首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Soil interparticle forces can pose important effects on soil aggregate stability and rainfall splash erosion. Meanwhile, these interparticle forces are strongly influenced by specific ion effects. In this study, we applied three monovalent cations (Li+, Na+, and K+) with various concentrations to investigate the influence of specific ion effects on aggregate stability and splash erosion via pipette and rainfall simulation methods. The specific ion effects on soil interparticle forces were quantitatively evaluated by introducing cationic non-classical polarization. The results showed that aggregate stability and splash erosion had strong ion specificity. Aggregate breaking strength and splash erosion rate at the same salt concentration followed the sequence as Li+ > Na+ > K+. With decreasing salt concentration, the difference in aggregate breaking strength or splash erosion rate between different cation systems increased initially (1–10–2 mol L–1) and later was nearly invariable (10–2–10–4 mol L–1). The experimental results were well quantitatively explained by soil interparticle forces considering cationic non-classical polarization. Furthermore, both aggregate breaking strength and splash erosion rate of three cations revealed a strong positive linear relation with net force subjected to cationic non-classical polarization (R2 = 0.81, R2 = 0.81). These results demonstrated that different non-classical polarization of cations resulted in different soil interparticle forces, and thus led to differences in aggregate stability and splash erosion. Our study provides valuable information to deeply understand the mechanisms of rainfall splash erosion.  相似文献   

2.
Z.C. Zhou  Z.P. Shangguan   《CATENA》2007,70(3):350-355
Numerous studies have demonstrated that vegetation coverage is very important to control soil erosion by water. However, the combined impacts of plant roots and shoots on soil erosion by water and the relative contributions of the roots and shoots are not clearly understood. Four rainfall simulation experiments with the rainfall intensity at 1.5 mm min− 1 were conducted at an interval of 5 weeks to investigate the effects of ryegrass (Lolium perenne L.) shoots and roots on soil erosion and runoff reductions. Ten ryegrass planted pans and four fallow pans were prepared for the experiments. The first rainfall simulation experiment was conducted after ryegrass had been planted for 12 weeks. It showed that compared with the runoffs in the fallow pans, the runoff in the planted pans decreased 25% and 70% in the 12th week and the 27th week, respectively; and the sediment decrements amounted up to 95% in the 27th week. The results also indicated that the shoot effect on runoff reduction, accounting for over 50% except in the 27th week when the shoot affect also accounted for 44%, was relatively greater than the root effect. However, the roots contributed more to soil loss reduction than the shoots, and in particular accounted for 90% of soil loss reduction at the 27th week. Both the soil erosion rate and average infiltration rate were linearly correlated with root surface area density in cm2 root surface area per unit soil volume. Ryegrass planting could improve soil physical properties, especially soil aggregate stability, which increased from 33.1% in the 12th week to 38.5% in the 27th week. The study results are probably useful in evaluating the effects of plant shoots and roots on soil erosion control.  相似文献   

3.
Application of urban refuse compost to agricultural soil could help to solve municipalities' problems related to the increasing production of waste only if soil property improvement and environmental conservation can be demonstrated. The use of low-pressure tractor tyres is another proposal in modern agriculture for reducing soil compaction. This study thus aimed to detect the effects of both compost and low-pressure tractor tyres on soil loss, runoff, aggregate stability, bulk density, penetrometer resistance and maize (Zea mays L.) yield. A 3-year field experiment was carried out on a hilly (15% slope) clay loam soil in central Italy. Twelve plots (200 m2 each) were monitored with tipping-pot devices for runoff and soil erosion measurement. Treatments were: compost addition (64 Mg ha−1), mineral fertilisation, use of low-pressure tyres, use of traditional tyres, with three replicates, in a fully randomised block design. Compost was applied once at the beginning of the experiment. Runoff reduction due to compost ranged between 7 and 399 m3 ha−1 during seasons, while soil erosion was reduced between 0.2 and 2.4 Mg ha−1. Mean weight diameter (MWD) of stable aggregates, measured on wheel tracks, increased by 2.19 mm, then progressively decreased. Compost significantly increased bulk density by 0.08 Mg m−3 due to its inert fraction content. This effect was less evident in the second and third year, probably due to harrowing. Maize yields were slightly, but significantly, reduced in composted plots by 1.72 Mg ha−1 in the third year. Low-pressure tyres significantly reduced soil loss in the third year by 1 Mg ha−1. Furthermore, they did not significantly influence runoff volumes and soil structural stability. Low-pressure tyres or compost addition were singly able to prevent an increase in penetrometer resistance due to agricultural machinery traffic. Low-pressure tyres increased the maize yield during the 3 years and the difference (0.4 Mg ha−1) became significant in the third year. In conclusion, results show the positive lasting effect of compost in ameliorating soil physical properties and reducing runoff and soil erosion. Low-pressure tyres appear justifiable both for the observed increase of grain production and reduction of soil compaction. This latter effect is, nevertheless, masked by compost addition which is also able to reduce penetrometer resistance. Further research is required to explain the causes of the slight inhibition of grain yield observed when compost was compared with mineral fertilisation.  相似文献   

4.
研究计算四川省土地利用结构特征指数和土壤侵蚀强度指数结果表明,该省土地利用结构特征指数与土壤侵蚀强度指数的变化具有同步性,用土地利用结构特征指数预测其土壤侵蚀强度变化是合理可行的。  相似文献   

5.
During raindrop impact soil, aggregates breakdown and produce finer, more transportable particles and micro-aggregates. These particles and micro-aggregates appreciably affect the processes of infiltration, seal and crust development, runoff, and soil erosion. Aggregate stability is, therefore, an important property that may explain, quantify, and predict these processes. This study was designed to develop improved formulae for assessing interrill erosion rate by incorporating the aggregate stability index (As) in the prediction evaluations for soil erodibilites of Ultisols in subtropical China. Field experiments of simulated rainfall involving rainstorm simulations with medium and high rainfall intensity were conducted on six cultivated soils for which the soil aggregate stability was determined by the LB-method. This study yielded two prediction equations Di = 0.23AsI2(1.05 − 0.85 exp−4sin θ) and Di = 0.34AsqI(1.05 − 0.85 exp−4sin θ) that allowed a comparison of their efficiency in assessing the interrill erosion rate. As is an aggregate stability index, which reflected the main mechanisms of aggregate breakdown in interrill erosion process, θ is the slope angle, I is the rainfall intensity, and q is the runoff rate. Relatively good agreement was obtained between predicted and measured values of erosion rates for each of the prediction models (R2 = 0.86**, and R2 = 0.90**). It was concluded that these formulae based on the stability index, As, have the potential to improve methodology for assessing interrill erosion rates for the subtropical Chinese Ultisols. Considering the time-consuming and costly experimentation of runoff rate measurements, the equation without runoff rate (q) was the more convenient and effective one to predict interrill erosion rates on Ultisols of subtropical China.  相似文献   

6.
Knowledge of the soil components controlling aggregate formation and stability is fundamental to the conservation of soil structure. In this work, the effects of Fe and organic matter (OM) on the porosity and structural stability of aggregates <4 mm of two cropped soils from Galicia (NW Spain) were determined. Porosity was estimated directly, by mercury intrusion porosimetry, and indirectly, from moisture characteristic and shrinkage curves. The three porosities obtained were similar and indicated that Soil 1, with the highest Fe and OM contents, had lower total porosity and a wider pore-size distribution than Soil 2. As regards structural stability, Hénin and Monnier's test, simulated rainfall and dispersion experiments, and determination of textural tensile strength all indicated Soil 1 to be the more stable soil. Oxidation of OM and selective extraction of Fe, which were most concentrated in the clay and silt fractions, indicated both these components to be important soil aggregants. It is suggested that the higher content of Soil 1 in Fe and OM is responsible for its greater stability.  相似文献   

7.
我国水土流失日益严重,已成为制约构建和谐社会的重大生态环境问题[1]。因此,土壤侵蚀的监测研究显得格外重要且十分紧迫。磁性示踪技术作为土壤侵蚀监测研究的一种新手段,具有很多优点[2-3],近年来逐渐得到广大科研工作者的重视。  相似文献   

8.
During the past few decades, Mexico has been converting tropical dry forest (TDF) into cropland and pasture, with land degradation expressed as soil erosion being the main environmental consequence. The factors and processes influencing soil erosion are related to scale. At a microscale, the stability of soil aggregates has a significant impact on soil erodibility and strongly influences other soil properties. However, at plot and watershed scales, these relationships are less well known. The relationships between the distribution of soil aggregate size, soil properties and soil erosion were examined for two soil geomorphological units (hillslopes over granite and hillslopes over tuffs) and three land uses (TDF, unburned pasture and burned pasture) within the Chamela watershed of west–central Mexico. To evaluate soil aggregation as a parameter for upscaling soil erosion, the researchers measured microtopographic features at plot scales and interpreted 1:35,000 panchromatic aerial photographs at a watershed scale. Analysis of variance indicated significant differences in soil organic carbon (P < 0.05) and soil moisture (P < 0.01) contents between the two soil geomorphological units, and field tests showed differences in soil texture and structure.  相似文献   

9.
This paper examines the implications of changes in precipitation and land use to soil erosion from 1955 to 2002 in Basilicata, a hilly portion of southern Italy. Analysis of daily precipitation records reveals statistically significant trends using both non-parametric and parametric approaches. The inter-annual variability of precipitation increases in intensity; primarily between October and January. From 1955 to 2000, the length of dry spells greatly increased, while wet days decreased. A land use change map was produced for the three study areas using aerial photos (1955) and orthophotos (1997 and 2002), integrated with field surveys. Results show that land use is highly dynamic in Basilicata, especially due to the application of the European Union's Common Agricultural Policy (CAP) measures. The EU policies resulted in reclamation of badlands and degraded grasslands for agriculture, principally the cultivation of durum wheat. This farming practice and the abandonment of some of the remodeled areas have increased the risk of soil erosion and desertification processes, and is manifest in land degradation by rill networks and gullying.  相似文献   

10.
In the North-West of the Cantabrian Range (North of Spain) the climate is oceanic and vegetation cover is continuous. In those areas where livestock farming prevails, wildfires are common, although small in size, their recurrence makes the phenomenon critical for the conservation of soils.In this study we propose that the structural stability of soil, associated with the type and size of the structural aggregates, may be a useful indicator to assess erosion susceptibility in burnt soils. We have chosen an area of approximately 485 km2 over quartzitic lithologies where a high recurrence of wildfires has been noted and which displays several forms of erosion: gullying, rilling and erosion by overland flow. We have measured texture, percentage and degree of structural aggregate stability and the rate of infiltration in soils that have been burnt up to 3 times over the last 20 years and also in unburnt soils. The results obtained enable us to establish connections between wildfires, soil deterioration and macro-aggregate stability.We have used the stability of macro-aggregates as an indicator to elaborate a soil erosion susceptibility model for a large area of 10,600 km2 with sharp relief and Atlantic climate. The model was constructed by combining three main factors: soil structural stability, fire intensity and relief. Variables related to soil structural stability and presence of basic cations have been derived from lithology (% Clay and % Silt + Fine Sand). The availability of humified organic material has also been taken into account as an additional variable in the formation of stable macro-aggregates. The expected fire intensity was calculated from the amount of inflammable material and the structure of the different vegetation types. Finally, the influence of relief was analyzed by considering the slope steepness.The resultant cartographic model presents five types of post wildfire soil erosion susceptibility. Those areas with the highest risk correspond to quartzite lithology regions, with long, steep hillsides covered with heaths. Those with the lowest risk correspond to limestone bedrock areas with gentle slopes and herbaceous vegetation. The accuracy of the model is determined by the scale of the original thematic cartography: 1:25000, and the cell size of the Digital Terrain Model is 50 × 50 m.  相似文献   

11.
Sustainability of agricultural management systems has become an issue of wide public concern and international debate. One result is that soil quality assessment has been suggested as a tool for evaluating sustainability of soil and crop management practices. Our objective was to adapt a soil quality index to assess the effects of three long-term tillage systems on sloping Grantsburg silt loam soil. Soil quality was evaluated using a framework that included three soil functions: (1) resist erosion (water relations), (2) provide plant nutrients (nutrient relations), and (3) provide a favorable root environment (rooting relations). A score for each of these functions was computed using measurements (indicators) that were normalized with one of the three (more is better, optimum, or worse) scoring functions. Six different indices were developed from a basic framework. Modifications included changing the weighting factors, threshold limits, or type of scoring function applied to indicators, and the addition of air-filled and water storage porosity to the nutrient and rooting relations functions. Changing threshold limits and the type of scoring function used for surface residue improved the correlation between water relations and soil loss. The addition of porosity indicators increased the sensitivity of nutrient and rooting relations functions to yield and cone index, respectively, and resulted in a better correlation between porosity indicators and plant population. Computing soil quality indices helped to combine different soil properties and processes into a simple tool that explained changes in complex soil properties in response to different tillage practices. This supports previous studies suggesting that computing soil quality indices and functions could be useful for selecting management practices to maintain or improve soil quality. Our results demonstrated that adjusting threshold limits for local conditions can make the function ratings more or less sensitive to the management practices being evaluated.  相似文献   

12.
紫色土坡耕地土壤物理性质空间变异对土壤侵蚀的响应   总被引:11,自引:8,他引:3  
为了研究不同坡度和坡长的耕地上土壤侵蚀对土壤物理性质空间变异的影响,通过地形测量、137 Cs示踪、土壤物理性质分析等方法对川中丘陵紫色土区土壤物理性质对土壤侵蚀的响应进行了研究,结果表明:在中等坡度(16.60%~25.10%)的梯坡地上,耕作侵蚀处于主导地位,是导致耕层土壤物理性黏粒含量和容重在梯坡地上总体差异不大(CV<6.3%),且与137Cs含量不相关的主要原因;在已退耕还林的陡梯坡地上(35.60%),水蚀占据主导地位,导致耕层土壤物理性黏粒含量和容重均与137Cs的含量显著相关。在长坡耕地上(10.10%),具有分选搬运能力的水力侵蚀占据主导地位,致使耕层土壤物理性黏粒含量与137Cs的含量具有显著的相关关系,而容重却与137Cs含量没有显著的相关关系。川中丘陵区坡耕地上,耕作侵蚀和水蚀共同作用于土层深度,使土层深度在坡顶、上坡最浅,在坡脚最深,顺坡向下逐渐增加。因此,在川中丘陵区不同坡长的坡耕地上,占主导地位的土壤侵蚀类型导致坡耕地上土壤物理性质出现相应的变化。  相似文献   

13.
依托三峡工程生态与环境秭归实验站的8 a长期试验,对5种保护性管理措施下坡地脐橙园土壤团聚体结构与团聚体碳、氮、磷含量分布特征进行了研究。结果表明,脐橙套种多年生白三叶草(CM)和脐橙园地面农作物秸秆覆盖(SM)处理表层土壤(0~5 cm)大于0.25 mm水稳性团聚体含量、团聚体平均重量直径(MWD)值、大于0.25 mm水稳性团聚体氮含量及SM处理表层土壤大于0.25 mm水稳性团聚体磷含量显著高于其他处理;脐橙套种黄花菜等高植物篱(CH)处理和脐橙园沿等高线埋设防渗膜(MM)处理表层土壤大于0.25 mm水稳性团聚体含量及CH处理的MWD值显著高于常规脐橙栽植(CK)和脐橙套种小麦-花生(PC)处理;与CK处理相比,PC处理大于0.25 mm水稳性团聚体含量、MWD值、团聚体碳含量和表层土壤团聚体氮含量没有显著变化,但5~20 cm土壤团聚体磷含量有升高趋势。团聚体MWD与大于0.25 mm水稳性团聚体和团聚体氮含量有极显著相关关系。  相似文献   

14.
In the middle terrace area of south Sumatra, Indonesia, where red acid soils poor in crop productivity are widely distributed, the effects of cropping pattern and cultivation techniques on physico-chemical properties of soil were investigated. Five patterns for cassava cropping, including monoculture, a rotation with annual food crops, and three intercroppings with differences in the combination with annual crops and in the planting density, were evaluated in Experiment I. In Experiment II, eight plots composed of the combinations of two tillage methods (no-tillage or conventional tillage), the presence or absence of surface mulch from crop residues, and two rates of chemical fertilizers were established for a maize–soybean–cowpea sequential cropping pattern. At the end of 3 years, there was no difference in total C and total N concentrations among the plots in Experiment I irrespective of the mulch treatment using crop residues. Soil organic matter (SOM) concentration was not affected even in the no-tillage plot where the maximum crop residues (20 t ha−1) was given as surface mulch with the increased root residues due to higher rates of fertilizers (Experiment II). In Experiment I, available P concentration was highest in an intercropping with higher fertilizer rates and lowest cassava planting density. In Experiment II, an increase in available P was attained by mulching and the higher rate of fertilizers, and a minor positive effect of fertilizer was also observed in exchangeable Mg and K concentrations. Surface mulch resulted in less clay fraction compared with the non-mulch plots in both the experiments, suggesting its effect on the maintenance of soil particle distribution. An additional finding suggested no prominent influence of cassava monoculture on the level of SOM in this area based on the comparison with other major land uses, including secondary forest, rubber plantation, and mixed cultivation of fruits with crops. Nevertheless, the introduction of crop residue mulch and higher rates of fertilizers are recommended for sustaining soil quality and achieving higher crop yields.  相似文献   

15.
Knowledge of the generation of subsurface flow for hillslopes is important for controlling agricultural nonpoint nutrient losses. This study used a physically based hillslope hydrologic model HYDRUS‐2D to assess the sensitivity of simulated subsurface flow to the interactions between precipitation, soil texture and land use. Soil moisture data from 1 January 2013 to 23 August 2014 at two monitoring sites on a tea plantation hillslope were used to calibrate the van Genuchten–Mualem hydraulic parameters for this model. For six different textural classes (loamy sand, loam, silt, silt loam, clay loam and clay) and four land‐use types (tea garden, forest, grassland and bare soil), scenario‐based simulations were carried out for varied precipitation intensities (6.0, 15.0, 30.0, 45.0, 60.0 and 76.0 mm/day) and frequencies (time intervals of 1, 5, 10, 15, 20 and 25 days). Results indicated that the hillslope run‐off was dominated by subsurface flow, which was influenced by precipitation and antecedent moisture conditions. A threshold value of 0.18 m3/m3 of mean hillslope soil moisture was observed for the initiation of subsurface flow. High precipitation intensity (i.e. 75.0 mm/day) substantially increased subsurface flow for all soil textures. In addition, the sensitivity of the bare soil hillslope to rainfall patterns was more than two times higher than that of the vegetated (i.e. grassland, tea garden and forest) hillslope. These findings suggest that extreme precipitation events and land‐use change will increase the risks of subsurface flow on hillslopes. Therefore, optimal fertilizer application strategy and land‐use planning should be proposed for controlling the hillslope nonpoint nutrient losses.  相似文献   

16.
Rainfall simulations were conducted on a loess derived silt loam soil (Henan province, P.R. China) under conventional tillage. This tillage practice is widespread and involves the turning of the plough layer and the wheat stubble in July (primary tillage), followed by a secondary tillage operation in October. Soil samples were collected and in situ measurements were done before each rainfall simulation in order to analyse soil physical properties after successive simulated rainfall events. The purpose of this study was to determine rainfall induced changes in saturated hydraulic conductivity, bulk density, penetration resistance, water retention and soil erodibility. The results only showed significant differences in soil bulk density and erodibility when applying successive rainfall events. Penetration resistance and water retention (at matric potentials ≤ − 3 kPa) were not significantly affected and soil surface sealing was not observed. This was also confirmed by the infiltration measurements, where no significant differences in saturated hydraulic conductivity were found. From a soil conservation point of view, this study indicated that the primary tillage operation (i.e. ploughing at the beginning of July) is rather disadvantageous: the saturated hydraulic conductivity is not significantly affected, but the soil erodibility is considerably higher in comparison to a consolidated soil. Furthermore, the beneficial effects of the wheat stubble on soil and water conservation are lost by the tillage operation.  相似文献   

17.
通过室内人工模拟降雨试验,研究降雨强度、坡度及地表覆盖3因素对花岗岩红壤坡面侵蚀过程的影响.结果表明:1)起始产流时间随降雨强度和坡度的增加而有所提前,而地表覆盖能延缓起始产流时间;2)在不同降雨强度和坡度条件下,径流率从产流初期开始都快速增加,7 ~ 10 min后达到稳定,且随着降雨强度和坡度增加,径流率也显著增加;3)随着降雨强度的增大,产沙率明显增大,且降雨强度越大,坡度对产沙率的影响越明显;4)降雨强度和径流总量、产沙总量之间相关性极显著,其相关系数分别为0.892和0.799;5)地表覆盖具有良好的减沙作用,其减沙效益超过90%.  相似文献   

18.
As a case study on landscape pattern analysis of soil erosion change, Xingguo County in Jiangxi Province, China, was once one of the most severely eroded regions in Subtropical China. However, its soil erosion has been completely controlled in recent years. This county was historically full of forest as well as waterways that were well protected and soil erosion was seldom seen even by the mid-19th century. However, large areas of forest were destroyed after that period due to over-logging, which resulted in excessive erosion, bare hills, and mountains devoid of vegetation. Fortunately, soil erosion in Xingguo has been controlled gradually since 1982 after the county was appointed as 1 of the 8 Key National Level Erosion Control Regions. In this study, a raster (grid) soil erosion map was collected on the basis of soil erosion intensity maps from 1958, 1975, 1982 and 2000 with the aid of GIS software (ARC/INFO). Over 10 landscape indices were calculated using FRAGSTATS software for landscape pattern analysis. A set of free spatial statistics that address a fundamental problem in GIS, and soil erosion distribution patterns and their changes in the county were quantitatively analyzed at the landscape and class levels, respectively. Moreover, transformations of soil erosion types from 1958 to 1975, 1975 to 1982, and 1982 to 2000 were also calculated using the CROSSTAB module in IDRISI software. Results showed that at the landscape level, heterogeneity of soil erosion decreased. This was supported by decreasing tendencies of patch indices SHDI (Shannon’s diversity index), SHEI (Shannons evenness index), and IJI (Interspersion and juxtaposition index). This indicates that most of the severely eroded soil types were transformed into non-apparently eroded or slightly eroded types. Meanwhile, at the class level, a consistent pattern was found where the surface areas of non-apparently eroded or slightly eroded lands increased, and moderately, severely, very severely and extremely eroded lands deceased. In general, soil erosion in Xingguo County experienced three pronounced phases during the study periods: the exacerbation phase (1958–1975), the alleviation phase (1975–1982), and the overall alleviation phase (1982–2000). By the year 2000, 74.6% of total territory of this county was covered by land with no significant soil loss, indicating that severe soil erosion had been substantially controlled.  相似文献   

19.
Runoff and soil loss from forest road backslopes is a serious problem in Mediterranean areas. Surface runoff and sediment production on backslopes of forest roads in Los Alcornocales Natural Park (southern Spain) has been studied in this paper using a simple portable rainfall simulator at an intensity of 90 mm h− 1. One hundred rainfall simulations were performed on bare and vegetated road backslopes during summer and winter in order to study seasonal differences. Runoff coefficients and soil loss rates were lower on the vegetated plots than on the bare ones. Runoff coefficients increased 1.7 (bare backslopes) and 3.1 times (vegetated backslopes) from summer to winter. Preserving the vegetation cover over 20% is recommended for keeping soil loss rates under low levels, especially during winter.  相似文献   

20.
Early drilling of autumn‐planted cereals is strongly advised in UK government publications targeted at farmers, in part as a measure to combat soil erosion by water. However, in years when rainfall is heavy in early autumn, this strategy is ineffective. Late drilling of autumn‐planted cereals also increases the risk of erosion, but for a different reason: crop cover develops more slowly in cooler weather, resulting in a longer exposure of nearly bare ground. The crucial factor affecting both strategies is the timing of autumn and early winter rainfall. We discuss a conceptual model based on the notion of a ‘window of opportunity’ for erosion, comprising the relationship between drilling date, date of attainment of a sufficiently protective crop cover and the timing of rainfall; variations are presented for different weather conditions and management choices. Of these three factors, only the date of drilling can be chosen by the farmer. The date of attaining a sufficiently protective crop cover can only be predicted approximately. The timing of rainfall cannot be predicted. Thus, erosion control advice to farmers, which is based on choice of date of drilling to minimize erosion during the ‘window of opportunity’, is both difficult to formulate and likely to be ineffective. Sites at risk of erosion need to have better thought‐out mitigation measures in place, rather than relying on a fortuitous temporal pattern of autumn and winter rainfall to minimize the risk of erosion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号