首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Teneral tsetse flies infected with either Trypanosoma brucei or T. vivax were fed on healthy cattle. Blood samples collected daily from the cattle were examined by microscopy for the presence of trypanosomes, in thick smear, thin smear and in the buffy coat (BC). All the cattle fed upon by infected tsetse developed a fluctuating parasitaemia. DNA was extracted from the blood of these cattle and subjected to polymerase chain reaction (PCR) using oligonucleotide primers specific for T. brucei or T. vivax. The PCR products unique to either T. brucei or T. vivax were identified following amplification of DNA from the blood samples of infected cattle, whereas none was detectable in the DNA from the blood of the cattle exposed to non-infected teneral tsetse. In a concurrent set of experiments, one of the oligonucleotide primers in each pair was biotinylated for use in PCR-ELISA to examine all the blood samples with this assay. Both the PCR and the PCR-ELISA revealed trypanosome DNA in 85% of blood samples serially collected from the cattle experimentally infected with T. brucei. In contrast, the parasitological assays showed trypanosomes in only 21% of the samples. In the blood samples from cattle experimentally infected with T. vivax, PCR and PCR-ELISA revealed trypanosome DNA in 93 and 94%, respectively. Microscopy revealed parasites in only 63% of the BCs prepared from these cattle. Neither PCR nor PCR-ELISA detected any trypanosome DNA in blood samples collected from the animals in the trypanosome-free areas. However, both assays revealed the presence of trypanosome DNA in a number of blood samples from cattle in trypanosomosis-endemic areas.  相似文献   

2.
Trypanosomosis caused by infection with protozoan parasites of the genus Trypanosoma is a major health constraint to cattle production in many African countries. One hundred and seventy one Bos indicus cattle from traditional pastoral Maasai (87) and more intensively managed Boran (84) animals in Tanzania were screened by PCR for the presence of African animal trypanosomes (Trypanosoma congolense, Trypanosoma vivax and Trypanosoma brucei), using blood samples archived on FTA cards. All cattle screened for trypanosomes were also genotyped at the highly polymorphic major histocompatibility complex (MHC) class II DRB3 locus to investigate possible associations between host MHC and trypanosome infection. Overall, 23.4% of the 171 cattle tested positive for at least one of the three trypanosome species. The prevalence of individual trypanosome species was 8.8% (T. congolense), 4.7% (T. vivax) and 15.8% (T. brucei). The high prevalence of T. brucei compared with T. congolense and T. vivax was unexpected as this species has previously been considered to be of lesser importance in terms of African bovine trypanosomosis. Significantly higher numbers of Maasai cattle were infected with T. brucei (23.0%, p=0.009) and T. congolense (13.8%, p=0.019) compared with Boran cattle (8.3% and 3.6%, respectively). Analysis of BoLA-DRB3 diversity in this cohort identified extensive allelic diversity. Thirty-three BoLA-DRB3 PCR-RFLP defined alleles were identified. One allele (DRB3*15) was significantly associated with an increased risk (odds ratio, OR=2.71, p=0.034) of T. brucei infection and three alleles (DRB3*35, *16 and *23) were associated with increased risk of T. congolense infection. While further work is required to dissect the role of these alleles in susceptibility to T. brucei and T. congolense infections, this study demonstrates the utility of FTA archived blood samples in combined molecular analyses of both host and pathogen.  相似文献   

3.
The role played by domestic animals in the transmission of gambiense Human African Trypanosomosis remains uncertain. Northwest Uganda is endemic for Trypanosoma brucei gambiense. Of the 3267 blood samples from domestic animals in four counties examined by hematocrit centrifugation technique (HCT), 210 (6.4%) were positive for trypanosomes. The prevalence of animal trypanosomosis was estimated at 13.8% in Terego County, 4.2% in East Moyo County, 3.1% in Koboko County, and zero in West Moyo County. The trypanosome infection rates varied from 0.2% in goats, 3.5% in dogs, 5.0% in sheep, 7.5% in cattle, to 15.5% in pigs. DNA was extracted from the blood samples by Chelex method, Sigma and Qiagen DNA extraction Kits. A total of 417(12.8%) DNA samples tested positive by polymerase chain reaction (PCR) using T. brucei species specific primers (TBR) indicating that the DNA was of Trypanozoon trypanosomes while 2850 (87.2%) samples were TBR-PCR negative. The T. brucei infection rates based on TBR-PCR were highest in pigs with 21.7%, followed by cattle (14.5%), dogs (12.4%), sheep (10.8%), and lowest in goats with 3.2%, which indicated that pigs were most bitten by infected tsetse than other domestic animals. TBR-PCR detected 6.3% more infected domestic animals that had been missed, and confirmed the 6.4% cases detected by HCT in the field. Statistical analysis done using one-way ANOVA Kruskal-Wallis test (Prism version 5.0) showed no significant difference in trypanosome infections among domestic animals using both HCT and TBR-PCR techniques in the different counties (Confidence Interval of 95%, p-values >0.05). All the 417 trypanosome DNA samples were negative by PCR using two sets of primers specific for the T. b. gambiense specific glycoprotein gene and serum resistance associated gene of T. b. rhodesiense, indicating that they were probably not from the two human infective trypanosomes. Polymerase chain reaction using primers based on ribosomal internal transcribed spacer-1 region (ITS-PCR) resolved the 417 DNA of trypanosome samples into 323 (77.5%) as single trypanosome infections due to T. brucei and 39 (9.4%) mixed infections but missed detecting 55 (13.1%) samples, possibly because of the low sensitivity of ITS-PCR as compared to TBR-PCR. The 31 mixed infections were due to T. brucei (T.b) and T. vivax (T.v); while 8 mixed infections were of T. congolense (T.c) and T. brucei but no mixed trypanosome infections with T. congolense, T. brucei, and T. vivax were detected. Statistical analysis done using one way ANOVA Kruskal-Wallis test (Prism version 5.0) to compare single and mixed trypanosome infections showed no significant difference in trypanosome infections due to single (T.v, T.b, T.c) and mixed (T.v+T.b; T.v+T.c; T.b+T.c; T.v+T.b+T.c) trypanosome species among domestic animals in the different counties using ITS-PCR technique (Confidence Interval of 95%, p-values >0.05). It was concluded that domestic animals in northwest Uganda were probably not reservoirs of T. b. gambiense and there was no infection, as yet, with T. b. rhodesiense parasites.  相似文献   

4.
Trypanosoma congolense and T vivax infections in cattle were shown to have a suppressive effect on the secondary humoral immune response to M mycoides. The trypanosome infections caused an involution of the thymus. The secondary response was biphasic in nature and was unrelated to infection with trypanosomes.  相似文献   

5.
The prevalence of trypanosome infections in tsetse flies, Glossina pallidipes, collected from Chiawa and Chakwenga in Zambia with endemic trypanosomosis was assessed by polymerase chain reaction (PCR). Out of the 550 G. pallidipes, 58 (10.5%) flies were found to harbor trypanosome DNA. Infection rates of tsetse with Trypanosoma vivax universal, Trypanosoma congolense savannah, T. congolense forest and T. congolense kilifi were 4.2% (23/550), 4.7% (26/550), 1.1% (6/550) and 1.6% (9/550), respectively. To determine the mammalian hosts of T. congolense and T. vivax infections from the tsetse flies, mammalian mitochondrion DNA of blood meal in these flies were analyzed by PCR and subsequent gene sequence analysis of the amplicons. Sequence analysis showed the presence of cytochrome b gene (cyt b) of 7 different mammalian species such as human, elephant, buffalo, goat, warthog, greater kudu and cattle. Goats which were main livestock in these areas were further examined to know the extent of its contribution in spreading the infection. We examined the prevalence of trypanosome infections in the domestic goat population in 6 settlements in Chiawa alone. Of the 86 goats sampled, 4 (4.6%), 5 (5.8%), 4 (4.6%) and 4 (4.6%) were positive for T. vivax universal, T. congolense savannah, forest and kilifi, respectively. These findings showed that the host-source of trypanosome infections in vector fly give a vital information about spread of infection. The result of this study will certainly contribute in elucidating more the epidemiology of trypanosomosis.  相似文献   

6.
Susceptibility to Trypanosoma congolense, T. vivax challenge and cross species-superchallenges, and related effects on health and productivity were assessed in N'Dama cattle. Twenty-five N'Dama bulls aged 3-4 years and previously primed with trypanosome infections through natural tsetse exposure over more than one year were used. The experimental herd was divided in five groups each composed of five randomly selected animals. Group 1 was challenged with T. congolense, Group 2 with T. vivax, Group 3 was inoculated with T. congolense followed by a cross-superchallenge with T. vivax, Group 4 was inoculated with T. vivax followed by T. congolense cross-superchallenge. Animals in Group 5 were used as controls. Both T. vivax and T. congolense cross-superchallenges were carried out on Day 14 subsequent to respective initial T. congolense and T. vivax inoculations. All challenges were performed by intradermal needle inoculation of stocks of trypanosome bloodstream forms. In challenged animals (Group 1 to 4), parasitaemia profiles and packed red cell volumes (PCV) were measured for four months. Weight changes were recorded monthly and daily weight gain (DWG) computed. All cattle challenged with T. congolense became parasitaemic. Conversely, one animal in Group 2 and two in Group 3 never displayed patent T. vivax parasitaemia. Both in single (Group 1), initial (Group 3) and cross-superchallenged (Group 4) cattle higher percentage of positive blood samples and higher parasitaemia level were obtained following T. congolense than T. vivax inocula (Group 2, 3 and 4) (P<0.04 or greater). Overall the pre-challenge period, PCV values and DWGs were nearly identical in the five groups. Conversely, over the post-challenge period, cattle singly, initially and cross-superinoculated with T. congolense (Group 1, 3 and 4) displayed lower PCV values and DWGs in comparison with both control animals (Group 5) and with singly T. vivax challenged cattle (Group 2) (P<0.05 or greater). No difference in mean PCV levels and DWGs was found between animals in Group 2 and cattle in Group 5. It was concluded that trypanotolerant N'Dama cattle suffered more from T. congolense and mixed T. congolensel T. vivax infections, while pure T. vivax infection did not produce appreciable negative effects on their health and productivity. Therefore, considering that tsetse and trypanosomosis control campaigns are costly and are justified only when derived economic benefits exceed those of control, and also that an ample mosaic of farming systems exists in West Africa, species-specific trypanosome prevalence and relative impact should be assessed in various cattle populations and breeds differing in trypanosome susceptibility before advising any intervention. Moreover, virulence and related effects of T. congolense and T. vivax endemic stocks on health and productivity in local cattle populations should also be estimated in order to counsel appropriate economic protection measures against trypanosmosis, i.e. vector control and/or strategic use of trypanocidal drugs.  相似文献   

7.
Trypanosome infection rate in cattle at Nguruman was investigated in a study conducted in 1984-1986. Shifting pastoralism significantly reduced trypanosome infections in cattle. The cattle were more heavily infected with Trypanosoma congolense (16.5%) than Trypanosoma vivax (4.95%) and Trypanosoma brucei (0.19%). Trypanosoma theileri was observed only once among the cattle examined. Mixed trypanosome infections in cattle were observed to be 2.75% and 0.014% for T. congolense/T. vivax and T. congolense/T. brucei, respectively. The duration of infection in the cattle was 55 days for T. congolense and 79 days for T. vivax. High infections in cattle were observed 2 months after the rains, which were concomitant with high tsetse densities.  相似文献   

8.
Trypanosoma congolense causes the most economically important animal trypanosomosis in Africa. In South Africa, a rinderpest pandemic of the 1890s removed many host animals, resulting in the near-eradication of most tsetse species. Further suppression was achieved through spraying with dichlorodiphenyltrichloroethane (DDT); however, residual populations of Glossina austeni and G. brevipalpis remained in isolated pockets. A total of 506 of these tsetse flies were captured in the Hluhluwe-iMfolozi Park, the St Lucia Wetland Park and Boomerang commercial farm. The polymerase chain reaction (PCR) was used to determine the infection rate and frequency of mixed infections of these flies. Additionally, 473 blood samples were collected from cattle at communal diptanks and a commercial farm in the area and each one examined by the haematocrit centrifugation technique (HCT). Furthermore, buffy coats from these blood samples were spotted onto FTA Elute cards and the DNA extracted from each one tested using 3 separate PCRs. The HCT revealed the presence of trypanosomes in only 6.6% of the blood samples; by contrast, species-specific PCR detected trypanosome DNA in 50% of the samples. The species-specific PCR detected trypanosome DNA in 17% of the tsetse flies, compared with the nested PCR targeting rDNA which detected trypanosome DNA in only 14% of the samples. Over time, the transmission of Savannah-type T. congolense and Kilifi-type T. congolense as mixed infections could have an impact on disease manifestation in different hosts in the area.  相似文献   

9.
In a study of the prevalence and incidence of trypanosomosis in horses and donkeys in two regions of the Gambia, surveys were carried out at Niamina east and Bansang south with a high and low to moderate tsetse challenge, respectively. Eleven horses and 67 donkeys were sampled monthly from August 1997 to September 1998. Blood samples were examined for trypanosomes using the buffy-coat (BC) method and polymerase chain reaction (PCR). Three primer sets were used, specific for either Trypanosoma vivax (TVW), Trypanosoma congolense (GOL) or Trypanosoma brucei (ORPHON5J).The BC results showed that the prevalence (August 1997) and the average monthly incidence (September 1997-1998) of trypanosome infections in horses (45.5 and 16%, respectively) were significantly higher than in donkeys (6.2 and 9%, respectively). Using PCR, the number of detected cases was seven times higher than using the BC. T. congolense was the most frequently observed species, followed by T. vivax and T. brucei. This study confirms earlier observations by other authors that donkeys, which are exposed to a similar tsetse challenge as horses, are significantly less infected with trypanosomes than the latter.  相似文献   

10.
The clinical, parasitological and molecular diagnosis of bovine trypanosomosis were compared using samples from 250 zebu cattle exposed to natural trypanosome challenge in Uganda. Clinical examination, molecular and parasitological diagnoses detected 184 (73.6%), 96 (38.4%) and 36 (14.4%) as diseased, respectively. The sensitivity and specificity of clinical examination were 87.5% and 35%, and 78 % and 27 % based on molecular and parasitological diagnoses, as gold standards, respectively. Of the 33, 3, 13 and 12 parasitological-positive cattle that had Trypanosoma brucei, Trypanosoma congolense, Trypanosoma vivax or mixed infections, 78 %, 33 %, 84 % and 100 % respectively manifested clinical signs. Of the 24, 89, 12, 3, 6 and 27 cattle detected by molecular diagnosis to have mixed infections, T. brucei, T. vivax, T. congolense forest-, Savannah- and Tsavo-type, 100%, 83%, 91%, 100%, 67% and 81 % had clinical signs, respectively. In conclusion, treatment of cattle based on clinical examination may clear up to 87.5 % or 78 % of the cases that would be positive by either molecular or parasitological diagnosis, respectively. Under field conditions, in the absence of simple and portable diagnostic tools or access to laboratory facilities, veterinarians could rely on clinical diagnosis to screen and treat cases of bovine trypanosomosis presented by farmers before confirmatory diagnosis in diagnostic centres for few unclear cases is sought.  相似文献   

11.
During two consecutive surveys (February and August/Sept 2002), a total of 970 cattle from the cattle population of Mafia Island (United Republic of Tanzania) were blood-sampled. All blood samples were microscopically screened for the presence of trypanosomes and a portion of these were checked for antibodies with an Ab-ELISA and for the presence of trypanosomal DNA with PCR. Microscopic evidence of trypanosomes of the congolense group (sub-genus Nannomonas) was found in 0.8% of the animals (8/970) and in two cases the species identified was confirmed by PCR as Trypanosoma congolense savannah type. Non-pathogenic Trypanosoma theileri were detected in 3.2% (31/970) of the samples using the Dark Ground-Buffy Coat (DG-BC) technique. For survey 1 (S1), detection of antibodies (Ab-ELISA) against pathogenic trypanosomes indicated a seroprevalence of 14.2% (68/480). Of the samples, either DG positive or with a PCV lower then 25, examined by PCR, a total of 8.4% (5/59) (selected from 970 samples), were found positive for T. congolense. The low prevalence of pathogenic trypanosomes on Mafia Island is intriguing, especially in view of the omnipresence of the tsetse fly Glossina brevipalpis. Although the presence of detected trypanosomal antibodies does not necessarily indicate a current infection, the combination of serological/parasitological examinations and the results of the PCR do support this low prevalence of trypanosomosis in cattle. Despite the low prevalence, pathogenic trypanosomes are present on Mafia Island and possible reasons for this low infection rate, taking account of the relation between Glossina species present, transmission risk and trypanosomes found in cattle, are discussed also in view of a future appropriate intervention strategy.  相似文献   

12.
African trypanosome species are causative agents for sleeping sickness in humans and nagana disease in cattle. Trypanosoma brucei can generate ATP via a reverse reaction with glycerol kinase (GK) when alternative oxidase (AOX) is inhibited; thus, GK is considered to be a crucial target for chemotherapy combined with AOX. However, the energy metabolism systems of African trypanosome species other than T. brucei are poorly understood. Thus, GK genes were surveyed from genome databases and cloned by PCR from T. vivax and T. congolense. Then, recombinant GK proteins (rGK) of T. vivax, T. congolense and T. brucei were expressed and purified. Kinetic analysis of these rGK proteins revealed that the K(m) values of T. congolense rGK for ADP and G-3-P substrates were lower than those of T. vivax and T. brucei. The expression level of GK molecules was highest in T. congolense cells and lowest in T. vivax cells. Based on these results, effective combination dosages of ascofuranone, a specific inhibitor of AOX, and glycerol, an inhibitor of the GK reverse reaction, were determined by using in vitro-cultured trypanosome cells.  相似文献   

13.
Trypanosomosis caused by Trypanosoma vivax has been a constraint for cattle production in the Bolivian lowlands, since it was introduced in 1996. Flooded areas like the Bolivian Pantanal have a suitable environment for the presence and transmission of Salivarian trypanosomes and farmers from that region often report trypanosomosis-like problems on their farms. The objective of the present study, therefore, was to characterize the epidemiology of bovine trypanosomosis in the Bolivian Pantanal. In order to achieve this objective, 202 cattle from the province of Angel Sandoval and 209 cattle from the province of German Busch were randomly sampled (the Pantanal is located in both provinces). Twenty-nine farms in both provinces were visited, the farmers interviewed, and biologic samples collected from their cattle. Samples were submitted for parasitological and PCR evaluation and the prevalence of bovine trypanosomosis was estimated for each province. Laboratory results were correlated with the sampled animals packed cell volume (PCV) and body condition (BC) scores and the observed T. vivax parasites measured for morphometry analysis. Results from this study show differences in morphometric measures between T. vivax parasites from each province. Differences between provinces were also observed in the T. vivax-related disease situation. While in Angel Sandoval the PCV and BC of T. vivax-affected animals were significantly lower than those of the T. vivax-negative animals, in German Busch no differences were observed in the PCV and BC of T. vivax-positive or negative animals. Animal prevalence of T. vivax in Angel Sandoval was 27.79% (95% CI: 14.52-44.28) and in German Busch was 19.03% (95% CI: 9.19-30.75). The T. evansi animal prevalence in each province was 0.99% (95% CI: 0.27-2.99) and 5.71% (95% CI: 2.43-12.19), respectively. Based on questionnaire and laboratory results, it was concluded that trypanosomosis is a primary constraint for cattle production in the Bolivian Pantanal.  相似文献   

14.
A study to assess the influence of re-invasion of Glossina pallidipes on the epidemiology of bovine trypanosomosis was conducted in Southeast Uganda. A total of 1,992 cattle were screened in villages, with (949) and without G. pallidipes (1043) for trypanosomosis using a combination of the BCT and HCT methods. The prevalence of trypanosomosis (15.5%), Trypanosoma brucei infection (1.4%), T. congolense infection (7.2%), T. vivax infection (5.3%) and mixed infection (1.6%) in cattle in villages with was significantly higher than in those without G. pallidipes: trypanosomosis (7.1%), T. brucei infection (0.6%), T. congolense infection (2.0%), T. vivax infection (3.3%) and mixed infection (1.2%) (overall trypanosome infection, chi2=35.5, d.f.=1, P<0.05; T. brucei infection, chi2=8.06, d.f.=1, P<0.05; T. congolense infection, chi2=22.8, d.f.=1, P<0.05 and T. vivax infection, chi2=6.4, d.f.=1, P<0.05). Infections of Trypanosoma congolense were predominant in cattle in villages with G. pallidipes, while T. vivax infections were predominant in cattle in villages without. In all villages, T. brucei infections were fewer than either T. congolense or T. vivax infections. The risk of transmission of T. brucei, T. congolense and T. vivax infections was 3, 2.7 and 1.6 times, respectively, higher in villages with G. pallidipes than in those without, despite the presence of G. f. fuscipes in either set of villages. The mean PCV (28.27+/-0.41, 95% CI) and mean herd size (3+/-0.46) of cattle in villages with G. pallidipes were significantly (P<0.05) lower than in those in villages without (mean PCV, 29.48+/-0.34; mean herd size, 4+/-0.72). It is evident that presence of G. pallidipes brings about an increase in the prevalence of T. congolense, which causes a more severe disease in cattle than other species of trypanosomes. This is a rare case of a re-invasion of a tsetse species whose disease transmission capability calls for refocusing of the traditional national tsetse and trypanosomosis control strategies to contain it.  相似文献   

15.
The sensitivity of LAMP, PCR and microscopy to detect Theileria spp. and Trypanosoma congolense in field-derived bovine blood samples from Tanzania was evaluated and compared. No parasites were detected by microscopy. Furthermore, no bovine Theileria spp. were detected by LAMP and PCR from all the 24 samples collected from Arusha. Four and one out of 24 samples were positive for Theileria congolense infection by LAMP and PCR respectively while, 18 and nine out of 40 samples from Dar es Salaam were positive by LAMP and PCR for Theileria spp. Infection, respectively. Although all samples from Dar es Salaam were negative for Trypanosoma congolense infections by PCR, 12 out of 40 samples were LAMP positive. Whilst PCR is an established gene amplification method for the detection of Theileria and trypanosome parasites, this study introduces LAMP as an alternative molecular diagnostic tool that could be used in large-scale epidemiological surveys.  相似文献   

16.
The development and distribution of Trypanosoma congolense, T vivax and T brucei in the skin of goats was examined after the animals were bitten by infected Glossina morsitans centralis. Following the tsetse bite, the trypanosomes in the skin multiplied, reaching maximum numbers when the skin reaction (chancre) of the host attained its maximum size. In goats infected with T vivax and T brucei, trypanosomes were observed circulating in the blood before the peak of the chancre, while in T congolense-infected goats microscopically detectable parasites were found in blood only during the decline of the chancre. In contrast to T vivax, large numbers of T congolense and T brucei parasites were found in the skin following tsetse-transmitted infection. Ultrastructural differences were observed in T congolense and T brucei indicating an intracutaneous transformation from metacyclic to blood stream forms. T congolense forms in the skin reactions had a well developed secretory reticulum, small mitochondria and lacked large lipid inclusions compared to metacyclic and blood stream forms. The intracutaneous forms of T brucei had smaller mitochondria, the glycosomes were of more uniform size and the rough endoplasmic reticulum was less developed than in metacyclic or blood stream forms.  相似文献   

17.
The protective efficacy of isometamidium chloride (ISMM) and diminazene aceturate (DIM) against Trypanosoma brucei, Trypanosoma congolense and Trypanosoma vivax infections in cattle under a suppressed tsetse population was assessed in southeast Uganda. A total of 66 and 57 trypanosome-infected cattle were treated with ISMM and DIM, respectively together with 177 trypanosome-free animals not treated were followed for 12 months, checked every 4 weeks. There was no statistical difference in the mean time to infection with any trypanosome species in animals treated with ISMM or DIM. However, the mean time to trypanosome infection was significantly longer for treated animals than controls. The mean time to infection with each of the three trypanosome species differed significantly, with the average time to T. vivax infection the lowest, followed by T. congolense and then T. brucei. The protective efficacy of DIM was as good as that of ISMM; implying curative treatments against trypanosomosis are sufficient for combination with tsetse control. Isometamidium chloride or DIM had the highest impact on T. brucei and T. congolense infections in cattle.  相似文献   

18.
The antibody response to louping-ill virus vaccine was examined in mice infected with Trypanosoma brucei and T congolense, and in Ethiopian cattle experimentally infected with T brucei, T congolense and T vivax. In mice the antibody response was completely suppressed, while in cattle infected with T congolense and T vivax the antibody response to the vaccine was only 10 per cent that of uninfected animals. In contrast, the response of cattle infected with T brucei was not significantly reduced, and this was attributed to their relatively light and transient parasitaemias. Trypanocidal chemotherapy (diminazine aceturate) administered on the same day as vaccination largely restored the competence of the immune response of both mice and cattle infected with T congolense. The use of such drugs should be considered when cattle are vaccinated in trypanosome endemic areas.  相似文献   

19.
The diagnostic performance of a polymerase chain reaction assay (PCR) for monitoring the effectiveness of aceturate diminazene treatment was compared with those of an antibody-detection ELISA test and the buffy-coat technique using sheep experimentally infected with either savannah-type or forest-type Trypanosoma congolense or T. vivax. Within the period of infection, the PCR using specific savannah-type T. congolense primers showed a significant higher diagnostic sensitivity (p<0.05) than the buffy-coat technique. Both techniques gave closed results for detecting forest-type T. congolense or T. vivax infections. Following trypanocidal treatment, the PCR showed that specific product disappeared definitively 1 or 2 days later in animals in which a decrease of the antibody level and a significant improvement of the red packed cell volume were observed. The occurrence of relapse infection was detected by the PCR in one animal infected by T. vivax on day 19 post-treatment and confirmed by the persistence and increasing antibody level whereas the buffy-coat technique detected parasites 42 days later. Then, the PCR signals remained positive on several occasions while parasitaemia was detected only two times.The application of PCR combined with the antibody detection appeared to provide a useful tool as compared to the buffy-coat technique for monitoring the effectiveness of trypanocidal treatment.  相似文献   

20.
Blood of different breeds of cattle, namely Lagune from the Atlantic province, Borgou and Borgou x Zebu from the Borgou province, and Somba and Zebu from the Atacora province of Benin, were examined for trypanosome infection. Thick and thin blood smears for trypanosomes, the card agglutination test (CATT), indirect immunofluorescent antibody test (IFAT) and trypanolytic test for antibodies to trypanosomes were used. Trypanosomes were detected in 19.3% (range 9.8-31.4%) of animals by examination of blood smears; antibodies to trypanosomes were found in 89.8% (range 88.4-100%) of samples by IFAT, 50.6% (range 34-87.5%) by CATT and 3.4% (range 1.1-7.1%) by trypanolytic test. Trypanosoma vivax and Trypanosoma congolense were the main species in Benin with a low number of Trypanosoma brucei. Zebu had lower infection rates than trypanotolerant breeds of Benin. The infection rates of various trypanotolerant breeds were not significantly different.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号