首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
制作掺入引气剂和未掺入引气剂的100%粗骨料取代率的再生混凝土RC1和RC2两组试件以及掺入引气剂和未掺入引气剂的普通混凝土NC1和NC2两组试件,并分别对经过不同次数冻融循环试件的抗压强度、质量损失率、动弹性模量损失率进行研究。结果表明,冻融后各组试件的抗压强度、质量损失率及动弹性模量损失率均降低,对于添加引气剂的NC1和RC1两组试件损失较小,其中RC1组试件在200次冻融后抗压强度损失接近40%,质量损失率达0.5%,动弹性模量损失率38.5%。100%取代率并加入引气剂的ZRC组试件冻融后进行中心拨出实验,发生劈裂破坏和钢筋拔出破坏2种形式。再生粗骨料混凝土与钢筋的极限粘结应力均随冻融次数的增加而降低,200次冻融后极限粘结应力下降33.5,荷载滑移曲线既有上升段也有下降段。  相似文献   

2.
Based on concepts of mechanics, a mechanical model of novel type of steel plate composite shear wall is presented. The novel type of structure is formed by steel plate shear wall and T-shaped solid-web composite columns. Flexural stiffness of steel beams, lateral stiffness of the T-shaped solid-web composite columns, shear stiffness of steel plate composite shear wall and shear stiffness of beam-column connection are taken into account in the mechanical model. And the equivalent damping between steel plate and boundary is considered. Based on the deformation features of structures and the calculation hypothesis, the lateral stiffness model and the energy dissipation model of structures are developed. Meanwhile, the calculation equations of elastic ultimate and plastic ultimate of shear strength of structures are set up. The theoretical analysis results inosculate better with the results of experiment. The comparison between the result calculated from the formula and the experimental result shows that the calculation precision is high enough to meet the demand of theoretical analysis. The difference, including equivalent model, stress states, manufacturing defect and installation error, between the formula and the experiment has been further discussed.  相似文献   

3.
In order to study the mechanical behavior of corroded reinforced concrete beams strengthened with bolted steel plates, this paper designed 12 reinforced concrete beams. These beams were corroded by using accelerated electrochemical corrosion method with a designed corrosion ratio of 10%. The pre-compression experiments were performed for all RC beams before strengthening and the maximum crack width was controlled as 0.2 mm. According to the thickness of concrete cover, the beams were divided into 3 groups. Each group was composed of one comparative beam and three tested beams strengthened by steel plates bolted with study according to the thickness of steel plates which were 3 mm, 4 mm and 5 mm, respectively. It was shown that the strain distributions along the height of the strengthened beams at middle-span were in good agreement with the plain section assumption basically. The serviceability performances of corroded RC beams were significantly improved and these ultimate bearing capacities increased obviously. The steel plate bolted with stud effectively reduced the crack width and the extension height of reinforced concrete beams. It was indicated that an increase of steel plates with 35 mm resulted in a decrease of deflection by 13%51% when beams had the same thickness of concrete cover and corrosion ratio. Influence of the thickness of concrete cover on the ultimate bearing capacity was not obvious.  相似文献   

4.
焊接加固热作用对工形截面压弯钢构件承载性能的影响   总被引:1,自引:0,他引:1  
为研究焊接加固热作用及不同初始负载对工字形压弯钢柱承载性能的影响,基于考虑热影响的热结构耦合分析方法进行了热源模型热输入改进,并考虑初始几何缺陷、初始残余应力及摩擦等,完成了不同负载下焊接加固的3个工字形压弯钢柱的模拟分析。研究了焊接位移时程、腹板应力应变重分布及荷载位移关系,通过有限元分析与相应试验结果对比验证,进而获得了试验无法获得的焊接温度场、翼缘与加固板间的焊接应力应变重分布以及翼缘边缘屈服承载力等结果,并将承载力结果与规范计算结果对比,考察了现有设计方法。结果表明,焊接顺序决定焊接变形的发展过程,焊接热输入和初始负载共同决定持载焊接的位移变化范围和焊接残余变形的大小;初始负载越大,应力应变重分布往偏心受力方向发展更多,承载力越低,而初始残余应力不影响极限承载力;采用考虑热影响的有限元方法具有一定可行性和总体安全性,规范设计方法仍有可提升空间。  相似文献   

5.
Traditional nonlinear analysis of RC structures usually adopts nonlinear FEM based on continuum mechanics, and it is hard to reflect macroscopic deformation characteristic, such as local rotation in crack sections and plastic hinge of failure stage. From the perspective of physical model, a new deformation condensation method is developed. The analysis of RC flexural members in the 1-D elastic problem involve three stages based on the concept of deformation condensation. RC flexural members were divided into several elements according to average crack spacing to get numerical model consistent with the physical model with higher computational efficiency tests of RC flexural members reinforced with high strength rebars conducted by Institute of Prestressed Structures in Tongji University, were simulated and the simulation results agreed well with the experimental data indicating that this novel method is applicable.  相似文献   

6.
Based on a project of pipe truss roof framing in Chengdu, the ultimate limit state analysis is performed on cast steel joints by using FEM, in which Linear hardening elastic-plastic constitutive model is considered. The results show that, the joint has a great accumulation of plastic strain in ultimate loads, and the point of maximum stress is different from that in elastic with the development of the yielding zone. The paper propoes to use rate-type tensor for the large strain geometric nonlinear problem, shows the criterion of failure formation , and indicates that its essential to apply limit state analysis to the determination of the weakest location on cast steel joint design, which provides basis for understanding the failure modes and failure mechanism of cast steel joint and the cast steel joint design.  相似文献   

7.
以竖向荷载和水平地震作用组合下的钢筋混凝土柱和钢柱为对象,研究了失效方程中荷载相关特性对柱承载力抗震可靠性的影响。根据现行《混凝土结构设计规范》和《钢结构设计规范》分析了不同柱弯矩轴力相关曲线的特性。结合多个框架结构实例,对比了柱失效方程中荷载相关曲线与规范考虑情形的异同。实例分析表明:水平地震和竖向荷载组合作用下,小偏压RC柱和工字型钢柱的荷载相关曲线与规范考虑的情形较为符合,均近似为负相关的直线;水平地震和竖向荷载组合作用下,大偏压RC柱的荷载相关曲线则与规范考虑的情形有较大出入,存在明显的正相关段部分。在此基础上,考虑失效方程复杂特性,依据已有的荷载和抗力变量概率模型,采用Monte Carlo法分析了水平地震和竖向荷载组合作用下柱的可靠性。结果表明:钢柱和小偏压RC柱的承载力抗震可靠度随轴压力荷载效应比值的变化幅度较小,与规范模式计算结果较接近;大偏压RC柱的承载力抗震可靠度随轴压力荷载效应比值的变化会有较大幅度波动,与规范模式计算结果差异较大;当轴压力荷载效应比值为负时,大偏压RC柱的承载力抗震可靠度会低于规范计算值较多,现行柱可靠性设计方法会偏于不安全。  相似文献   

8.
Because high material strength and composite load-bearing are emphasized in constructing members for high-rise steel frame structures, in a composite connection, steel strength has a dramatic influence on both the bearing performance and the composite action of the concrete slab. Based on a finite element analysis, we discuss the composite effect and the connection breaking mode, focusing on the performance change of the composite effect in adopting high strength steel. It can be found from the results that, along with the improvement of the steel strength, the elastic and plastic ultimate strength of the composite connection will increase, the ductility will decrease to a certain extent, and the composite effect of the concrete slab will diminish. The collapse of the concrete in a positive moment side contacting the column flange is viewed as the limiting state of the connection.  相似文献   

9.
Considered strength classes of concrete, ratio of structural steel to concrete, ratio of steel tube to concrete and eccentricity ratio of load, 6 test specimens of steel tubular columns filled with structural and concrete are designed. The damage phenomena of specimens are described in detail and the failure mechanism is analyzed. The results show the initial failure of the specimens are began from the yield of steel tube, the ultimate failure are ended from the buckling of steel tube caused by the expansion of core concrete. Due to the existence of structural steel, the ductility of specimens is superior to steel tubular columns. Before the yield of steel tube, the plane cross-section assumption of specimens can be put into use. The ultimate bearing capacity of specimens is increased with the increase of strength classes of concrete, ratio of structural steel to concrete and ratio of steel tube to concrete. But the ultimate bearing capacity and ductility are decreased with the increase of eccentricity ratio.  相似文献   

10.
In order to analyze the seismic behavior of widened beam flange joints, 16 specimens were derived from finite element models base on experiments. The effects of some parameters, such as the increased width and length, on ultimate load and ductility performance of joints were further discussed with ANSYS finite element method. According to specimen failure phenomenon of both experiment and finite element method, the weak link of the joints was found and the cracking possibility was evaluated. A theoretical analysis of the fracture mechanism of widened beam flange connection was conducted. In addition, design method of widened beam flange parameters was introduced, which will offer valuable information and reference for seismic design in steel frame joints.  相似文献   

11.
Because section steel can only be extended to the edge of the support, when a simple support RC beam is reinforced by bonded section steel, a notch comes into being at the end of the beam which is called a secondary dapped end beam, making the stress state of the beam more complex. Through experimental analysis on 21 dapped end beam specimens shear reinforced by steel plate bonded, the deformation process, performing characteristics and failure mechanism of the specimens were investigated. The result shows that two steel bonded forms, including horizontal steel plate and oblique steel plate with angle 45° bonded, delay the appearance of cracks significantly and improve the maximum bearing capacity by 102% and 93%. Due to the impact of stress concentration at the notch, the main modes of damage include concrete tensile or shear failure with the result of bonding failure of a steel plate. By changing the width of steel plates and analyzing different reinforcement effects, formula of bearing capacity of shear reinforcement was proposed based on the method of truss analogue, which provides a reference for engineering application.  相似文献   

12.
The accurate calculation of the deformation capacity of structures is very important to performance-based seismic design, which satisfies the explicit deformation demands. The method to evaluate drift capacity of fiber reinforced polymer (FRP) confined reinforced concrete circular columns under simulated seismic loading is focused. Firstly, the moment-curvature relationship of FRP confined sections of reinforced concrete (RC) circular columns is simulated by numerical analysis. It is found that the calculated ultimate curvature is significantly less than the test result, and the difference is controlled by the axial load ratio of the tested columns. According to the numerical and the test results, an equation is proposed to modify the calculated ultimate curvature. Based on this, the drift capacity can be predicted with the equivalent plastic hinge method. The calculated result agrees well with the test result when FRP amount is low, but it is significantly larger when FRP amount increases. Finally, the main parameters exerting influences on the drift capacity of the FRP-confined RC circular column are analyzed.  相似文献   

13.
The mechanism and lateral bearing capacity of reinforcement concrete (RC) frame with dry stack in filled panel (DSIP) were investigated using quasi static experiments and finite element models. According to the parallel model and equivalent strut model, the lateral bearing capacity of RC frame and DSIP were researched separately. Results show that: 1) The plain stress element and interface element are applicable in finite element (FE) model analysis. According to the FE model, the failure of RC frame with DSIP is caused by the damage of frame; 2) Lateral bearing capacity of DSIP is mainly from the friction between bricks in the panel, which can be divided into 3 stages: constant stage, increasing stage and ultimate stage; 3) Equations for lateral bearing capacity of DSIP were proposed and verified by FE model results.  相似文献   

14.
Pseudo-static tests of three one-storey spatial RC frame-shear wall structures with floor slabs were conducted to investigate their failure modes and hysteretic behaviors. The test results were compared with those of pushover analysis. It is shown that: 1) damage of the frame beams occurs later and is less than that of the shear wall and the frame columns; 2) damage of the floor slabs under lateral loading is significant in regions close to the shear wall, and tensile stresses of slabs' steel bars in these regions are much larger; 3) in comparison with the case that the floor slabs are neglected, the maximum lateral load that a frame-shear wall structure can bear is larger in the case that the floor slabs are taken into account, and the contribution ratio of the shear wall also increases; 4) shear forces carried by the frame columns with identical cross sections and reinforcement details but located at different positions are close to each other on the whole.  相似文献   

15.
The FEM simulation analysis method was studied to identify the ultimate bearing capacity of cold-formed steel portal frames.In this study,the beam-spring system was used to simulate the performance of joints.The initial imperfection of frame components was considered.The deformation performance and failure features of portal frame structures under vertical loads also were studied.The analytic results of the FEM simulation analysis method are close to the values obtained by experimentation.The ultimate bearing capacity of portal frames were computed by changing parameters such as the web plate thickness,the flange width,the plate thickness of brackets,the portal frame roof inclination,and the column footing stiffness.The analytic results indicate that the ultimate bearing capacity may be improved when the parameters mentioned above are increased.  相似文献   

16.
通过对内贴应变片钢筋的直接拔出试验,分析冻融作用下粉煤灰掺量对钢筋与粉煤灰混凝土间粘结性能的影响,得出冻融循环作用对钢筋与粉煤灰混凝土之间粘结性能的影响规律。试验结果表明:钢筋与粉煤灰混凝土的粘结强度随粉煤灰掺量的增加而降低;当粉煤灰掺量一定时,随着冻融循环次数的增加,混凝土强度有所下降,钢筋与粉煤灰混凝土间极限粘结强度降低;当粉煤灰掺量较大,达到40%时,随冻融次数的增加,钢筋粉煤灰混凝土试件极限粘结强度的下降幅度明显减缓,极限粘结强度对应的滑移量增大。表明掺入较多粉煤灰可使试件的冻融损伤现象得到缓解,冻融环境下钢筋混凝土的粘结性能得到提高。  相似文献   

17.
对带可靠锚固FRP受剪加固混凝土梁的非剥离剪切破坏模式做了细化分类,即包括FRP断裂控制的破坏、受压区混凝土(达到极限应力状态)压碎控制的破坏、FRP断裂与混凝土压碎同步发生的界限破坏等3种模式;利用BP神经网络建立了带锚纤维受剪加固梁破坏模式的智能预测模型,与31根非剥离破坏加固梁试验的对比结果显示:模型总体精度达到90%,说明建立的破坏模式网络预测模型适用于带锚纤维受剪加固梁非剥离剪切破坏模式的判别。  相似文献   

18.
In order to investigate the flexural behavior of concrete beams reinforced with high strength hot rolled bars of fine grains, static bending test on four rectangle cross section HRBF400, HRBF500 RC beams was conducted. The results show that the experimental maximum crack width under short term load meets the requirement of current code while calculated value does not meet; mid span deflection of RC beams with HRBF400 under short term load still meets the requirement of current code while RC beams with HRBF500 does not meet. Bearing capacity calculating formula under conditions of crack/deflection control was proposed and conception of component's bearing capacity utilization coefficient (BCUC) was put forward. The influences of reinforcement strength, reinforcement diameter, concrete grade, reinforcement ratio, concrete cover thickness and high span ratio on BCUC were analyzed. Within the range of economic reinforcement ratio, ductility of HRBF RC beams meets the requirement. Energy dissipation capacity of HRBF RC beams is similar to that of normal RC beams at low reinforcement ratio but it decreases faster than normal RC beams with the increasing of reinforcement ratio. Energy dissipation capacity of HRBF RC beams is higher than that of normal RC concrete beams in elastic stage and it enhances with the increasing of reinforcement ratio.  相似文献   

19.
Considering the damage of concrete mechanical properties and bonding behavior between the steel bar and concrete after the freezing and thawing function in the numerical simulation, the nonlinear analysis on flexural performance of reinforced concrete beam which experiences different salt-frost cycles is conducted, and the evolution law of resistance performance of reinforced concrete beam is studied. It is shown that, in the salt-frost environment, the decrease of concrete mechanical properties is the main reason that causes the degeneration of RC beam on flexural performance, while the reduction of bonding property has an unobvious effect on the beam resistance performance. When the salt-frost cycles reach a certain level, the beam failure pattern would change from the under-reinforced failure to over-reinforced failure. The freeze-thaw damage of bonding property in the beam-ends anchorage zone has a certain effect on the beam resistance behavior, especially for the more serious freeze-thaw degree, the resistance performance of the beam reduces about 4% than the perfect anchor beam.  相似文献   

20.
Based on the principle of interactive analysis,the deformation equation of hybrid structure which contains rigid character value is established using the analysis of the frame - shear wall structure for reference, considering the rigid zone between concrete beam and concrete - tube, the shear deformation of concrete - tube, axial deformation of steel frames and semi - rigid connection between steel columns and concrete beams. Assuming the hybrid structure to be a continuous elastic structure with infinite degree of freedom, a free vibration equation has been built and the formula for calculating free vibration period has been deduced. The influences of various parameters to the coefficient of free vibration period relating to rigid character value are discussed according to some diagrams. It is shown that the rigid zone can lessen the free vibration period but the shear deformation of concrete - tube, axial deformation of steel frames, and the semi -rigid connection between steel columns and concrete beams can enhance the free vibration period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号