共查询到12条相似文献,搜索用时 78 毫秒
1.
【目的】 研究镉胁迫下芹菜生长、镉吸收和向上运转品种间差异,为筛选镉低积累型芹菜品种减少镉对人体的危害提供依据。 【方法】 以10个芹菜品种为试材进行基质无土栽培试验,基质为蛭石,营养液采用1/2华南农业大学叶菜类营养液配方,以只浇灌营养液的处理作为对照,浇灌含15 mg/L氯化镉(CdCl2)的营养液为Cd胁迫处理;每3 d浇灌一次,每次浇灌0.2 L,累计浇灌15次,每盆Cd施用量为45 mg。移栽45 d后,测定生长指标与根、叶柄和叶片Cd含量。计算相对生长量(relative growth yield,RGY)和转运系数(translocation factor,TF),并筛选出高、低Cd积累品种。分别对高、低Cd积累品种进行穴盘基育苗,14 d后采用华南农业大学叶菜类营养液配方进行营养液栽培,21 d后利用非损伤微测技术(non-invasive micro-test technology,NMT)测定根系分生区、伸长区和根毛区Cd2+离子流速。 【结果】 与非Cd胁迫相比,Cd胁迫使‘速生四季西芹王’、文图拉西芹’、‘四季小香芹’、‘实心香芹’、 ‘雪白芹菜’ 地下部受到显著抑制,对地上部无显著影响;Cd胁迫促进了 ‘四季小香芹’ 地上部生长;而 ‘种都金黄芹菜’、‘红芹’、‘鲍芹’ 地上部受到显著抑制,对地下部则无显著影响;‘马家沟芹菜’ 和 ‘速生香芹’ 地上部和地下部均生长均受到抑制。食用器官叶柄中Cd含量以 ‘种都金黄芹菜’ 和 ‘雪白芹菜’ 最高;‘速生香芹’ 和 ‘实心香芹’ 最低。地上部Cd含量高的 ‘种都金黄芹菜’ 和 ‘雪白芹菜’ 对Cd转运能力也最高;Cd含量低的 ‘速生香芹’ 对Cd转运能力也最低。在根系成熟区(根毛区),‘种都金黄芹菜’ 较 ‘速生香芹’ 有更高Cd2+ 离子流速。 【结论】 Cd胁迫下,芹菜不同品种生长、Cd吸收、转运和积累存在显著差异。‘四季小香芹’、‘速生四季西芹王’、‘文图拉芹菜’、‘实心香芹’ 和 ‘雪白芹菜’ 较为耐镉;而 ‘种都金黄芹菜’、‘红芹’、‘鲍芹’、‘马家沟芹菜’ 和 ‘速生香芹’ 对镉敏感。‘雪白芹菜’ 和 ‘种都金黄芹菜’ 为高Cd积累型,‘实心香芹’ 和 ‘速生香芹’ 为低Cd积累型,其中 ‘实心香芹’ 表现为低Cd含量和高生长量。高Cd积累型芹菜较低Cd积累型芹菜有更强Cd2+ 吸收能力和Cd转运能力,根部Cd2+ 流速可用于低积累品种的快速筛选。 相似文献
2.
采用旱地小区试验,研究了Cd污染土壤中甘薯吸收累积Cd的品种差异,探讨了甘薯吸收累积Cd的相关机理。结果表明,甘薯品种间不仅生物量差异较大,对Cd的吸收累积能力也不同,8个品种的地上部茎叶生物量(DW)在4 594.9-8 232.2 kg.hm^-2,鲜样Cd含量范围为0.032 9-0.057 4 mg.kg^-1;地下部块根生物量(DW)在7 809.0-14 269.7 kg.hm^-2,鲜样Cd含量范围为0.002 2-0.011 0 mg.kg^-1,茎叶Cd含量明显高于块根,但均未超过国家食品中污染物限值标准(GB 2762—2005)(根茎类蔬菜〈0.1 mg.kg^-1)。而与无公害蔬菜质量标准(GB 18406.1—2001)进行比较(〈0.05 mg.kg-1),有3个甘薯品种(心香、湘薯15、泉薯9号)的茎叶Cd含量超标。因此,轻度Cd污染土壤种植的甘薯其茎叶可能存在摄食健康风险,而块根基本无风险,若将Cd污染土壤改制种植甘薯,必须妥善处理其地上部茎叶。 相似文献
3.
The effects of transpiration rate on B uptake by roots and translocation to shoots of table beet ( Beta vulgaris L. cv. Red Ace) plants were studied under conditions of environmental control. Plants grown under high or low relative humidities (RH) had low or high rates of transpiration, respectively. Dry weights and B contents of shoots and roots were higher among plants grown at 80% RH and B concentrations of roots were lower compared to plants grown at 30% RH. Shoot B concentrations were not affected by RH. Rates of growth and B accumulation in shoots were closely correlated for plants grown in 30% or 80% RH. These parameters were not closely correlated in roots. The rate of B uptake per g root dry weight was greater in plants having higher transpiration rates; whereas the rate of B translocation to shoots per g dry weight was independent of transpiration rate. Thus we propose that B translocation to shoots is controlled mechanistically by rates of dry matter accumulation during stages of rapid growth, i.e. a sink effect. 相似文献
4.
Plants show different growth responses to N sources supplied with either NH 4+ or NO 3-. The uptake of different N sources also affects the rhizosphere pH and therefore the bioavailability of soil phosphorus, particularly in alkaline soils. The plant growth, P uptake, and P availability in the rhizosphere of oat ( Avena nuda L.) grown in hydroponics and in soil culture were investigated under supply with sole NH 4+-N, sole NO 3--N, or a combination. Sole NO 3--fed oat plants accumulated more biomass than sole NH 4+-fed ones. The highest biomass accumulation was observed when N was suppliedw ith both NH 4+-N and NO 3--N. Growth of the plant root increased with the proportion of NO 3- in the cultural medium. Better root growth and higher root/shoot ratio were consistently observed in NO 3--fed plants. However, root vigor was the highest when N was supplied with NO 3-+NH 4+. NH 4+ supply reduced the rhizosphere pH but did not affect P uptake by plants grown in soils with CaHPO 4 added as P source. No P deficiency was observed, and plant P concentrations were generally above 2 g kg -1. P uptake was increased when N was supplied partly or solely as NO 3--N, similarly as biomass accumulation. The results suggested that oat was an NO 3--preferring plant, and NO 3--N was essential for plant growth and the maintenance of root absorption capacity. N supply with NH 4+-N did not improve P nutrition, which was most likely due to the absence of P deficiency. 相似文献
5.
Heavy metal(HM) contamination in soils is an environmental issue worldwide that threatens the quality and safety of crops and human health. A greenhouse experiment was carried out to investigate the growth, mycorrhizal colonization, and Pb and Cd accumulation of pakchoi(Brassica chinensis L. cv. Suzhou) in response to inoculation with three arbuscular mycorrhizal(AM) fungi(AMF), Funneliformis mosseae, Glomus versiforme, and Rhizophagus intraradices, aimed at exploring how AMF inoculation affected safe crop production by altering plant-soil interaction. The symbiotic relationship was well established between pakchoi and three AMF inocula even under Pb or Cd stress, where the colonization rates in the roots ranged from 24.5% to 38.5%. Compared with the non-inoculated plants, the shoot biomass of the inoculated plants increased by 8.7%–22.1% and 9.2%–24.3% in Pb and Cd addition treatments, respectively. Both glomalin-related soil protein(GRSP) and polyphosphate concentrations reduced as Pb or Cd concentration increased. Arbuscular mycorrhizal fungi inoculation significantly enhanced total absorbed Pb and Cd(except for a few samples) and increased the distribution ratio(root/shoot) in pakchoi at each Pb or Cd addition level. However, the three inocula significantly decreased Pb concentration in pakchoi shoots by 20.6%–67.5% in Pb addition treatments, and significantly reduced Cd concentration in the shoots of pakchoi in the Cd addition treatments(14.3%–54.1%), compared to the non-inoculated plants.Concentrations of Pb and Cd in the shoots of inoculated pakchois were all below the allowable limits of Chinese Food Safety Standard.The translocation factor of Pb or Cd increased significantly with increasing Pb or Cd addition levels, while there was no significant difference among the three AMF inocula at each metal addition level. Meanwhile, compared with the non-inoculated plants, AMF inocula significantly increased soil p H, electrical conductivity, and Pb or Cd concentrations in soil organic matter in the soils at the highest Pb or Cd dose after harvest of pakchoi, whereas the proportion of bioavailable Pb or Cd fraction declined in the AMF inoculated soil. Our study provided the first evidence that AM fungi colonized the roots of pakchoi and indicated the potential application of AMF in the safe production of vegetables in Pb or Cd contaminated soils. 相似文献
6.
In soils, amino acids may be an important source of nitrogen for plants, at least in those where organic matter is not quickly degraded. The physiology of uptake of amino acids by roots was mainly studied in the 70's and 80's, before genes encoding amino acid importers were cloned in the 90's. While two families of amino acid transporters have been identified, yielding a total of about 100 genes, the role of each member is yet to be elucidated. As a tool for studying the role of amino acid transporters from Arabidopsis we set up a new hydroponic system suitable for radioisotope use. This system enables reproducible amino acid uptake by roots and estimation of the transport to the shoots of the amino acid taken up. We show that the rates of glutamine (Gln) uptake by wild‐type roots and transfer to the shoots were linear, and that other tested amino acids were translocated to the shoots with lower efficiency than Gln. A T‐DNA insertion mutant for a Gln exporter was compared to the wild‐type plants. Gln uptake and transfer were similar in both genotypes, showing that the suppression of the exporter did not affect uptake or transfer of amino acids to the shoots. The main advantage of the hydroponic system presented here is that all the materials used to grow Arabidopsis are virtually free and can therefore be discarded, a useful feature when working with radioactivity. 相似文献
7.
铁是植物正常生命活动过程中的必需微量元素之一。由于土壤中铁的有效性很低,导致植物极易缺铁,不仅影响作物的产量和品质,而且影响人类微量元素健康,因此如何通过生物强化达到人类铁营养状况改善的目的是目前该研究领域关注的热点。本文就近5年来植物铁吸收、体内转运、子粒中积累等重要生物过程的分子生理机制的研究进展进行了详细阐述,其中对水稻兼备机理I和机理II铁吸收机制有了新的认识,而且发现YSL蛋白家族在植物铁吸收、转运和子粒积累过程中的重要性。同时,讨论了利用上述机制的研究结果通过基因工程和农学措施改善植物铁营养和提高作物子粒铁富集的技术途径。 相似文献
8.
Heavy metal uptake, translocation and partitioning differ greatly among plant cultivars and plant parts. A pot experiment was conducted to determine the effect of cadmium (Cd) levels (0, 45 and 90 mg kg ?1 soil) on dry matter yield, and concentration, uptake and translocation of Cd, Fe, Zn, Mn and Cu in seven rice cultivars. Application of 45 mg Cd kg ?1 soil decreased root and shoot dry weight. On average, shoot and root Cd concentrations and uptake increased in all cultivars, but micronutrients uptake decreased following the application of 45 mg Cd kg ?1. No significant differences were observed between 45 and 90 mg kg ?1 Cd levels. On average, Cd treatments resulted in a decrease in Zn, Fe and Mn concentrations in shoots and Zn, Cu and Mn concentrations in roots. Differences were observed in Cd and micronutrient concentrations and uptake among rice cultivars. Translocation factor, defined as the shoot/root concentration ratio indicated that Cu and Fe contents in roots were higher than in shoots. The Mn concentration was much higher in shoots. Zinc concentrations were almost similar in the two organs of rice at 0 and 45 mg Cd kg ?1. A higher Cd level, however, led to a decrease in the Zn concentration in shoots. 相似文献
9.
The effects of aluminum on the uptake and translocation of N in two hybrid cultivars of sorghum with differential tolerance to aluminum were studied. Aluminum decreased the amount of N accumulated and the % of N in the aerial parts of the plants. In the roots the amount of N accumulated also decreased but the % of N increased, in both cultivars. Besides an effect on dry matter yield, Al probably reduces the uptake of N and its translocation to the aerial parts of the plant. Apparently, this impairment on N translocation resulted from Al effects on the root pressure. Aluminum not only reduced the amount of N translocated but also changed the sap composition. The % of NO3 ‐N decreased while the % of amino acid‐N increased suggesting an Al effect on N uptake and also on protein degradation. Asparagine and glutamine contributed about 80% of the free amino acid fraction; however, their proportions changed in presence of Al. Therefore, Al also interfered with the synthesis and/or interconversion of these amino acids. 相似文献
10.
Zinc (Zn) is an essential nutrient for human beings, and most Zn intake occurs through vegetables or cereals such as rice ( Oryza sativa L.) grains. Recently, we detected Zn as well as cadmium, which may be partitioned to rice grains, in the phloem saps from the uppermost internodes of rice and in the xylem saps from the cut stems at early grain-filling. To quantify Zn transport to the grains via the phloem and xylem, a mathematical model previously developed for cadmium transport to rice grains was applied. We examined the translocation of zinc into the grains of rice plants at early grain-filling by feeding zinc-65 ( 65Zn) via a root-bathing medium, through culm cuts above and below the flag-leaf nodes, and through the flag leaves. The estimate made using the mathematical model and experimental data for three types of 65Zn transport suggests that the grain Zn may be accumulated predominantly via the phloem through two means of transport, phloem transport of stored Zn from the leaves and, more importantly, xylem-to-phloem transfer at the nodes from Zn as it is being absorbed. The Zn transport via the phloem to the grains is more selective than that of cadmium, a non-nutrient element, as also evidenced by the greater transport of cadmium to the glumes via the xylem. 相似文献
11.
Jerusalem artichoke(Helianthus tuberosus L.) not just can be used for bioethanol production but may be potentially used in phytoremediation for the removal of heavy metal pollutants.Two Jerusalem artichoke cultivars,N2 and N5,were subjected to six cadmium(Cd) concentrations(0,5,25,50,100 and 200 mg L1) to investigate Cd tolerance and accumulation.After 21 days of growth,the effects of Cd on growth,chlorophyll content,net photosynthetic rate,intercellular CO2 concentration and malondialdehyde content were evaluated.Most growth parameters were reduced under Cd stress.The two Jerusalem artichoke cultivars had relatively high Cd tolerance and accumulation capacity(> 100 mg kg1),with N5 being more tolerant and having higher Cd accumulation than N2.Roots accumulated more Cd than stems and leaves.The bioconcentration factors(far higher than 1) and translocation factors(lower than 1) decreased with an increase in Cd applied.The results suggested that Jerusalem artichoke could be grown at relatively high Cd loads,and N5 could be an excellent candidate for phytoremediation of Cd-contaminated soils. 相似文献
|