共查询到19条相似文献,搜索用时 125 毫秒
1.
顶空色谱法测定土壤中氰和氰化氢残留量 总被引:1,自引:0,他引:1
氰(C2N2)是一种具有替代溴甲烷潜力的新熏蒸剂,建立土壤中C2N2及其降解产物氰化氢(HCN)的标准检测方法具有较重要的意义。本文采用溶剂顶空毛细管气相色谱-NPD检测器建立了熏蒸剂C2N2和HCN在土壤中的分析方法,优化了土壤中C2N2和HCN预处理的顶空参数,并通过了方法的精密度、检出限和定量限等质量控制参数的验证实验。结果表明,用30% H2SO4溶液作提取溶剂、顶空平衡温度50 ℃和顶空平衡时间0.5 h为最佳的顶空方法参数;在0.1~10 mg?kg-1的质量浓度范围内,C2N2和HCN的浓度与色谱峰面积线性相关系数均大于0.99。采用该方法测定土壤中C2N2和HCN的相对标准偏差(RSD)分别为4.58%和6.32%(n=5),检出限(LOD)分别为0.016 mg?kg-1和0.028 mg?kg-1(S/N=3),定量限(LOQ)分别为0.053 mg?kg-1和0.093 mg?kg-1(S/N=10)。该方法操作简单、灵敏度高、干扰少,适用于土壤中C2N2和HCN残留量的检测。 相似文献
2.
颗粒有机质是土壤活性有机质的重要组成部分,是评估土壤有机质变化的敏感指标。东北地区气候寒冷,稻田土壤淹水期短,非淹水期长且多处于冻结状态,水稻秸秆碳氮在黑土不同种稻年限土壤颗粒有机质中的分配如何尚不清楚。通过室内培养试验,将1%双标记(13C/15N)水稻秸秆添加到不同种稻年限(0、12、35、62和85 a)土壤,淹水培养150 d(培养温度20℃,淹水层1 cm),去除淹水层后冻结培养150 d(培养温度–15℃,饱和水分状态),研究水稻秸秆碳(氮)在不同种稻年限土壤颗粒有机碳(Particulate organic carbon,POC)和颗粒有机氮(Particulate organic nitrogen,PON)中的分配特征。结果表明,在培养过程中,未添加和添加水稻秸秆处理,各年限稻田土壤POC和PON含量均低于对照土壤(0 a),添加秸秆处理的各年限土壤POC和PON含量在淹水培养5 d时明显增加,但其后并未表现出一致的增加趋势。秸秆碳(氮)对各年限土壤POC(PON)的相对贡献率为0.2%~13.9%(0.4%~3.8%),分配... 相似文献
3.
本质素对土壤N、P转化及玉米产量的影响 总被引:4,自引:0,他引:4
研究造纸黑液中提取的木质素对土壤N、P转化及其对玉米生长和产量的影响结果表明,木质素可减缓NH4+向NO3氧化,且随其施用量的增加效果更显著.木质素与磷酸二铵混合施用效果最佳,其次为硫酸铵>尿素.在30℃温度下培养27d,施用量为2%和5%的木质素可分别减少施尿素土壤N2O释放83%和96%;而施磷酸二铵的土壤则分别减少83%和93%.施用木质素可促进难溶性P的溶解,对作物生长极为有利.玉米盆栽试验中施用木质素的根系较发达、粗壮,平均株高、地上部和地下部的鲜物质量和干物质量均高于不施木质素的处理.木质素用量为50μg/g和200μg/g时玉米籽粒产量分别提高4.2%和18.8%. 相似文献
4.
5.
7.
特定培养条件下土壤有机质分解转化规律的研究 总被引:8,自引:0,他引:8
通过室内培养实验,应用δ~(13)C方法研究了玉米秸秆分解期间,土壤固有及新形成有机质的分解转化规律。结果表明:玉米秸秆分解期间,土壤固有及新形成的有机质都逐渐分解,但前者的分解速度较慢。第360 d时,玉米秸秆和土壤固有有机质的残留率分别为30.0%和92.2%;720 d时分别为25.3%和78.8%。培养初期,富里酸的形成速度大于胡敏酸,而后富里酸转化为胡敏酸或相互转化;与新形成有机质相比,固有有机质中胡敏酸、富里酸的转化速度相对较慢。 相似文献
8.
《土壤通报》2019,(6):1455-1462
砷在土壤中的转化积累特性与其生物有效性密切相关。然而,外源As(Ⅲ)、As(Ⅴ)添加对石灰性土壤中砷的动态转化及其生态毒理的影响仍不清楚。通过设置不同剂量(0、20、50、100、180、280、450和800 mg kg-1)砷的土壤培养试验,采用连续浸提方法、物料袋方法研究了As(Ⅲ)、As(Ⅴ)在石灰性土壤中的动态转化特征及土壤生物学性状对As(Ⅲ)、As(Ⅴ)响应的剂量效应。结果表明:(1)土壤交换态砷(AE-As)浓度随培养时间延长而下降,而铝型砷(Al-As)、铁型砷(Fe-As)、钙型砷(Ca-As)浓度则明显升高,说明水溶性砷逐渐转化为难溶性砷,且以Ca-As为主,As(Ⅲ)和As(Ⅴ)处理间差异不显著。(2)过氧化氢酶活性随外源As(Ⅲ)和As(Ⅴ)剂量增加而呈下降趋势(30 d和100 d),蔗糖酶活性随As(Ⅲ)和As(Ⅴ)添加剂量而明显上升(30 d),说明As(Ⅲ)和As(Ⅴ)对过氧化氢酶有抑制作用,对蔗糖酶有刺激作用;As(Ⅲ)和As(Ⅴ)添加对多酚氧化酶活性影响不明显;As(Ⅴ)处理的过氧化氢酶、多酚氧化酶及蔗糖酶平均活性分别比As(Ⅲ)处理高13.7%、1.9%、1.2%,说明As(Ⅲ)生态毒性大于As(Ⅴ)。此外,通过对土壤各形态砷含量与酶活性进行相关分析可知,蔗糖酶对土壤砷的响应较过氧化氢酶和多酚氧化酶更敏感,可作为石灰性土壤砷污染的指示酶。(3)添加于土壤中的大豆秸秆的降解率随外源砷剂量增加而下降,但As(Ⅲ)和As(Ⅴ)处理间差异不显著。综上可以得出如下结论:不同形态的砷在石灰性土壤中转化、转化为以Ca-As为主,As(Ⅲ)和As(Ⅴ)处理间差异不显著;外源As(Ⅲ)和As(Ⅴ)对土壤有机碳降解均有明显抑制作用,且As(Ⅲ)对碳转化相关酶的生态毒性大于As(Ⅴ)。 相似文献
9.
10.
华北平原农田生态系统土壤C、N净矿化及尿素转化研究 总被引:4,自引:0,他引:4
以华北平原区4个农田生态系统[京郊蔬菜大棚(GH)和河北栾城(LF)、河北南皮(NF)、山东惠民(HF)3个粮田]为研究对象,采用室内好气、恒温、避光条件下培养30.d,对比研究了不同海拔和不同农业扰动强度下的农田生态系统中耕层(020.cm)土壤的净N矿化、净硝化、净C矿化以及尿素的转化,旨在探索人类农业扰动强度和地理海拔对土壤供N潜力和尿素N转化的影响。结果表明,4个地区的土壤供N潜力分别为:14.4、13.2,17.7和16.5.mg/kg,说明高度熟化的华北区农田土壤供N潜力相对稳定。以施用有机肥为主的蔬菜大棚和以施用化肥为主的粮田对土壤供N没有显著影响。农田土壤净矿化后的供N形式主要是NO3--N。以施用有机肥为主的蔬菜大棚积累了较高的土壤有机质和全N,但是土壤净C矿化以及施用尿素后CO2的排放量均低于以施用化肥为主的粮田。尿素在各区域农田土壤中水解转化后均主要以NO3--N形式存在,NO3--N占尿素水解后无机N增量的98%9~9%;华北平原农田生态系统施入尿素态N.30d后,水解成有效态无机N的转化率为63.4%8~3.2%,即每克尿素态N在京郊蔬菜大棚(GH)、栾城高产农田(LF)、南皮农田(NF)和惠民农田(HF)土壤中转化为NO3--N的量分别为0.69、0.82、0.64和0.63.g/kg,同时可使相应区域农田的CO2排放量分别增加CO21.20、1.360、.67和1.58.g/kg。 相似文献
11.
Microbial communities in floodplain soils are exposed to periodical flooding. A long-term submerged Eutric Gleysol (GLe), an intermediate flooded Eutric Fluvisol (FLe), and a short-time flooded Mollic Fluvisol (FLm) at the Elbe River (Germany) with similar organic carbon contents (Corg) between 8.1% and 8.9% were selected to test the quality of phospholipid fatty acids (PLFA), soil microbial carbon (Cmic), basal respiration (BR), metabolic quotient (qCO2), and Cmic/Corg ratio to characterize and discriminate these soils with microbial parameters.The three floodplain soils can be differentiated by Cmic and by total PLFA-biomass. Due to the different flooding durations and the time since the soils were last flooded Cmic and PLFA-biomass increase in the order GLe<FLe<FLm. Both parameters correlate significantly (r=0.999;p<0.05). The Cmic/Corg ratios are low in comparison to terrestrial soils and revealed the same ranking over the three soils like Cmic. Contrary, qCO2 and BR are highest in GLe and lowest in FLm according to inundation regime. The diminished Cmic, high BR, and high qCO2 values in GLe seem to be an unspecific response of aerobic soil microorganisms on the long flooding period and the resulting short time for developing after last flooding as well as the low pH value. Different plant communities and their residues may influence the microbial diversity additionally.The PLFA profiles were dominated by the group of saturated fatty acids that together constituted almost 62-72% of the total fatty acids identified in the soils. In GLe all groups of PLFA, inclusive monounsaturated fatty acids, are lowest and in FLm highest, while in FLe the PLFA fractions show an intermediary amount of the three soils. The FLm had most of the time aerobic conditions and revealed therefore the highest Cmic, PLFA-biomass, especially monounsaturated fatty acids, Cmic/Corg ratio as well as relatively low BR and qCO2 value. These indicate that microorganisms in FLm are more efficiently in using carbon sources than those in GLe and FLe.All 26 identified PLFA were found in FLe and FLm, while the polyunsaturated fungi biomarker 18:2ω6,9c could not be detected in GLe. In this long-time submerged soil the environmental conditions which microorganisms are exposed might be disadvantageous for fungi. 相似文献
12.
The effect of soil freeze–thaw cycles on the denitrification potential was examined based on the C2H2 inhibition method. The gross N2O production curve of the soil sample (incubation with C2H2) showed minor changes between the freeze–thaw treatment and the unfrozen control. However, kinetics analysis revealed that
the initial production rate, an indicator of the population density of denitrifying communities, decreased (P = 0.043) and the specific growth rate constant, an indicator of the activity of denitrifying communities, increased (P = 0.039) as a result of the freeze–thaw cycles in five of six soil samples examined. The increase in the specific growth
rate constant suggested the stimulation of the activity of denitrifying communities that survived after the freeze–thaw cycles
and may explain the minor suppression on the gross N2O production in spite of decreasing the population density of denitrifying communities that was suggested by the initial production
rate. The net N2O production curve of the soil sample (incubation without C2H2) showed a remarkable change in one out of six soil samples, and in that one soil sample, N2O release to the atmosphere was largely stimulated (7.6 times) by the freeze–thaw cycles. However, the stimulation of the
N2O release by the freeze–thaw cycles was even observed in two other selected soil samples (4.6 and 1.8 times), suggesting that
an imbalance in the N2O-producing and N2O-reducing activities of denitrifying communities might complementally explain the N2O release stimulated by the freeze–thaw cycles. 相似文献
13.
Soil compaction and soil moisture are important factors influencing denitrification and N2O emission from fertilized soils. We analyzed the combined effects of these factors on the emission of N2O, N2 and CO2 from undisturbed soil cores fertilized with (150 kg N ha−1) in a laboratory experiment. The soil cores were collected from differently compacted areas in a potato field, i.e. the ridges (ρD=1.03 g cm−3), the interrow area (ρD=1.24 g cm−3), and the tractor compacted interrow area (ρD=1.64 g cm−3), and adjusted to constant soil moisture levels between 40 and 98% water-filled pore space (WFPS).High N2O emissions were a result of denitrification and occurred at a WFPS≥70% in all compaction treatments. N2 production occurred only at the highest soil moisture level (≥90% WFPS) but it was considerably smaller than the N2O-N emission in most cases. There was no soil moisture effect on CO2 emission from the differently compacted soils with the exception of the highest soil moisture level (98% WFPS) of the tractor-compacted soil in which soil respiration was significantly reduced. The maximum N2O emission rates from all treatments occurred after rewetting of dry soil. This rewetting effect increased with the amount of water added. The results show the importance of increased carbon availability and associated respiratory O2 consumption induced by soil drying and rewetting for the emissions of N2O. 相似文献
14.
Summary A sandy soil amended with different forms and amounts of fertilizer nitrogen (urea, ammonium sulphate and potassium nitrate) was investigated in model experiments for N2O emission, which may be evolved during both oxidation of ammonia to nitrate and anaerobic respiration of nitrate. Since C2H2 inhibits both nitrification and the reduction of N2O to N2 during denitrification, the amount of N2O evolved in the presence and absence of C2H2 represents the nitrogen released through nitrification and denitrification.Results show that amounts of N2O-N lost from soils incubated anaerobically with 0.1% C2H2 and treated with potassium nitrate (23.1 µg N-NO
3
–
/g dry soil) exceeded those from soils incubated in the presence of 20% oxygen and treated with even larger amounts of nitrogen as urea and ammonium sulphate. This indicates that nitrogen losses by denitrification may potentially be higher than those occurring through nitrification. 相似文献
15.
Argyro Zerva 《Soil biology & biochemistry》2005,37(11):2025-2036
We examined the effects of forest clearfelling on the fluxes of soil CO2, CH4, and N2O in a Sitka spruce (Picea sitchensis (Bong.) Carr.) plantation on an organic-rich peaty gley soil, in Northern England. Soil CO2, CH4, N2O as well as environmental factors such as soil temperature, soil water content, and depth to the water table were recorded in two mature stands for one growing season, at the end of which one of the two stands was felled and one was left as control. Monitoring of the same parameters continued thereafter for a second growing season. For the first 10 months after clearfelling, there was a significant decrease in soil CO2 efflux, with an average efflux rate of 4.0 g m−2 d−1 in the mature stand (40-year) and 2.7 g m−2 d−1 in clearfelled site (CF). Clearfelling turned the soil from a sink (−0.37 mg m−2 d−1) for CH4 to a net source (2.01 mg m−2 d−1). For the same period, soil N2O fluxes averaged 0.57 mg m−2 d−1 in the CF and 0.23 mg m−2 d−1 in the 40-year stand. Clearfelling affected environmental factors and lead to higher daily soil temperatures during the summer period, while it caused an increase in the soil water content and a rise in the water table depth. Despite clearfelling, CO2 remained the dominant greenhouse gas in terms of its greenhouse warming potential. 相似文献
16.
According to Broadbent and Clark (3), there are numerous data indicating that denitrification leads to the emission of N2O together with N2, whereby loss of N is developed from soils. Nitrous oxide is also released from soils to the atmosphere during the nitrification of ammonium and ammonium-producing fertilizers under aerobic conditions (1). Relatively few attempts have been made to directly measure N2O evolution under field conditions (6, 7, 10–12), although a number of laboratory studies have been reported. These studies are essential for determining the N balance between additions and losses of soil N. 相似文献
17.
Plant canopy effects on litter accumulation and soil microbial biomass in two temperate forests 总被引:2,自引:0,他引:2
The objective of this study was to determine whether differences in canopy structure and litter composition affect soil characteristics
and microbial activity in oak versus mixed fir-beech stands. Mean litter biomass was greater in mixed fir-beech stands (51.9t
ha−1) compared to oak stands (15.7t ha−1). Canopy leaf area was also significantly larger in mixed stands (1.96m2 m−2) than in oak stands (1.73m2 m−2). Soil organic carbon (C
org) and moisture were greater in mixed fir-beech stands, probably as a result of increased cover. Soil microbial biomass carbon
(C
mic), nitrogen (N
mic), and total soil nitrogen (N
tot) increased slightly in the mixed stand, although this difference was not significant. Overall, mixed stands showed a higher
mean C
org/N
tot ratio (22.73) compared to oak stands (16.39), indicating relatively low rate of carbon mineralization. In addition, the percentage
of organic C present as C
mic in the surface soil decreased from 3.17% in the oak stand to 2.26% in the mixed stand, suggesting that fir-beech litter may
be less suitable as a microbial substrate than oak litter. 相似文献
18.
A simple method for characterizing soil microbial community composition relevant to N2O production and consumption was proposed. Ten-fold series soil dilution was prepared. Nitrate or N2O was provided as the sole electron acceptor. Nitrous oxide concentration in the headspace gas across the serially diluted soil suspensions was measured against controls. Results showed that the patterns of N2O production and consumption across the soil suspensions provided useful information on the microbial community composition relevant to N2O production and consumption in these soils. An independent method, to that proposed here, was also employed to characterize denitrifier community compositions of the same soils. Data indicated that information on the soil microbial community composition characterized by both methods were compatible or mutually supporting and apparently related to in situ N2O emissions. Soil samples from manure (applied with animal manure plus chemical fertilizer) plots had higher denitrification rates than the samples from normal fertilizer (applied with chemical fertilizer only) plots. It was concluded that functional characteristics of soil microbial communities relevant to N2O production and consumption could be characterized at ecological levels and may potentially affect N2O emissions. 相似文献
19.
Nitrous oxide (N2O) is a greenhouse gas and agricultural soils are major sources of atmospheric N2O. Its emissions from soils make up the largest part in the global N2O budget. Research was carried out at the experimental fields of the Leibniz-Institute of Agricultural Engineering Potsdam-Bornim (ATB). Different types (mineral and wood ash) and levels (0, 75 and 150 kg N ha−1) of fertilization were applied to annual (rape, rye, triticale and hemp) and perennial (poplar and willow) plants every year. N2O flux measurements were performed 4 times a week by means of gas flux chambers and an automated gas chromatograph between 2003 and 2005. Soil samples were also taken close to the corresponding measuring rings. Soil nitrate and ammonium were measured in soil extracts.N2O emissions had a peak after N fertilization in spring, after plant harvest in summer and during the freezing–thawing periods in winter. Both fertilization and plant types significantly altered N2O emission. The maximum N2O emission rate detected was 1081 μg N2O m−2 h−1 in 2004. The mean annual N2O emissions from the annual plants were more than twofold greater than those of perennial plants (4.3 kg ha−1 vs. 1.9 kg ha−1). During January, N2O fluxes considerably increased in all treatments due to freezing–thawing cycles. Fertilization together with annual cropping doubled the N2O emissions compared to perennial crops indicating that N use efficiency was greater for perennial plants. Fertilizer-derived N2O fluxes constituted about 32% (willow) to 67% (rape/rye) of total soil N2O flux. Concurrent measurements of soil water content, NO3 and NH4 support the conclusion that nitrification is main source of N2O loss from the study soils. The mean soil NO3-N values of soils during the study for fertilized soils were 1.6 and 0.9 mg NO3-N kg−1 for 150 and 75 kg N ha−1 fertilization, respectively. This value reduced to 0.5 mg NO3-N kg−1 for non-fertilized soils. 相似文献