首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Clothier, K. A., Leavens, T., Griffith, R. W., Wetzlich, S. E., Baynes, R. E., Riviere, J. E., Tell, L. A. Tulathromycin assay validation and tissue residues after single and multiple subcutaneous injections in domestic goats (Capra aegagrus hircus). J. vet. Pharmacol. Therap.  35 , 113–120. Tulathromycin is a macrolide antimicrobial labeled for treatment of bacterial pneumonia in cattle and swine. The purpose of the present research was to evaluate tissue concentrations of tulathromycin in the caprine species. A tandem mass spectrometry regulatory analytical method that detects the common fragment of tulathromycin in cattle and swine was validated with goat tissues. The method was used to study tulathromycin depletion in goat tissues (liver, kidney, muscle, fat, injection site, and lung) over time. In two different studies, six juvenile and 25 market‐age goats received a single injection of 2.5 mg/kg of tulathromycin subcutaneously; in a third study, 18 juvenile goats were treated with 2.5, 7.5, or 12.5 mg/kg tulathromycin weekly with three subcutaneous injections. Mean tulathromycin tissue concentrations were highest at injection site samples in all studies and all doses. Lung tissue concentrations were greatest at day 5 in market‐age goats while in the multi‐dose animals concentrations demonstrated dose‐dependent increases. Concentrations were below limit of quantification in injection site and lung by day 18 and in liver, kidney, muscle, and fat at all time points. This study demonstrated that tissue levels in goats are very similar to those seen in swine and cattle.  相似文献   

2.
The objectives of this study were to determine plasma concentrations and pharmacokinetic parameters of tulathromycin after a single subcutaneous administration in the cervical region in sheep using the cattle labeled dose of 2.5 mg/kg. Six adult healthy ewes were administered tulathromycin on day 0. Blood samples were collected just prior to dosing and at selected time points for 360 h. Plasma samples were analyzed to determine tulathromycin concentrations, and noncompartmental analysis was performed for pharmacokinetic parameters. The mean maximum plasma concentration was 3598 ng/mL, the mean time to maximum concentration was 1.6 h, and the apparent elimination half‐life ranged from 68.1 to 233.1 h (mean 118 h). When comparing our results to goats and cattle, it appears sheep are more similar to cattle in regard to the concentrations observed and pharmacokinetic parameters. In summary, the pharmacokinetics of tulathromycin in sheep appear to be similar enough to those in goats and cattle to recommend similar dosing (2.5 mg/kg SC), assuming that the target pathogens have similar inhibitory concentrations.  相似文献   

3.
Tulathromycin is a triamilide antibiotic that maintains therapeutic concentrations for an extended period of time. The drug is approved for the treatment of respiratory disease in cattle and swine and is occasionally used in goats. To investigate the pharmacokinetics of tulathromycin in meat goats, 10 healthy Boer goats were administered a single 2.5 mg/kg subcutaneous dose of tulathromycin. Plasma concentrations were measured by ultra-high pressure liquid chromatography tandem mass spectrometry (UPLC–MS/MS) detection. Plasma maximal drug concentration (Cmax) was 633 ± 300 ng/ml (0.40 ± 0.26 h post-subcutaneous injection). The half-life of tulathromycin in goats was 110 ± 19.9 h. Tulathromycin was rapidly absorbed and distributed widely after subcutaneous injection 33 ± 6 L/kg. The mean AUC of the group was 12,500 ± 2020 h ng/mL for plasma. In this study, it was determined that the pharmacokinetics of tulathromycin after a single 2.5 mg/kg SC injection in goats were very similar to what has been previously reported in cattle.  相似文献   

4.
Physiologically based pharmacokinetic (PBPK) models, which incorporate species- and chemical-specific parameters, could be useful tools for extrapolating withdrawal times for drugs across species and doses. The objective of this research was to develop a PBPK model for goats to simulate the pharmacokinetics of tulathromycin, a macrolide antibiotic effective for treating respiratory infections. Model compartments included plasma, lung, liver, muscle, adipose tissue, kidney, and remaining poorly and richly perfused tissues. Tulathromycin was assumed to be 50% protein bound in plasma with first-order clearance. Literature values were compiled for physiological parameters, partition coefficients were estimated from tissue:plasma ratios of AUC, and the remaining model parameters were estimated by comparison against the experimental data. Three separate model structures were compared with plasma and tissue concentrations of tulathromycin in market age goats administered 2.5 mg/kg tulathromycin subcutaneously. The best simulation was achieved with a diffusion-limited PBPK model and absorption from a two-compartment injection site, which allowed for low persistent concentrations at the injection site and slower depletion in the tissues than the plasma as observed with the experimental data. The model with age-appropriate physiological parameters also predicted plasma concentrations in juvenile goats administered tulathromycin subcutaneously. The developed model and compilation of physiological parameters for goats provide initial tools that can be used as a basis for predicting withdrawal times of drugs in this minor species.  相似文献   

5.
Tulathromycin is a macrolide antimicrobial agent proposed for therapeutic use in treatment of porcine and bovine respiratory disease. In this study, the absolute bioavailability of tulathromycin solution was investigated in pigs. Eight pigs, with body weight of 20.5 ± 1.6 kg, were given a single dose of tulathromycin at 2.5 mg/kg oral (p.o.) and intravenous (i.v.) in a crossover design. The plasma concentrations of tulathromycin and its metabolite were determined by LC-MS/MS method, and the pharmacokinetic parameters of tulathromycin were calculated by noncompartmental analysis. After p.o. administration, the maximum plasma concentration (C(max) ) was 0.20 ± 0.05 μg/mL at 3.75 ± 0.71 h. The terminal half-life (t(1/2λz) ) in plasma was 78.7 ± 6.75 h, and plasma clearance (Cl/F) was 1.14 ± 0.28 L/h/kg. After i.v. injection, plasma clearance (Cl) was 0.580 ± 0.170 L/h/kg, the volume of distribution (Vz) was 64.3 ± 21.2 L/kg, and the t(1/2λz) was 76.5 ± 13.4 h. In conclusion, an analytical method for the quantification of tulathromycin and its metabolite in plasma in swine was developed and validated. Following p.o. administration to pigs at 2.5 mg/kg b.w., tulathromycin was rapidly absorbed and the systemic bioavailability was 51.1 ± 10.2.  相似文献   

6.
Pharmacokinetics and lung tissue concentrations of tulathromycin in swine   总被引:5,自引:0,他引:5  
The absolute bioavailability and lung tissue distribution of the triamilide antimicrobial, tulathromycin, were investigated in swine. Fifty-six pigs received 2.5 mg/kg of tulathromycin 10% formulation by either intramuscular (i.m.) or intravenous (i.v.) route in two studies: study A (10 pigs, i.m. and 10 pigs, i.v.) and study B (36 pigs, i.m.). After i.m. administration the mean maximum plasma concentration (C(max)) was 616 ng/mL, which was reached by 0.25 h postinjection (t(max)). The mean apparent elimination half-life (t(1/2)) in plasma was 75.6 h. After i.v. injection plasma clearance (Cl) was 181 mL/kg.h, the volume of distribution at steady-state (V(ss)) was 13.2 L/kg and the elimination t(1/2) was 67.5 h. The systemic bioavailability following i.m. administration was >87% and the ratio of lung drug concentration for i.m. vs. i.v. injection was > or =0.96. Following i.m. administration, a mean tulathromycin concentration of 2840 ng/g was detected in lung tissue at 12 h postdosing. The mean lung C(max) of 3470 ng/g was reached by 24 h postdose (t(max)). Mean lung drug concentrations after 6 and 10 days were 1700 and 1240 ng/g, respectively. The AUC(inf) was 61.4 times greater for the lung than for plasma. The apparent elimination t(1/2) for tulathromycin in the lung was 142 h (6 days). Following i.m. administration to pigs at 2.5 mg/kg body weight, tulathromycin was rapidly absorbed and highly bioavailable. The high distribution to lung and slow elimination following a single dose of tulathromycin, are desirable pharmacokinetic attributes for an antimicrobial drug indicated for the treatment of respiratory disease in swine.  相似文献   

7.
Macrolides are important antimicrobials frequently used in human and veterinary medicine in the treatment of pregnant women and pregnant livestock. They may be useful for the control of infectious ovine abortion, which has economic, animal health, and human health impacts. In this study, catheters were surgically placed in the fetal vasculature and amnion of pregnant ewes at 115 (±2) days of gestation. Ewes were given a single dose of 2.5 mg/kg tulathromycin subcutaneously, and drug concentrations were determined in fetal plasma, maternal plasma, and amniotic fluid at 4, 8, 12, 24, 36, 48, 72, 144, and 288 hr after drug administration. Pharmacokinetic parameters in maternal plasma were estimated using noncompartmental analysis and were similar to those previously reported in nonpregnant ewes. Tulathromycin was present in fetal plasma and amniotic fluid, indicating therapeutic potential for use against organisms in these compartments, though concentrations were lower than those in maternal plasma. Time‐course of drug concentrations in the fetus was quite different than that in the ewe, with plasma concentrations reaching a plateau at 4 hr and remaining at this concentration for the remainder of the sampling period (288 hr), raising questions about how tulathromycin may be transported into or metabolized and eliminated by the fetus.  相似文献   

8.
Tulathromycin is a new injectable macrolide antibiotic used for the treatment of pulmonary diseases of swine and cattle. In this study, 37 foals with sonographic evidence of lung abscesses were treated with tulathromycin (2.5mg/kg intramuscularly [IM] once weekly, group 1) and 33 foals (group 2) with a combination of azithromycin (10mg/kg per os [PO] once daily for the first seven days of therapy, thereafter every other day) and rifampin (10mg/kg PO twice daily). The bacterial aetiological agent was not determined. The foals were only mildly sick and the median number of pulmonary abscesses was 1.4 (group 1) and 1.6 (group 2). Thirty foals in each group were treated without modifying therapy protocols until all clinical signs of disease had subsided. Tulathromycin was administered for a mean of 53 days, and azithromycin/rifampin for 42 days. The following side effects were associated with tulathromycin (279 IM injections): self-limiting diarrhoea in 11 foals; elevated temperature in six foals, and swellings at the injection site in 12 foals. This study provides some evidence that tulathromycin is well tolerated and appears promising for the treatment of pulmonary abscesses in foals.  相似文献   

9.
Superficial and systemic mycotic infections are common among clinically ill sea turtles, which places growing importance on the establishment of pharmacokinetic-based dosage regimens for antifungal drugs. The pharmacokinetic properties of the antifungal drug fluconazole, after intravenous (i.v.) and subcutaneous (s.c.) injections, were studied in juvenile loggerhead sea turtles (Caretta caretta) housed at 23.0-26.5 degrees C. Fluconazole pharmacokinetic properties were further assessed in a multiple-dose s.c. regimen derived from the pharmacokinetic parameters determined in the single-dose study. Pharmacokinetic parameters were calculated, using a two-compartment model, from plasma concentration-time data obtained after single i.v. and s.c. administrations of fluconazole at a dosage of 2.5 mg/ kg body weight in six juvenile sea turtles. Blood samples were collected at intervals through 120 hr after each dose, and the concentration of fluconazole in plasma was measured by reverse-phase high-performance liquid chromatography. The i.v. and s.c. elimination half-lives were 139.5 +/- 36.0 and 132.6 +/- 48.7 hr (mean +/- SD), respectively. Systemic clearance of fluconazole was 8.2 +/- 4.3 ml/kg x hr, and the apparent volume of distribution at steady state was 1.38 +/- 0.29 L/kg. A multiple-dose regimen was derived, which consisted of a loading dose of 21 mg/kg body weight and subsequent doses of 10 mg/kg administered through s.c. injection every 120 hr (5 days). This regimen was administered to four juvenile sea turtles for 10 days, and blood samples were taken to determine peak and trough plasma concentrations of fluconazole. The mean concentrations for the two peak concentrations were 16.9 +/- 1.1 and 19.1 +/- 2.8 microg/ml 4 hr after dosing, and the mean concentrations for the three trough concentrations were 7.2 +/- 2.2, 10.4 +/- 2.7, and 10.7 +/- 2.9 microg/ml 120 hr after dosing. The terminal half-life after the last dose was calculated at 143 hr. Throughout the multiple dosing, fluconazole concentrations remained above approximately 8 microg/ml, a concentration targeted when treating mycotic infections in humans. The results of this study suggest that fluconazole can be effectively administered to sea turtles at a dosage of 10 mg/kg every 5 days after a loading dose of 21 mg/kg.  相似文献   

10.
Impaired abomasal motility is common in cattle with abomasal disorders. The macrolide erythromycin has been demonstrated to be an effective prokinetic agent in healthy calves and in adult cattle with abomasal volvulus or left displaced abomasum. We hypothesized that 2 structurally related macrolides, spiramycin and tulathromycin, would also be effective prokinetic agents in cattle. Six milk-fed, male, Holstein-Friesian calves were administered each of the following 4 treatments: spiramycin, 75 000 IU/kg BW, IM, this dose approximates 25 mg/kg BW, IM; tulathromycin, 2.5 mg/kg BW, SC; 2 mL of 0.9% NaCl (negative control); and erythromycin, 8.8 mg/kg BW, IM (positive control). Calves were fed 2 L of cow’s milk containing acetaminophen (50 mg/kg body weight) 30 min after each treatment was administered and jugular venous blood samples were obtained periodically after the start of sucking. Abomasal emptying rate was assessed by the time to maximal plasma acetaminophen concentration. Spiramycin, tulathromycin, and the positive control erythromycin increased abomasal emptying rate compared to the negative control. We conclude that the labeled antimicrobial dose of spiramycin and tulathromycin increases the abomasal emptying rate in healthy milk-fed calves. Additional studies investigating whether spiramycin and tulathromycin exert a prokinetic effect in adult cattle with abomasal hypomotility appear indicated.  相似文献   

11.
The pharmacokinetic (PK) profile of tulathromycin, administered to calves subcutaneously at the dosage of 2.5 mg/kg, was established in serum, inflamed (exudate), and noninflamed (transudate) fluids in a tissue cage model. The PK profile of tulathromycin was also established in pneumonic calves. For Mannheimia haemolytica and Pasteurella multocida, tulathromycin minimum inhibitory concentrations (MIC) were approximately 50 times lower in calf serum than in Mueller–Hinton broth. The breakpoint value of the PK/pharmacodynamic (PD) index (AUC(0–24 h)/MIC) to achieve a bactericidal effect was estimated from in vitro time‐kill studies to be approximately 24 h for M. haemolytica and P. multocida. A population model was developed from healthy and pneumonic calves and, using Monte Carlo simulations, PK/PD cutoffs required for the development of antimicrobial susceptibility testing (AST) were determined. The population distributions of tulathromycin doses were established by Monte Carlo computation (MCC). The computation predicted a target attainment rate (TAR) for a tulathromycin dosage of 2.5 mg/kg of 66% for M. haemolytica and 87% for P. multocida. The findings indicate that free tulathromycin concentrations in serum suffice to explain the efficacy of single‐dose tulathromycin in clinical use, and that a dosage regimen can be computed for tulathromycin using classical PK/PD concepts.  相似文献   

12.
Eight adult female dairy goats received one subcutaneous administration of tulathromycin at a dosage of 2.5 mg/kg body weight. Blood and milk samples were assayed for tulathromycin and the common fragment of tulathromycin, respectively, using liquid chromatography/mass spectrometry. Pharmacokinetic disposition of tulathromycin was analyzed by a noncompartmental approach. Mean plasma pharmacokinetic parameters (±SD) following single‐dose administration of tulathromycin were as follows: Cmax (121.54 ± 19.01 ng/mL); Tmax (12 ± 12–24 h); area under the curve AUC0→∞ (8324.54 ± 1706.56 ng·h/mL); terminal‐phase rate constant λz (0.01 ± 0.002 h−1); and terminal‐phase rate constant half‐life t1/2λz (67.20 h; harmonic). Mean milk pharmacokinetic parameters (±SD) following 45 days of sampling were as follows: Cmax (1594 ± 379.23 ng/mL); Tmax (12 ± 12–36 h); AUC0→∞ (72,250.51 ± 18,909.57 ng·h/mL); λz (0.005 ± 0.001 h−1); and t1/2λz (155.28 h; harmonic). All goats had injection‐site reactions that diminished in size over time. The conclusions from this study were that tulathromycin residues are detectable in milk samples from adult goats for at least 45 days following subcutaneous administration, this therapeutic option should be reserved for cases where other treatment options have failed, and goat milk should be withheld from the human food chain for at least 45 days following tulathromycin administration.  相似文献   

13.
为研究自制盐酸多西环素注射液在猪体内的药代动力学-药效学,对10头健康猪单次肌内注射盐酸多西环素注射液,采用UPLC法测定血浆中药物浓度,利用药代动力学软件WinNonlin进行数据处理。结果显示,主要药代动力学参数:消除半衰期t1/2为(31.3±9.2)h,达峰时间Tmax为(0.80±0.7)h,峰浓度Cmax为(4132±2475)μg/L,药时曲线下面积AUC为(88378±88095)(μg/L)·h,平均滞留时间MRT为(20.5±2.5)h;PK/PD参数T〉MIC为24h,AUC/MIC〉50。试验表明该制剂以10mg/kg剂量肌内注射,给药间隔两天一次为宜。  相似文献   

14.
Tulathromycin is approved for the treatment of respiratory disease in cattle and swine. It is intended for long‐acting, single‐dose injection therapy (Draxxin), making it particularly desirable for use in bison due to the difficulty in handling and ease of creating stress in these animals. The pharmacokinetic properties of tulathromycin in bison were investigated. Ten wood bison received a single 2.5 mg/kg subcutaneous injection of Draxxin. Serum concentrations were measured by liquid chromatography–mass spectrometry (LC‐MS) detection. Tulathromycin demonstrated early maximal serum concentrations, extensive distribution, and slow elimination characteristics. The mean maximum serum concentration (Cmax) was 195 ng/mL at 1.04 h (tmax) postinjection. The mean area under the serum concentration–time curve, extrapolated to infinity (AUC0–inf), was 9341 ng·h/mL. The mean apparent volume of distribution (Vd/F) and clearance (Cls/F) was 111 L/kg and 0.4 L/h/kg, respectively, and the mean half‐life (t1/2) was 214 h (8.9 days). Compared to values for cattle, Cmax and AUC0–inf were lower in bison, while the Vd/F was larger and the t1/2 longer. Tissue distribution and clinical efficacy studies in bison are needed to confirm the purported extensive distribution of tulathromycin into lung tissue and to determine whether a 2.5 mg/kg subcutaneous dosage is adequate for bison.  相似文献   

15.
喹赛多及其主要代谢物在猪体内的药代动力学研究   总被引:3,自引:1,他引:2  
试验研究了灌服单剂量喹赛多(40 mg/kg体重)后原药及其代谢物在健康猪体内的药代动力学特征。液相色谱-串联质谱法测定血浆中喹赛多及其代谢物的浓度,通过WinNonlin 5.2药代动力学软件分析,用非房室模型统计矩原理计算喹赛多及其代谢产物的药动学参数。主要药动学参数分别为喹赛多:t1/2 (7.52±1.77) h,Cmax(0.02±0.01) μg/mL,AUC(0-36 h) (0.26±0.24) (h·μg)/mL,MRT(11.37±3.21) h;N1(脱一氧喹赛多):t1/2 (3.05±1.12) h,Cmax(0.35±0.18) μg/mL,AUC(0-36 h) (2.13±2.31) (h·μg)/mL,MRT(11.83±3.34) h。N4(脱一氧喹赛多):t1/2 (2.91±1.15) h,Cmax(0.60±0.32) μg/mL,AUC(0-36 h) (3.78±4.28) (h·μg)/mL,MRT(11.00±2.86) h。脱二氧喹赛多:t1/2 (3.85±1.30) h,Cmax(0.46±0.19) μg/mL,AUC(0-36 h) (4.21±2.47) (h·μg)/mL,MRT(13.35±2.65) h。QCA(喹口恶啉-2-羧酸):t1/2 (5.08±0.57) h,Cmax(0.25±0.11) μg/mL,AUC(0-36 h) (3.05±1.46) (h·μg)/mL,MRT(15.15±1.83)h。结果表明,血浆中主要存在形式为代谢物,各代谢物的血药浓度及AUC(0-∞)均高于喹赛多,喹赛多消除半衰期最长,QCA平均滞留时间最长。  相似文献   

16.
The influence of infection with Ehrlichia phagocytophila (EP) on serum thyroid hormone concentrations and on antipyrine (25 mg/kg of body weight, IV) plasma elimination and urinary metabolite excretion was studied in castrated male dwarf goats. Mean thyroid hormone concentrations moderately decreased in EP-infected goats, with maximal decrease in total and free triiodothyronine and thyroxine serum concentrations of 56, 64, 23, and 19%, respectively. The estimated pharmacokinetic values of antipyrine (AP) in EP-infected goats were similar to those in the goats when healthy. However, glucuronidation of the AP-metabolites 3-hydroxymethyl-AP, 4,4'-dihydroxy-AP, and 4-hydroxy-AP was reduced during the febrile episode of the acute-phase response to EP infection.  相似文献   

17.
Pharmacokinetics of florfenicol in North American elk (Cervus elaphus)   总被引:1,自引:0,他引:1  
Florfenicol pharmacokinetics after administration of a single subcutaneous (s.c.) dose of 40 mg/kg of body weight in adult elk (Cervus elaphus) was investigated. Serum florfenicol concentrations were determined by a sensitive high-performance liquid chromatographic method with limit of quantification of 0.03 microg/mL. Florfenicol pharmacokinetic parameters in elk were estimated using a noncompartmental approach. After a single s.c. injection, florfenicol concentrations remained above 1 microg/mL for approximately 36 h and above 0.5 microg/mL for approximately 72 h. Following s.c. injection, florfenicol was absorbed rapidly with a mean maximum concentration (C(max)) of 3.7 microg/mL achieved at 4.2 h (T(max)). The C(max) value in elk is similar to values reported in cattle at the same dose, suggesting that the 40 mg/kg s.c. dose achieves therapeutic concentrations in elk. A mean elimination half-life (t(1/2)) of 44 h is shorter than that reported in cattle. The more rapid elimination half-life in elk suggests that elk may require a multiple dose regimen for therapeutic success with s.c. Nuflor. We recommend s.c. Nuflor be administered subcutaneously to elk every 24 h at a dose level of 40 mg/kg.  相似文献   

18.
Tulathromycin, a long acting macrolide antibiotic, has demonstrated efficacy against respiratory pathogens including Mycoplasma bovis and M. hyopneumoniae. A pharmacokinetic study was performed to evaluate the clinical applicability of tulathromycin in desert tortoises following a single intramuscular dose of 5 mg/kg. A single blood sample was collected from 110 different desert tortoises at 0.25, 0.5, 1, 4, 8, 24, 48, 72, 120, and 240 h following drug administration. Plasma concentrations of the parent form of tulathromycin were measured using liquid chromatography/mass spectrometry. As each tortoise was only bled once, pharmacokinetic parameters were initially estimated using a naïve pooled data approach. Given the variability in the data, population‐based compartmental modeling was also performed. Using nonparametric population compartmental modeling, a two‐compartment model with first‐order absorption and elimination best fit the data. An observed Cmax of 36.2 ± 29.7 μg/mL was detected at 0.25 h (observed Tmax). The elimination half‐life (T½el) was long (77.1 h) resulting in detectable plasma concentrations 240 h postadministration. This study represents a preliminary step in evaluating the utility of tulathromycin in chelonian species and demonstrates that population data modeling offers advantages for estimating pharmacokinetic parameters where sparse data sampling occurs and there is substantial variability in the data.  相似文献   

19.
Respiratory tract infections are common in farmed North American white‐tailed deer (Odocoileus virginianus). Tulathromycin is approved for use in cattle but not deer but is often employed to treat deer. The pharmacokinetic properties and lung and muscle concentrations of tulathromycin in white‐tailed deer were investigated. Tulathromycin was administered to 10 deer, and then, serum, lung, and muscle tulathromycin concentrations were measured using liquid chromatography–mass spectrometry (LC–MS). The mean maximal serum tulathromycin concentration in deer was 359 ng/mL at 1.3 h postinjection. The mean area under the serum concentration–time curve, apparent volume of distribution, apparent clearance, and half‐life was 4883 ng·h/mL, 208 L/kg, 0.5 L/h/kg, and 281 h (11.7 days), respectively. The maximal tulathromycin concentration in lung and muscle homogenate from a single animal was 4657 ng/g (14 days) and 2264 ng/g (7 days), respectively. The minimum concentrations in lung and muscle were 39.4 ng/g (56 days) and 9.1 ng/g (56 days), respectively. Based on similarity in maximal serum concentrations between deer and cattle and high lung concentrations in deer, we suggest the recommended cattle dosage is effective in deer. Tissue concentrations persisted for 56 days, suggesting a need for longer withdrawal times in deer than cattle. Further tissue distribution and depletion studies are necessary to understand tulathromycin persistence in deer tissue; clinical efficacy studies are needed to confirm the appropriate dosage regimen in deer.  相似文献   

20.
The therapeutic efficacy and field safety of tulathromycin were evaluated in stocker calves with undifferentiated bovine respiratory disease (BRD) in three field studies conducted over two consecutive grazing seasons in Nebraska. Eight hundred calves exhibiting clinical signs of BRD and with rectal temperatures of 104 degrees F or higher were treated with tulathromycin (n = 340), florfenicol (n = 240), or tilmicosin (n = 220) and evaluated for approximately 60 days. Florfenicol and tilmicosin were administered as single SC injections according to labeled dosage. Tulathromycin was administered as a single SC injection of 2.5 mg/kg. In all three studies, the cure rate of calves 60 days after treatment with tulathromycin was significantly higher (P < or = .05) than that of calves treated with florfenicol or tilmicosin. Suspected adverse reactions were not reported for any of the study drugs. Tulathromycin proved to be significantly more effective than either florfenicol or tilmicosin in the treatment of BRD in stocker calves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号