献   

10.
Our objectives were to determine both spatial and temporal variations in soil respiration of a mixed deciduous forest, with soils exhibiting contrasting levels of hydromorphy. Soil respiration (RS) showed a clear seasonal trend that reflected those of soil temperature (TS) and soil water content (WS), especially during summer drought. Using a bivariate model (RMSE=1.03), both optimal soil water content for soil respiration (WSO) and soil respiration at both 10 °C and optimal soil water content (RS10) varied among plots, ranging, respectively, from 0.25 to 0.40 and from 2.30 to 3.60 μmol m−2 s−1. Spatial variation in WSO was related to bulk density and to topsoil N content, while spatial variation in RS10 was related to basal area and the difference in pH measured in water or KCl suspensions. These results offer promising perspectives for spatializing ecosystem carbon budget at the regional scale.  相似文献   

11.
Short-term and medíum-term effects of liming (CaCO3), fertilization [5Ca(NO)3)2·NH4NO3], and acidification on soil bioactivity were measured in a spruce stand in Southern Germany. The experiment was set up in a randomized block design. Acid precipitation lowered the pH, liming increased the pH, while fertilization caused only small alterations in pH values. Significant differences in soil moisture occurred only in the mineral horizons. The soil ATP content of the humus layers decreased in all plots (control included) up to day 100. On all sampling dates, a pronounced decrease in ATP content followed the acidification. Minor decreases in ATP were observed after fertilization, while liming produced no defined effects. Similar trends, but less pronounced, were observed in the mineral horizons. Only a few significant correlations were found between pH values and ATP or between moisture and ATP within a treatment and sampling date. Present address: Institut für Biologie II (Zoologie), RWTH Aachen, Kopernikusstrasse 16, D-52056 Aachen, Germany  相似文献   

12.
Restoration of forests poses a major challenge globally,particularly in the tropics,as the forests in these regions are more vulnerable to land-use change.We studied land-use change from natural forest (NF) to degraded forest (DF),and subsequently to either Jatropha curcas plantation (JP) or agroecosystem (AG),in the dry tropics of Uttar Pradesh,India,with respect to its impacts on soil microbial community composition as indicated by phospholipid fatty acid (PLFA) biomarkers and soil organic carbon (SOC) content.The trend of bacterial PLFAs across all land-use types was in the order:NF > JP > DF> AG.In NF,there was dominance of gram-negative bacterial (G-) PLFAs over the corresponding gram-positive bacterial (G+) PLFAs.The levels of G-PLFAs in AG and JP differed significantly from those in DF,whereas those of G+ PLFAs were relatively similar in these three land-use types.Fungal PLFAs,however,followed a different trend:NF > JP > DF =AG.Total PLFAs,fungal/bacterial (F/B) PLFA ratio,and SOC content followed trends similar to that of bacterial PLFAs.Across all land-use types,there were strong positive relationships between SOC content and G-,bacterial,fungal,and total microbial PLFAs and F/B PLFA ratio.Compared with bacterial PLFAs,fungal PLFAs appeared to be more responsive to land-use change.The F/B PLFA ratio,fungal PLFAs,and bacterial PLFAs explained 91%,94%,and 73% of the variability in SOC content,respectively.The higher F/B PLFA ratio in JP favored more soil C storage,leading to faster ecosystem recovery compared to either AG or DF.The F/B PLFA ratio could be used as an early indicator of ecosystem recovery in response to disturbance,particularly in relation to land-use change.  相似文献   

13.
We show how Chilean forest bird species richness, abundance and guild structure changes as a function of structural properties of forest stands. We surveyed bird assemblages in two old-growth (>200 years), two mid-successional (30-60 years), and two early-successional forest stands (4-20 years), from November 1999 to September 2000, on Chiloé Island, southern Chile (42°S). Birds were grouped into four habitat-use guilds: large-tree users, vertical-profile generalists, understory species, and shrub-users that occasionally use forests. We recorded a total of 24 bird species: 21 in old-growth, 14 in mid-successional and 16 in early-successional stands. Large-tree users and understory birds were most abundant in old-growth stands, vertical-profile generalists were common in both old-growth and mid-successional stands, and shrub-users were only common in early-successional stands. For nine bird species we found significant relationships between their local abundance and forest structural elements. Higher bird densities in old-growth forests were associated with greater availability of canopy emergent trees, snags, logs and understory bamboo cover in this habitat. Accordingly, bird species diversity in forest stands can be predicted by the presence of these structural elements, and forests should be managed to conserve structural elements that create favorable habitat for bird species in order to prevent future species losses due to logging practices.  相似文献   

14.
Rates of N mineralization were measured in 27 forest soils encompassing a wide range of forest types and management treatments in south-east Australia. Undisturbed soil columns were incubated at 20°C for 68 days at near field-capacity water content, and N mineralization was measured in 5-cm depth increments to 30 cm. The soils represented three primary profile forms: gradational, uniform and duplex. They were sampled beneath mature native Eucalyptus sp. forest and from plantations of Pinus radiata of varying age (<1 to 37 years). Several sites had been fertilized, irrigated, or intercropped with lupins. The soils ranged greatly in total soil N concentrations, C:N ratios, total P, and sand, silt, and clay contents. Net N mineralization for individual soil profiles (0–30 cm depth) varied from 2.0 to 66.6 kg ha-1 over 68 days, with soils from individual depths mineralizing from <0 (immobilization) to 19.3 kg ha-1 per 5 cm soil depth. Only 0.1–3.1% of the total N present at 0–30 cm in depth was mineralized during the incubation, and both the amount and the percentage of total N mineralized decreased with increasing soil depth. N fertilization, addition of slash residues, or intercropping with lupins in the years prior to sampling increased N mineralization. Several years of irrigation of a sandy soil reduced levels of total N and C, and lowered rates of N mineralization. Considuring all soil depths, the simple linear correlations between soil parameters (C, N, P, C:N, C:P, N:P, coarse sand, fine sand, silt, clay) and N mineralization rates were generally low (r<0.53), but these improved for total N (r=0.82) and organic C (r=0.79) when the soils were grouped into primary profile forms. Prediction of field N-mineralization rates was complicated by the poor correlations between soil properties and N mineralization, and temporal changes in the pools of labile organic-N substrates in the field.  相似文献   

15.
中亚热带四种森林土壤团聚体及其有机碳分布特征   总被引:7,自引:0,他引:7  
周纯亮  吴明 《土壤》2011,43(3):406-410
选择中亚热带地区4种典型森林类型:杉木林、湿地松林、毛竹林和次生林4种森林土壤为研究对象,研究了森林类型对土壤不同发生层水稳性团聚体及其有机碳分布特征的影响。结果表明:不同森林类型对>5 mm和2~5 mm土壤团聚体含量影响显著(p<0.05),表现为次生林>杉木林>毛竹林>湿地松林,而在其他粒径无显著差异。0~30 cm土层内团聚体R0.25和MWD次生林显著高于其他人工林,杉木林次之,湿地松林和毛竹林最低,其他土层无显著差异。各森林类型同土层不同粒径团聚体中有机碳含量随粒径大小变化,团聚体粒径越小,有机碳含量越高。0~10 cm土层同粒径土壤团聚体有机碳含量从大到小依次是次生林、杉木林、湿地松林和毛竹林,而在其他土层各森林类型之间差异不显著。  相似文献   

16.
土壤含水率与土壤碱度对土壤抗剪强度的影响   总被引:11,自引:11,他引:11  
土壤含水率和土壤碱度是表征土壤物理化学性质的两个重要参数。通过室内三轴不固结不排水试验,研究了土壤含水率和土壤碱度对土壤抗剪强度的影响。试验处理采用5种土壤碱度(土壤可交换钠百分比ESP=0、5、10、20、40)和4种土壤质量含水率(0.05、0.10、0.20以及饱和含水率0.34)水平。试验结果显示,土壤黏聚力随着土壤含水率的增加基本上呈先增大后减小之趋势;当土壤含水率在0.10附近时黏聚力达到其最大值。土壤内摩擦角随着土壤含水率的增加而线性减小。土壤碱度对土壤黏聚力的影响机理较为复杂,其影响效果随土壤含水率的增加而减小;但土壤碱度对土壤内摩擦角的影响较小。土壤碱度对土壤抗剪强度的影响程度明显地小于土壤含水率对其的影响程度。  相似文献   

17.
The survey presented here describes the bacterial diversity and community structures of a pristine forest soil and an anthropogenic terra preta from the Western Amazon forest using molecular methods to identify the predominant phylogenetic groups. Bacterial community similarities and species diversity in the two soils were compared using oligonucleotide fingerprint grouping of 16S rRNA gene sequences for 1500 clones (OFRG) and by DNA sequencing. The results showed that both soils had similar bacterial community compositions over a range of phylogenetic distances, among which Acidobacteria were predominant, but that terra preta supported approximately 25% greater species richness. The survey provides the first detailed analysis of the composition and structure of bacterial communities from terra preta anthrosols using noncultured-based molecular methods.  相似文献   

18.
We studied the distribution of the indigenous bacterial and fungal communities in a forest soil profile. The composition of bacterial and fungal communities was assessed by denaturing gradient gel electrophoresis (DGGE) of total and extracellular DNA extracted from all the soil horizons. Microbial biomass C and basal respiration were also measured to assess changes in both microbial biomass and activity throughout the soil profile. The 16S rDNA-DGGE revealed composite banding patterns reflecting the high bacterial diversity as expected for a forest soil, whereas 18S rDNA-DGGE analysis showed a certain stability and a lower diversity in the fungal communities. The banding patterns of the different horizons reflected changes in the microbial community structure with increasing depth. In particular, the DGGE analysis evidenced complex banding patterns for the upper A1 and A2 horizons, and a less diverse microflora in the deeper horizons. The low diversity and the presence of specific microbial communities in the B horizons, and in particular in the deeper ones, can be attributed to the selective environment represented by this portion of the soil profile. The eubacterial profiles obtained from the extracellular DNA revealed the presence of some bands not present in the total DNA patterns. This could be interpreted as the remainders of bacteria not any more present in the soil because of changes of edaphic conditions and consequent shifting in the microbial composition. These characteristic bands, present in all the horizons with the exception of the A1, should support the concept that the extracellular DNA is able to persist within the soil. Furthermore, the comparison between the total and extracellular 16S rDNA-DGGE profiles suggested a downwards movement of the extracellular DNA.  相似文献   

19.
Methane oxidation in forest soils removes atmospheric CH4. Many studies have determined methane uptake rates and their controlling variables, yet the microorganisms involved have rarely been assessed simultaneously over the longer term. We measured methane uptake rates and the community structure of methanotrophic bacteria in temperate forest soil (sandy clay loam) on a monthly basis for two years in South Korea. Methane uptake rates at the field site did not show any seasonal patterns, and net uptake occurred throughout both years. In situ uptake rates and uptake potentials determined in the laboratory were 2.92 ± 4.07 mg CH4 m−2 day−1 and 51.6 ± 45.8 ng CH4 g−1 soil day−1, respectively. Contrary to results from other studies, in situ oxidation rates were positively correlated with soil nitrate concentrations. Short-term experimental nitrate addition (0.20-1.95 μg N g−1 soil) significantly stimulated oxidation rates under low methane concentrations (1.7-2.0 ppmv CH4), but significantly inhibited oxidation under high methane concentrations (300 ppmv CH4). We analyzed the community structures of methanotrophic bacteria using a DNA-based fingerprinting method (T-RFLP). Type II methanotrophs dominated under low methane concentrations while Type I methanotrophs dominated under high methane concentrations. Nitrogen addition selectively inhibited Type I methanotrophic bacteria. Overall, the results of this study indicate that the effects of inorganic N on methane uptake depend on methane concentrations and that such a response is related to the dissimilar activation or inhibition of different types of methanotrophic bacteria.  相似文献   

20.
Runoff and soil loss from forest road backslopes is a serious problem in Mediterranean areas. Surface runoff and sediment production on backslopes of forest roads in Los Alcornocales Natural Park (southern Spain) has been studied in this paper using a simple portable rainfall simulator at an intensity of 90 mm h− 1. One hundred rainfall simulations were performed on bare and vegetated road backslopes during summer and winter in order to study seasonal differences. Runoff coefficients and soil loss rates were lower on the vegetated plots than on the bare ones. Runoff coefficients increased 1.7 (bare backslopes) and 3.1 times (vegetated backslopes) from summer to winter. Preserving the vegetation cover over 20% is recommended for keeping soil loss rates under low levels, especially during winter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号