共查询到18条相似文献,搜索用时 62 毫秒
1.
作物叶片氮含量的快速估算对于及时了解作物长势、病虫害监测以及产量评估具有重要意义。该文以经济作物生姜为研究对象,获取了2015年4月-9月不同品种、不同生育期和不同氮肥梯度下生姜叶片的高光谱和氮含量数据,对比分析了比值植被指数、归一化植被指数、植被指数组合形式对生姜叶片氮含量的估算效果。在此基础上,基于波段组合算法,筛选出了生姜叶片氮含量的敏感波段,并构建了两个新型光谱指数NDSI_((754,713))和RSI_((754,713))。结果表明,所选择的植被指数中,MCARI(705,750)/OSAVI(705,750)对生姜叶片氮含量估算效果最好,模型精度R~2、RMSE和RE分别为0.73、0.27、11.64%;利用波段组合算法构建的归一化光谱指数NDSI(754,713)对生姜叶片氮含量估算效果要优于MCARI(705,750)/OSAVI(705,750),模型估算精度R~2达0.83,使用的敏感波段713 nm与754 nm均位于植被的"红边"区域。对所建模型进行验证,叶片氮含量的预测值和实测值具有较好的一致性,验证样本R~2为0.78,RMSE为0.20,RE为9.81%。上述分析结果可为农业管理部门及时掌握生姜长势信息、制定施肥策略提供技术支持。 相似文献
2.
基于不同土壤质地的小麦叶片氮含量高光谱 差异及监测模型构建 总被引:2,自引:0,他引:2
【目的】叶片氮素状况是小麦生产中精确施氮管理与调控的前提,实时无损监测叶片氮素状况对小麦生产管理具有重要意义。本文旨在综合分析不同环境下小麦冠层光谱响应差异,进而构建其估测模型,为小麦氮肥合理运筹提供技术支持。【方法】本研究基于3种不同土壤质地(砂土、壤土和黏土)、5种不同施氮水平(0、120、225、330和435 kg•hm-2)及3种河南省主栽小麦品种(矮抗58、周麦22和郑麦366)连续2年的大田试验,于小麦主要生育时期同步测定冠层光谱反射率和叶片氮含量,对3种不同土壤质地条件下小麦冠层叶片氮含量的高光谱响应差异进行比较,系统分析350—1 050 nm 波段范围内任意两波段组合而成的差值(DSI)、比值(RSI)及归一化差值(NDSI)光谱指数与叶片氮含量的量化关系,并建立估算模型。【结果】冠层光谱反射率在不同施氮水平和不同生育时期下存在明显差异,但趋势基本一致;比较3种土壤质地小麦冠层光谱反射率大小表现为:黏土>壤土>砂土,可以反映小麦实时田间长势。通过系统分析3种土壤质地小麦冠层反射光谱与对应叶片氮含量间的定量关系,表明在可见光和近红外区域均有较好的相关性,但敏感波段区域有所不同。对3种质地获取的样本进行系统分析表明,砂土、壤土和黏土质地小麦叶片氮含量分别以光谱指数NDSI(FD710,FD690)、DSI(R515,R460)和RSI(R535,R715)建模结果表现最好,决定系数分别达到0.88、0.87和0.87。经不同年份独立资料检验结果显示,基于上述光谱指数估测小麦叶片氮含量的预测决定系数分别为0.87、0.85和0.77,预测均方根误差分别为0.31、0.32和0.26。【结论】利用光谱参数NDSI(FD710,FD690)、DSI(R515,R460)和RSI(R535,R715)为自变量建立的估测模型分别可以较好地预测砂土、壤土和黏土3种质地小麦叶片氮含量。 相似文献
3.
作物氮素状况是评价长势、提高产量和改善品质的重要指标,因此叶片氮积累量的实时无损估测对作物生产的氮素管理具有重要意义。本研究选用大花生品种丰花1号为试验材料,在大田生产条件下,分析了花生叶片氮积累量与冠层高光谱参数的定量关系。结果表明,叶片氮素含量随生育进程逐渐下降,不同处理之间差异较小;叶片氮素积累量随生育时期推进呈现先升后降的单峰曲线变化趋势,在结荚期达到高峰。花生冠层光谱反射率在740~1 100 nm波段内随叶片氮积累量的增加而增加,叶片氮积累量的敏感波段主要存在于近红外平台和可见光区,其中,"红边"区域表现最为显著。通过微分等技术构造多种植被指数,对高光谱参数和叶片氮积累量进行相关回归分析,红边振幅(Dr)、氮素反射指数(NRI)、归一化植被指数(NDVI)各波段组合平均值及比值植被指数(RVI)与叶片氮积累量关系最密切,方程拟合决定系数分别为0.9194、0.8984、0.8918、0.8899、0.8794、0.8797。经另外一组独立数据的检验表明,对叶片氮积累量的预测以红边位置(REP)和Dr两个参数表现最优,预测的根均方差(RMSE)分别为1.78和1.10,相对误差为5.29%和3.59%。NDVI[Average(1230,1240,1250,1260),640]和土壤调整植被指数(SAVI)两个光谱参数预测的RMSE分别为1.15和1.19,预测相对误差为5.42%和7.41%。比较而言,Dr为自变量建立的模型,可以更好地评估不同条件下叶片氮素积累状况。 相似文献
4.
基于高光谱遥感的小麦叶片糖氮比监测 总被引:7,自引:1,他引:7
【目的】碳氮代谢反映植株生理状况和生长活力,是小麦籽粒产量与品质形成的生理基础,因而叶片糖氮比的实时无损监测对小麦生长诊断和氮素管理具有重要意义。本研究的主要目的是通过分析小麦叶片糖氮比与冠层高光谱参数的定量关系,确立小麦叶片糖氮比的定量监测模型。【方法】采用不同蛋白质含量的小麦品种在不同施氮水平下进行了连续3年大田试验,于小麦不同生育期采集田间冠层高光谱数据并测定叶片糖氮比值,进而分析建立冠层高光谱参数与叶片糖氮比的回归模型。【结果】小麦叶片糖氮比随施氮水平的提高而下降,随生育进程呈“高-低-高”动态变化模式。利用高光谱对叶片糖氮比进行监测的适宜时期为拔节期至灌浆中期,其中开花期最好。水分特征参数FWBI和Area980与叶片糖氮比关系密切,指数方程拟合决定系数(R2)分别为0.762和0.768,估计标准误差(SE)分别为1.27和1.28。色素特征参数(R750-800/R695-740)-1和VOG2为变量,指数方程拟合决定系数(R2)分别为0.718和0.712,估计标准误差SE分别为1.87和1.95。经不同年际独立试验数据的检验表明,以参数FWBI、Area1190、(R750-800/R695-740)-1和VOG2参数为变量建立的叶片糖氮比监测模型表现很好,预测精度R2分别为0.627、0.618、0.691和0.795,预测相对误差RE分别为19.2%、18.7%、17.9%和18.3%。【结论】与色素指数和水分指数相关的特征光谱参数可以有效地评价小麦叶片糖氮比的变化状况,利用FWBI、Area1190、(R750-800/R695-740)-1和VOG2 4个参数可以对生长盛期的小麦叶片糖氮比进行可靠的监测。 相似文献
5.
基于多角度高光谱遥感的冬小麦叶片含水率估算模型 总被引:1,自引:0,他引:1
准确的作物水分监测对于旱情评估具有重要意义。在分析研究区冬小麦多角度光谱特征后,利用不同水分处理下冬小麦实测叶片含水率和实测多角度光谱数据,基于植被光谱指数法,建立不同观测角度下冬小麦光谱植被指数、水分敏感波段光谱指数与叶片含水率之间的数学模型。结果显示,相对方位角与相对天顶角越小时,观测到的光谱指数与叶片含水率的相关关系越优;敏感波段组合构建的光谱指数中,1450nm波段分别与其他波段组合的NDSI、RSI指数与叶片含水率相关性在各观测角度条件下均较好,1 450 nm波段是冬小麦叶片含水率研究的最佳敏感波段;选取常见的4种植被指数(NDVI、EVI、WI和NDII)中WI和NDVI在各观测角度下与叶片含水率的相关性优于其他两种指数,决定系数R2均在0.83以上,P0.01呈极显著相关;综上建立的多角度光谱叶片含水率估算模型,平均相对误差MRE均小于0.154、均方根误差RMSE均小于0.098,拟合效果较好,尤其是光谱指数NDSI1160,1450、NDSI980,1450和植被指数NDVI、WI;基于以上4种指数建立的最优观测角度(0°,30°)模型,其中植被指数WI的估算效果最好,相关系数在各角度均达到5%的相关显著水平,MRE0.03,可作为最优观测角度反演研究的最优植被指数。 相似文献
6.
沿海滩涂棉花叶片叶绿素含量高光谱遥感估算模型研究 总被引:2,自引:0,他引:2
以连云港滩涂棉花地为研究区域,利用ASD便携式光谱仪在晴朗天气条件下测试了野外采集的棉花叶片反射光谱,选取原始光谱和一阶导数光谱作为多变量,三边参数(红边、黄边和蓝边)和归一化植被指数NDVI、比值植被指数RVI、结构相关色素指数SIPI、叶面叶绿素指数LCI、水分指数WI、窄波段微分植被指数1DZ_DGVI和窄波段植被指数TCARI/OSAVI作为单变量,分析棉花叶片叶绿素含量与这些变量之间的相关性;在相关分析的基础上构建棉花叶片叶绿素含量估算模型。结果表明,叶绿素a、b和a+b含量与单变量参数之间的相关性均未达显著水平;而与原始光谱、导数光谱都存在显著相关性。对叶绿素a含量而言,基于440 nm处的一阶导数光谱应用指数函数和幂函数构建的估算模型精度最高,R2为0.231。对叶绿素b含量而言,基于652 nm处的一阶导数光谱应用一元线性回归法构建的高光谱估算模型精度最高,R2为0.165。对叶绿素a+b含量而言,基于440 nm处的一阶导数光谱应用指数函数、复合函数和生长函数构建的估算模型精度高,R2为0.155。该研究为进一步加强滩涂农业管理和提高滩涂农作物的产量提供技术支持。 相似文献
7.
小麦叶层氮含量估测的最佳高光谱参数研究 总被引:9,自引:3,他引:9
【目的】作物体内氮素状况是评价长势和预测产量的重要指标。小麦植株氮素营养的快速监测和无损诊断对于精确氮素管理具有重要作用。本文旨在通过对高光谱信息的精细分析和信息提取,探索建立小麦叶片氮含量(LNC,leaf nitrogen content)估算的最佳波段、光谱参数及监测模型。【方法】利用连续4年的系统观测资料,采用精细采样法,详细分析350~2 500 nm波段范围内原始光谱反射率及其一阶导数光谱的任意两两波段组合而成的主要高光谱指数与小麦冠层叶片氮含量的定量关系。【结果】发现小麦叶片氮含量的最佳波段为位于红边的690、691、700和711 nm以及近红外波段的1 350 nm;基于归一化光谱指数NDSI(R1350,R700)和NDSI(FD700,FD690)、比值光谱指数RSI(R700,R1350)和RSI(FD691,FD711)、土壤调节光谱指数SASI(R1350,R700)(L=0.09)和SASI(FD700,FD690)(L=-0.01)构建氮含量监测模型,决定系数(R2)分别为0.851和0.857、0.842和0.893、0.860和0.866。利用独立试验资料对模型检验的结果显示,模型测试的精度(R2)均大于0.758,RRMSE均小于0.266,尤其是高光谱参数RSI(FD691,FD711)和SASI(FD700,FD690)表现最好。【结论】总体上,利用精细采样法确定最佳波段,构建植被指数和氮含量监测模型,可显著提高模型的精确度和可靠性,从而为快速无损诊断小麦叶层的氮素状况提供新的波段选择和技术途径。 相似文献
8.
高光谱遥感技术能够快捷、准确、无损坏地估测森林LAI,从而有效地监测森林长势,估测森林生物量,评价森林病虫害等。以黑龙江凉水自然保护区为例,利用高光谱遥感技术和GPS测量技术,结合地面实测LAI数据,采用从CASI图像提取的NDVI、SR、MSAVI 3种植被指数,与地面实测的LAI建立统计回归模型,然后再从众多的统计模型中根据相关系数,筛选出由CASI反演LAI的最佳植被指数和回归模型。 相似文献
9.
LAI是作物长势监测的一个重要指标,实时、无损和准确地估测冬小麦LAI具有重要的实践意义。通过对冬小麦进行不同的灌溉处理试验,研究LAI与冠层光谱反射率的关系,计算350~2 450 nm不同波段组合的原始光谱指数和导数光谱指数,筛选最优波段组合光谱指数,并建立LAI的监测模型。结果表明,冬小麦LAI与冠层光谱反射率和不同波段组合光谱指数相关性较好;冬小麦LAI监测的最优光谱指数为DVI(435,447),以此为自变量建立的指数模型y=10.669e~(-701.9x)表现最优,模型最稳定。 相似文献
10.
通过人工田间诱发不同等级小麦条锈病,在不同生育期测定染病冬小麦冠层光谱及其病情指数(DI).把冠层光谱一阶微分数据与相应的DI进行相关分析,采用单变量线性和非线性回归技术,建立小麦DI的估测模型,并利用不同品种小麦样本对模型精度进行可靠性检验.结果表明:DI与一阶微分在432~582 nm、637~701 nm以及715~765 nm区域内有极显著相关性,以红边峰值区(725~735 nm)一阶微分总和与绿边峰值区(521~530 nm)一阶微分总和的比值为变量的线性模型估测DI精度最高,且其对小麦品种相对不敏感.上述研究结果对利用高光谱遥感监测农作物病害及其严重程度都具有实际应用价值. 相似文献
11.
[目的]研究水稻叶温与冠层反射光谱间的关系,为水稻叶温的模拟与监测提供理论依据.[方法]利用FieldSpec Pro FR光谱仪和Raynger ST红外温度探测仪测量水稻抽穗期冠层的反射光谱和叶片温度,分析原始反射光谱、一阶微分光谱、归一化植被指数(NDVI)、比值植被指数(DVI)、再归一化差值植被指数(RDVI)和转换型土壤调整指数(TSAVI)与叶温的关系.[结果]叶温的变化直接影响水稻冠层光谱的反射率,影响水稻红边特征.一阶微分光谱与叶温存在极显著相关性(P<0.01,下同),990 nm处相关系数(0.889)最高,885 nm处相关系数(-0.893)最低.选取叶温敏感波段光谱组合计算植被指数,发现RDVI和TSAVI与叶温的关系呈极显著相关,相关系数分别为0.724和0.733.由RDVI和TSAVI建立经验模型,结果显示由TSAVI建立的叶温估算模型效果更好,其验证样本的决定系数为0.610,相对误差为1.97%,均方根误差为2.546.[建议]综合考虑多种预处理方法,最大程度还原光谱信息;优化特征波长的提取,提高建立模型的精度;基于高光谱技术,实现冠层叶温的无损监测. 相似文献
12.
Remote sensing approaches are of increasing importance for agricultural applications, particularly for the support of selective
agricultural measures that increase the productivity of crop stands. In contrast to multi-spectral image data, hyperspectral
data has been shown to be highly suitable for the detection of crop growth anomalies, since they allow a detailed examination
of stress-dependent changes in certain spectral ranges. However, the entire spectrum covered by hyperspectral data is probably
not needed for discrimination between healthy and stressed plants. To define an optimal sensor-based system or a data product
designed for crop stress detection, it is necessary to know which spectral wavelengths are significantly affected by stress
factors and which spectral resolution is needed. In this study, a single airborne hyperspectral HyMap dataset was analyzed
for its potential to detect plant stress symptoms in wheat stands induced by a pathogen infection. The Bhattacharyya distance
(BD) with a forward feature search strategy was used to select relevant bands for the differentiation between healthy and
fungal infected stands. Two classification algorithms, i.e. spectral angle mapper (SAM) and support vector machines (SVM)
were used to classify the data covering an experimental field. Thus, the original dataset as well as datasets reduced to several
band combinations as selected by the feature selection approach were classified. To analyze the influence of the spectral
resolution on the detection accuracy, the original dataset was additionally stepwise spectrally resampled and a feature selection
was carried out on each step. It is demonstrated that just a few phenomenon-specific spectral features are sufficient to detect
wheat stands infected with powdery mildew. With original spectral resolution of HyMap, the highest classification accuracy
could be obtained by using only 13 spectral bands with a Kappa coefficient of 0.59 in comparison to Kappa 0.57 using all spectral
bands of the HyMap sensor. The results demonstrate that even a few hyperspectral bands as well as bands with lower spectral
resolution still allow an adequate detection of fungal infections in wheat. By focusing on a few relevant bands, the detection
accuracy could be enhanced and thus more reliable information could be extracted which may be helpful in agricultural practice. 相似文献
13.
高光谱评价植被叶绿素含量的研究进展 总被引:28,自引:2,他引:28
重点介绍利用便携式光谱仪获得的高光谱数据在评价植被叶绿素含量的研究状况。从叶绿素的光谱特性入手。通过和传统宽波段对比阐述高光谱数据在评价植被叶绿素中的特点。在此基础上简要介绍了高光谱遥感数据估计植被叶绿素含量两种方法的研究进展。一是利用光谱数据。植被指数,导数光谱评价植被叶绿素密度或浓度。二是利用红边光学参数评价植被叶绿素密度或浓度,并分析了研究中可能存在的问题。 相似文献
14.
《农业科学学报》2016,(2)
The leaf area index(LAI) is an important vegetation parameter,which is used widely in many applications.Remote sensing techniques are known to be effective but inexpensive methods for estimating the LAI of crop canopies.During the last two decades,hyperspectral remote sensing has been employed increasingly for crop LAI estimation,which requires unique technical procedures compared with conventional multispectral data,such as denoising and dimension reduction.Thus,we provide a comprehensive and intensive overview of crop LAI estimation based on hyperspectral remote sensing techniques.First,we compare hyperspectral data and multispectral data by highlighting their potential and limitations in LAI estimation.Second,we categorize the approaches used for crop LAI estimation based on hyperspectral data into three types:approaches based on statistical models,physical models(i.e.,canopy reflectance models),and hybrid inversions.We summarize and evaluate the theoretical basis and different methods employed by these approaches(e.g.,the characteristic parameters of LAI,regression methods for constructing statistical predictive models,commonly applied physical models,and inversion strategies for physical models).Thus,numerous models and inversion strategies are organized in a clear conceptual framework.Moreover,we highlight the technical difficulties that may hinder crop LAI estimation,such as the curse of dimensionality and the ill-posed problem.Finally,we discuss the prospects for future research based on the previous studies described in this review. 相似文献
15.
Rapid determination of leaf water content for monitoring waterlogging in winter wheat based on hyperspectral parameters 下载免费PDF全文
YANG Fei-fei LIU Tao WANG Qi-yuan DU Ming-zhu YANG Tian-le LIU Da-zhong LI Shi-juan LIU Sheng-ping 《农业科学学报》2021,20(10):2613-2626
Waterlogging is becoming an obvious constraint on food production due to the frequent occurrence of extremely high-level rainfall events. Leaf water content(LWC) is an important waterlogging indicator, and hyperspectral remote sensing provides a non-destructive, real-time and reliable method to determine LWC. Thus, based on a pot experiment, winter wheat was subjected to different gradients of waterlogging stress at the jointing stage. Leaf hyperspectral data and LWC were collected every 7 days after waterlogging treatment until the winter wheat was mature. Combined with methods such as vegetation index construction, correlation analysis, regression analysis, BP neural network(BPNN), etc., we found that the effect of waterlogging stress on LWC had the characteristics of hysteresis and all waterlogging stress led to the decrease of LWC. LWC decreased faster under severe stress than under slight stress, but the effect of long-term slight stress was greater than that of short-term severe stress. The sensitive spectral bands of LWC were located in the visible(VIS, 400–780 nm) and short-wave infrared(SWIR, 1 400–2 500 nm) regions. The BPNN Model with the original spectrum at 648 nm, the first derivative spectrum at 500 nm, the red edge position(λr), the new vegetation index RVI(437, 466), NDVI(437, 466) and NDVI′(747, 1 956) as independent variables was the best model for inverting the LWC of waterlogging in winter wheat(modeling set: R~2=0.889, RMSE=0.138; validation set: R~2=0.891, RMSE=0.518). These results have important theoretical significance and practical application value for the precise control of waterlogging stress. 相似文献
16.
小麦籽粒蛋白质含量高光谱遥感预测模型比较 总被引:1,自引:0,他引:1
【目的】利用高光谱遥感技术实现冬小麦籽粒蛋白质含量的精准预测,比较筛选小麦籽粒蛋白质含量预测模型,实现优质小麦栽培生产。【方法】设置不同品质类型小麦品种和施氮量处理,测定开花期叶片叶绿素含量(SPAD)、叶片干物质质量(LDW)、地上生物量(AGB)、叶片氮含量(LNC)、叶片氮积累量(LNA)、叶面积指数(LAI)、植株氮含量(PNC)、植株氮积累量(PNA)和氮营养指数(NNI)9个农学参数及小麦冠层光谱,通过一阶导数和偏最小二乘法,构建基于不同农学参数的小麦籽粒蛋白质含量高光谱预测模型。【结果】一阶导数处理可以提高光谱数据与农学参数的相关性。运用偏最小二乘法构建的高光谱农学参数估测模型中以SPAD的模型建模精度与验证精度相对较优,建模集决定系数R2与预测集标准均方根误差nRMSE分别为0.99和4.10%;NNI反演模型验证结果较好,相对预测偏差RPD为2.04;利用线性回归构建的农学参数-籽粒蛋白质预测模型中以LNC的建模精度与验证精度最佳,其建模集R2、预测集均方根误差RMSE和RPD分别为0.64、0.79和2.11。最终构建的“... 相似文献
17.
冬小麦条锈病严重度高光谱遥感反演模型研究 总被引:6,自引:0,他引:6
通过人工田间诱发不同等级小麦条锈病,在不同生育期测定染病冬小麦冠层光谱及其病情指数(DI).把冠层光谱一阶微分数据与相应的DI进行相关分析,采用单变量线性和非线性回归技术,建立小麦DI的估测模型,并利用不同品种小麦样本对模型精度进行可靠性检验.结果表明:DI与一阶微分在432~582 nm、637~701 nm以及715~765 nm区域内有极显著相关性,以红边峰值区(725~735 nm)一阶微分总和与绿边峰值区(521~530 nm)一阶微分总和的比值为变量的线性模型估测DI精度最高,且其对小麦品种相对不敏感.上述研究结果对利用高光谱遥感监测农作物病害及其严重程度都具有实际应用价值. 相似文献
18.
【目的 】及时、准确、无损地估算冬小麦产量有助于粮食生产管理和粮食安全。【方法 】文章使用Sentinel-2的红光波段和短波红外数据及MOD09Q1数据,使用ESTARFM融合方法,生成冬小麦生长期(3~6月)内8 d的NDVI高空间分辨率时间序列数据。结合MERRA-2气象同化数据,使用EC-LUE模型进行农作物总初级生产力(GPP)的模拟估算,并使用收割指数方法将之转化为冬小麦产量,将估算结果与美国农业部门公布的县级产量数据进行比较验证。【结果 】实验表明,Sentinel-2与MOD09Q1融合NDVI具有良好的融合精度,相关系数在0.60~0.87之间。基于融合NDVI估算的GPP相比MOD17A2H具有更好的空间细节和纹理。2017—2020年估算产量平均绝对误差MAE为8.41 bu/acre,平均相对误差为18.4%,均方根RMSE为9.7 bu/acre。【结论 】基准影像数量及其与预测日期的时间差会影响融合的精度,总体上能用于后续GPP模拟;EC-LUE模型较好地模拟了农作物的GPP水平和产量,在土地覆盖类型复杂的区域,可以提供更好的GPP空间变异信息,具有可移植性... 相似文献