首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Phenotypic and genetic evaluation of morphological traits associated with herbage biomass production was undertaken in a perennial ryegrass (Lolium perenne L.) biparental F1 mapping population (n = 200) with parent plants from cultivars ‘Grasslands Impact’ and ‘Grasslands Samson’. Morphological traits measured on three clonal replicates of the parental genotypes and 200 F1 progeny in a glasshouse in two separate trials (autumn and spring) included: dry weight (DW), leaf elongation rate (LER), initial tiller number (TNs), final tiller number (TNe), site filling (Fs), tiller weight (TW), leaf lamina length, leaf tip and ligule appearance rates (ALf, ALg) and leaf elongation duration (LED). Principal component analysis of patterns of trait association identified negative correlation between TNs or TNe, and TW as the primary basis for morphological difference and indicated that either high LER or long LED could reduce TN. Plants with higher LER tended to have increased DW. Quantitative trait loci (QTL) were detected on all seven linkage groups (LG) of a perennial ryegrass linkage map for all but three traits. A total of 61 QTL were identified, many of which clustered at 15 shared genome locations. Significant genotype by environment effects were encountered, evidenced both by variation between experiments in genotype rankings and by a general lack of commonality for QTL for the same traits in the different experiments. Only five QTL, for ALf, ALg and TN, were conserved between autumn and spring trials. A QTL for TN and DW on LG6 is a strong candidate for application of MAS in future plant improvement work and was found to be co-linear with QTL for equivalent traits reported on chromosome 2 in rice.  相似文献   

2.
3.
4.
Previous studies reported that some genotypes with introgressed Festuca chromosome segment(s) in Lolium genome showed enhanced winter hardiness compared to Lolium. The aim of this study was to search comprehensively for the Festuca pratensis chromosome regions affecting winter hardiness-related traits when introgressed into the Lolium perenne genome. Association between F. pratensis introgression and winter hardiness-related traits (fall and winter hardiness indexes, early-spring dry matter yield, and freezing tolerance) were screened in the diploid introgression populations (n = 203) that had some F. pratensis chromosome segments introgressed. Eighty-four intron markers corresponding to unique rice genes randomly distributed across the genome were used for genotyping. Winter hardiness of almost all plants in the introgression populations was lower than that of the F. pratensis and triploid hybrid parents, but the average was higher than that of L. perenne. A significant positive effect of F. pratensis introgression on early-spring dry matter yield was detected on chromosome 7. This quantitative trait locus (QTL) was confirmed by linkage analysis using a backcross population with F. pratensis introgression in the target region of chromosome 7. However, the contribution of the newly identified QTL was rather small (6.7–9.6%), suggesting that superior winter hardiness of F. pratensis compared to L. perenne is conferred by multiple small-effect QTLs. We also detected a previously unreported negative effect of Festuca introgression on winter hardiness. Newly obtained QTL information in this study would contribute to the design of Festuca/Lolium hybrid breeding.  相似文献   

5.
6.
The aims of our study were to evaluate relationships amongst morphological traits associated with seed production in a perennial ryegrass biparental population and to identify genomic regions associated with phenotypic variation in those traits using QTL analysis. This was achieved using data from two field experiments at Palmerston North and Lincoln, New Zealand, in 2003, and days to heading (DTH), reassessed in 2004. Trait association was determined for the Palmerston North experiment where measured traits included seed yield per plant (SYPlant), seed yield per spike (SYSp), reproductive tiller number (RTiller), spikelets per spike (SpktSp), florets per spikelet (FSpkt), 1000 seed weight (TSW), spike length (SpLen), florets per spike (FSp), floret site utilization (FSUtil), spread of heading (SOH) and plant growth habit (PGHabit). Traits contributing to SYPlant in order of descending value were FSpkt, FSUtil, and RTiller. High TSW was only weakly linked to SYPlant. FSUtil, SOH and RTiller were identified as valuable breeding targets for improving seed yield potential in perennial ryegrass. QTL were identified for all traits except for RTiller. QTL for SYPlant occurred on linkage groups (LG) 2 and 6. Both were co-located with QTL for SYSp and sets of SYPlant components or related traits (FSpkt, FSp; FSUtil and TSW). Major QTL for DTH were identified on LG2 and LG4 and minor QTL on LG7 in consecutive years. There was a strong genotype-by-environment interaction for SYPlant that was reflected in a lack of consistent QTL across environments, while QTL for SYSp and DTH were stable across environments. Identification of component traits and QTL important for seed yield may accelerate genetic improvement in perennial ryegrass through conventional and marker-assisted breeding, respectively.  相似文献   

7.
The germplasm with exotic genomic components especially from Sea Island cotton (Gossypium barbadense L. Gb) is the dominant genetic resources to enhance fiber quality of upland cotton (G. hirsutum L., Gh). Due to low efficiency of phenotypic evaluation and selection on fiber quality, genetic dissection of favorable alleles using molecular markers is essential. Genetic dissection on putative Gb introgressions related to fiber traits were conducted by SSR markers with mapping populations derived from a cross between Luyuan343 (LY343), a superior fiber quality introgression line (IL) with genomic components from Gb, and an elite Upland cotton cv. Lumianyan#22 (LMY22). Among 82 polymorphic loci screened out from 4050 SSRs, 42 were identified as putative introgression alleles. A total of 29 fiber-related QTLs (23 for fiber quality and six for lint percentage) were detected and most of which clustered on the putative Gb introgression chromosomal segments of Chr.2, Chr.16, Chr.23 and Chr.25. As expected, a majority of favorable alleles of fiber quality QTLs (12/17, not considering the QTLs for fiber fineness) came from the IL parent and most of which (11/12) were conferred by the introgression genomic components while three of the six (3/6) favorable alleles for lint percentage came from the Gh parent. Validation of these QTLs using an F8 breeding population from the same cross made previously indicated that 13 out of 29 QTLs showed considerable stability. The results suggest that fiber quality improvement using the introgression components could be facilitated by marker-assisted selection in cotton breeding program.  相似文献   

8.
Coffee varieties with resistance for the plant-parasitic nematodes Pratylenchus coffeae and Radopholus arabocoffeae are limited in Vietnam. A selection of imported varieties and high yield varieties of Arabica coffee in Vietnam were evaluated for resistance to both plant-parasitic nematode species in Northern Vietnam. The same experiments were carried out with hybrid arabica coffee, three selected clones of Coffea canephora and one clone of Coffea excelsa in the Western Highland of Vietnam. The screened coffee accessions from Ethiopia (KH1, KH13, KH20, KH21, KH29, and KH31) were susceptible and good host for P. coffeae. Also accessions 90P4 (Portugal) and Oro azteca (Mexico) had a reproduction factor Rf > 1. Pluma Hidalgo (Mexico), 90/6 (Vietnam), 90P3 (Portugal), 90P2 (Vietnam), Variedad (Mexico), 90T (Portugal), and Garnica (Mexico) were poor hosts (Rf < 1) but not tolerant to P. coffeae, expressed by a reduction of root weight compared to untreated control plants. Most of the coffee accessions tested in Northern Vietnam were intolerant to R. arabocoffeae, except 90T which showed no reduction of root weight, even at high initial nematode densities (4,000/pot). Good hosts for R. arabocoffeae were Variedad, KH1, KH21, KH29, KH20, KH31, and KH13 with Rf > 1. Pluma Hidalgo, 90/6, 90P3, 90P2, 90T, Oro azteca, and Garnica were poor hosts (Rf < 1). In the Western Highland experiment, all arabica coffee accessions were susceptible for P. coffeae with Rf ranging from 1.41 to 1.59. Tolerance to P. coffeae was found in C. liberica var. Dewevrei, Hong34 and Nhuantren. Coffea excelsa, Hong34, Nhuantren, and H1C19 were tolerant to R. arabocoffeae at the highest inoculation density (4,000 nematodes/pot). The most susceptible accessions were Nhuantren and K55. Resistance (Rf < 1) to R. arabocoffeae was found in C. liberica var. Dewevrei and Hong34. This article reports on the first screening for resistance and tolerance to P. coffeae and R. arabocoffeae in coffee accessions in Vietnam and shows promising results for enhanced coffee-breeding.  相似文献   

9.
A self-incompatible (SI) line, S-1300, and its maintainer 97-wen135, a self-compatible (SC) line, were used to study the inheritance of maintenance for self-incompatibility in B. napus. The ratio of SI plants to SC plants from S-1300 × 97-wen135 F2 and (S-1300 × 97-wen135) × 97-wen135 was 346:260 and 249:232, fitting the expected ratio of 9:7 and 1:1, respectively. Based on these observations, here we propose a genetic model in which two independent loci, S locus and S suppressor locus (sp), are predicted to control the inheritance of maintenance for self-incompatibility in B. napus. The genotypes of S-1300 and 97-wen135 are S 1300 S 1300 sp 1300 sp 1300 and S 135 S 135 sp 135 sp 135 , respectively. S 135 is dominant to S 1300 , but coexistence of sp 1300 and sp 135 fails to suppress S locus. Both S 1300 and S 135 can be suppressed by sp 135 , while sp 1300 can suppress S 135 but not S 1300 . The model contains two characteristics: that a dominant S locus exists in self-compatible B. napus, and that co-suppression will occur when sp loci are heterozygous. The model has been validated by the segregation of S phenotypes in the (S-1300 × 97-wen135) × S-1300, the progenies of SC S-1300 × 97-wen135 F2 plants and DH population developed from S-1300 × 97-wen135 F1. This is the first study to report co-suppression of S suppressor loci in B. napus. The genetic model will be very useful for developing molecular markers linked to maintenance for self-incompatibility and for dissecting the mechanism of SI/SC in B. napus.  相似文献   

10.
The objective of this study was to develop diallel population hybrids by crossing selected germplasm and to determine the gene effects and genetic control of yield and yield components using diallel analysis. A complete diallel including reciprocals was made during 2003 and 2004 between five alfalfa cultivars of different geographic origin. For each pairwise cross, five plants were chosen at random from each of the two cultivars (~100 florets per plant) to obtain the F1 generation. A spaced plant field was established in 2006 which included the five alfalfa cultivars (parents) and their 20 diallel hybrids (F1). The results of the diallel analysis suggest that the genetic control of major agronomic traits is determined by both additive gene action (accumulation of frequency of desirable alleles represented by significant GCA effects) and nonadditive gene action (complementary gene interactions represented by significant SCA effects). This type of gene action expression in alfalfa also determines the way in which breeding is carried out and brings about changes in the methods used and has given rise to the idea of the semi-hybrid breeding of this crop. The concept involves: breeding alfalfas within the population, identification of heterotic germplasm, and the production of seed of the population hybrid (PH).  相似文献   

11.
We have previously reported that expression of salt-responsive genes, including Bruguiera gymnorhiza ankyrin repeat protein 1 (BgARP1), enhances salt tolerance in both Agrobacterium tumefaciens and Arabidopsis. In this report, we further characterized BgARP1-expressing Arabidopsis to elucidate the role of BgARP1 in salt tolerance. BgARP1-expressing plants exhibited more vigorous growth than wild-type plants on MS plates containing 125–175 mM NaCl. Real-time PCR analysis showed enhanced induction of osmotin34 in the 2-week-old transformants under 125 mM NaCl. It was also showed that induction of typical salt-responsive genes, including RD29A, RD29B, and RD22, was blunted and delayed in the 4-week-old transformants during 24 h after 200 mM NaCl treatment. Ion content analysis showed that transgenic plants contained more K+, Ca2+, and NO3 , and less NH4 +, than wild-type plants grown in 200 mM NaCl. Our results suggest that BgARP1-expressing plants may reduce salt stress by up-regulating osmotin34 gene expression and maintaining K+ homeostasis and regulating Ca2+ content. These results indicate that BgARP1 is functional on a heterogeneous background.  相似文献   

12.
A triploid hybrid with an ABC genome constitution, produced from an interspecific cross between Brassica napus (AACC genome) and B. nigra (BB genome), was used as source material for chromosome doubling. Two approaches were undertaken for the production of hexaploids: firstly, by self-pollination and open-pollination of the triploid hybrid; and secondly, by application of colchicine to axillary meristems of triploid plants. Sixteen seeds were harvested from triploid plants and two seedlings were confirmed to be hexaploids with 54 chromosomes. Pollen viability increased from 13% in triploids to a maximum of 49% in hexaploids. Petal length increased from 1.3 cm (triploid) to 1.9 cm and 1.8 cm in the two hexaploids and longest stamen length increased from 0.9 cm (triploid) to 1.1 cm in the hexaploids. Pollen grains were longer in hexaploids (43.7 and 46.3 μm) compared to the triploid (25.4 μm). A few aneuploid offsprings were also observed, with chromosome number ranging from 34 to 48. This study shows that trigenomic hexaploids can be produced in Brassica through interspecific hybridisation of B. napus and B. nigra followed by colchicine treatment.  相似文献   

13.
Phytophthora root rot (PRR) is among the most important soybean (Glycine max (L.) Merr.) diseases worldwide, and the host displays complex genetic resistance. A genome-wide association study was performed on 337 accessions from the Yangtze-Huai soybean breeding germplasm to identify resistance regions associated with PRR resistance using 60,862 high-quality single nucleotide polymorphisms markers. Twenty-six significant SNP-trait associations were detected on chromosomes 01 using a mixed linear model with the Q matrix and K matrix as covariates. In addition, twenty-six SNPs belonged to three adjacent haplotype blocks according to a linkage disequilibrium blocks analysis, and no previous studies have reported resistance loci in this 441 kb region. The real-time RT-PCR analysis of the possible candidate genes showed that two genes (Glyma01g32800 and Glyma01g32855) are likely involved in PRR resistance. Markers associated with resistance can contribute to marker-assisted selection in breeding programs. Analyses of candidate genes can lay a foundation for exploring the mechanism of P. sojae resistance.  相似文献   

14.
Tolerance to low temperature is an important prerequisite for optimal performance of peanut (Arachis hypogaea L.) in a number of temperate peanut-growing environments. One hundred fifty-eight peanut accessions belonging to five botanical types, known to be tolerant to low temperature (12°C) at germination, were evaluated for phenotypic diversity for 15 morphological traits in the 2001 rainy season and for 15 agronomic and two seed quality traits in the 2001 rainy and 2001/2002 post-rainy seasons. Analysis of data, using the residual maximum-likelihood approach indicated that variance components due to genotypes were significant for all traits in the rainy and for all but two traits in the post-rainy season. Clustering based on scores of nine principle components delineated four clusters. The cold-tolerant genotypes and the standard control cultivars in the four clusters differed in mean, variance, and range both during rainy and post-rainy seasons for a range of agronomic traits, indicating the diversity among the clusters. The cold-tolerant accessions were superior to control cultivars for several agronomic traits compared with their respective controls in both the rainy and post-rainy seasons, so their use in breeding should result in genetically diverse cold-tolerant high-yielding peanut cultivars.  相似文献   

15.
Sugarcane is a crop which is primarily grown between 30°N and 30°S latitude in tropical environments. Small areas of production in sub-tropical regions exist, and there is an increasing desire to produce the crop in colder environments. Cold-tolerant sugarcane is important both to the sub-tropical sugarcane industries and potential biofuels producers who seek to use sugarcane as a feedstock. Selection for this trait under natural conditions is difficult in sugarcane growing regions because damaging freezes are sporadic. The objective of this study was to identify sugarcane accessions for use in introgression breeding which have above-ground buds that are tolerant to freezing conditions. Above-ground (stalk) buds of 63 Saccharum, and 4 Erianthus accessions were frozen for 6 days at ?7 °C, and germinated buds were counted three weeks post-treatment. Accessions which had more bud cold tolerance than the Louisiana commercial cultivar ‘L 97-128’ were MPTH97-213, SES114, Guangxi87-22 and SES234A. Heritability estimates for percent reduction in bud germination and height of the shoots following freeze treatment was 0.47 and 0.49, respectively. Identified clones will be used in future breeding efforts at the United States Department of Agriculture, Agricultural Research Service, Sugarcane Research Unit in Houma, LA, USA.  相似文献   

16.
Perennial ryegrass (Lolium perenne) is a perennial crop used in temperate regions as forage. In L. perenne breeding programs, persistency is an important trait. Poor persistency results in sward degradation and associated yield and nutritive value losses. Breeders assess persistency of accessions using visual scoring in field plots during the 2nd or 3rd growing season. This evaluation system is easy and cheap but is not free from human bias. In this study, the correlation between the scoring done by different breeders was only 0.243. As an alternative we have developed a methodology to assess persistency of L. perenne breeding materials based on vegetation indices (VIs) derived from Unmanned Aerial Vehicle (UAV) imagery. The VIs Excess green (ExG2), Green Leaf Index and Normalized green intensity (GCC) were found to provide consistent results for flights carried out under different light conditions and were validated by ground reference information. The correlation between the VIs and the percentage of ground cover extracted from on-ground imagery was 0.885. To test the implementation of the method we compared the ExG2 value based approach to selection with a visual score based selection methodology as applied by two breeders. The breeding decisions of Breeder A agreed well with decisions based on ExG2 values (74.6%), but those of Breeder B displayed a lower agreement (54.0%). In contrast, agreement between decisions based on different flights was very high (91.6%). The methodology was validated for general applicability. In summary, the results demonstrate that basing persistency selection in L. perenne breeding programs on ExG2 values from UAV imagery is likely to be more objective in comparison to the currently-used visual scoring method.  相似文献   

17.
The recessive mutation of the XANTHA gene (XNT) transforms seedlings and plants into a yellow color, visually distinguishable from normal (green) rice. Thus, it has been introduced into male sterile lines as a distinct marker for rapidly testing and efficiently increasing varietal purity in seed and paddy production of hybrid rice. To identify closely linked markers and eventually isolate the XNT gene, two mapping populations were developed by crossing the xantha mutant line Huangyu B (indica) with two wild type japonica varieties; a total of 1,720 mutant type F2 individuals were analyzed for fine mapping using polymorphic InDel markers and high dense microsatellite markers. The XNT gene was mapped on chromosome 11, within in a fragment of ~100 kb, where 13 genes are annotated. The NP_001067671.1 gene within the delimited region is likely to be a candidate XNT gene, since it encodes ATP-dependent chloroplast protease ATP-binding subunit clp A. However, no sequence differences were observed between the mutant and its parent. Bioinformatics analysis demonstrated that four chlorophyll deficient mutations that were previously mapped on the same chromosome are located outside the XNT region, indicating XNT is a new gene. The results provide useful DNA markers not only for marker assisted selection of the xantha trait but also its eventual cloning.  相似文献   

18.
A system for the production of transgenic faba bean by Agrobacterium-mediated transformation was developed. This system is based upon direct shoot organogenesis after transformation of meristematic cells derived from embryo axes. Explants were co-cultivated with A. tumefaciens strain EHA105/pGlsfa, which harbored a binary vector containing a gene encoding a sulphur rich sunflower albumin (SFA8) linked to the bar gene. Strain EHA 101/pAN109 carrying the binary plasmid containing the coding sequence of a mutant aspartate kinase gene (lysC) from E. coli in combination with neomycinphosphotransferase II gene (nptII) was used as well. The coding sequences of SFA8 and LysC genes were fused to seed specific promoters, either Vicia faba legumin B4 promoter (LeB4) or phaseolin promoter, respectively. Seven phosphinothricin (PPT) resistant clones from Mythos and Albatross cultivars were recovered. Integration, inheritance and expression of the transgenes were confirmed by Southern blot, PCR, enzyme activity assay and Western blot.  相似文献   

19.
Pseudomonas syringae is the main pathogen responsible for bacterial blight disease in pea and can cause yield losses of 70%. P. syringae pv. pisi is prevalent in most countries but the importance of P. syringae pv. syringae (Psy) is increasing. Several sources of resistance to Psy have been identified but genetics of the resistance is unknown. In this study the inheritance of resistance to Psy was studied in the pea recombinant inbred line population P665 × ‘Messire’. Results suggest a polygenic control of the resistance and two quantitative trait loci (QTL) associated with resistance, Psy1 and Psy2, were identified. The QTL explained individually 22.2 and 8.6% of the phenotypic variation, respectively. In addition 21 SSR markers were included in the P665 × ‘Messire’ map, of which six had not been mapped on the pea genome in previous studies.  相似文献   

20.
Submergence is a major stress causing yield losses particularly in the direct-seeded rice cultivation system and necessitates the development of a simple, rapid and reliable bioassay for a large scale screening of rice germplasms with tolerance against submergence stress. We developed two new bioassay methods that were based primarily on the seedling vigor evaluated by the ability of fast shoot elongation under submerged conditions, and compared their effectiveness with two other available methods. All four bioassay methods using cultivars of 7 indica and 6 japonica types revealed significant and consistent cultivar differences in seedling vigor under submergence and/or submergence tolerance. Japonica cultivars were more vigorous than indica cultivars, with Nipponbare being the most vigorous. The simplest test tube method showed the highest correlations to all other methods. Our results suggest that seedling vigor serves as a submergence avoidance mechanism and confers tolerance on rice seedlings to flooding during early crop establishment. A possible relationship is discussed between seedling vigor based on fast shoot elongation and submergence tolerance defined by recovery from submergence stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号