首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The porosity of fibrous porous materials is an important factor to the thermal insulating performance of the material. This paper considers both the optimum porosity of uniform fibrous battings and the optimum distribution of the porosity of non-uniform fibrous battings for thermal insulation. The former was determined by an approximate analytical solution and a numerical simulation by using finite volume method, and the latter was studied by applying simulated annealing method. The study showed that the optimum porosity of uniform fibrous porous materials is very much dependent on fiber emissivity, and fiber radius, but little influenced by the temperature difference of the boundaries. For non-uniform fibrous materials, there can be an optimum distribution of porosity, which can be predicted by applying the simulated annealing method.  相似文献   

2.
Ultra porous and flexible PET/Aerogel blankets were prepared at ambient pressure, and their acoustic and thermal insulation properties were characterized. Two methods were selected for the preparation of PET/Aerogel blanket. Method I was a direct gelation of silica on PET. PET non-woven fabric was dipped and swelled in TEOS/ethanol mixture, and pH of reaction media was controlled to 2.5 using HCl to promote hydrolysis. After acid hydrolysis, pH was controlled to 7,8,9, and 10 with NH4OH for the condensation. Method II was by the dipping of PET non-woven fabric in the dispersion of Silica hydrogel. The gelation process was same with Method I. However, PET fabric was not dipped in reaction media. After the hydrogel was dispersed and aged in EtOH for 24 hrs, then, PET non-woven fabric was dipped in the dispersion of hydrogel/EtOH for 24 hrs. The surface modification was carried out in TMCS/n-hexane solution, then the blanket was washed with nhexane and dried at room temperature to prevent the shrinkage. The silica areogels synthesized in optimum conditions exhibit porous network structure. Silica aerogel of highly homogeneous and smallest spherical particle clusters with pores was prepared by gelation process at pH 7. When direct gelation of silica was performed in PET nonwoven matrix (Method I), silica aerogel clusters were formed efficiently surrounding PET fibers forming network structure. The existence of a great amount of silica aerogel of more homogeneous and smaller size in the cell wall material has positive effect on the sound absorption and thermal insulation.  相似文献   

3.
In this study, fire-retardant polyester fibers (FRPFs), which are hollow and have a 3D-crimp shape, were processed using nonwoven manufacturing technology to create fire-retardant fibrous material. The content of low-T m fibers (10, 20, 30, 40, 50 %) and number of layers of loose nonwoven sheet (1, 2, 3, 4, 5 layers) were changed to determine tensile strength and elongation, thermal conductivity, air permeability and the limiting oxygen index. The purposes of this study are to develop a manufacturing procedure for convenient installation of thermal insulation material and improve the application of fiber materials in thermal insulation. Experimental results demonstrate that, due to the loose nonwoven sheet combined with needle punching nonwoven sheets, tensile strength FRPFs increased to 100 %. The contents of the polyester low-melting-temperature fiber and the number of combined layers affected thermal conductivity results. In the test for the limit oxygen index, the optimal sample was manufactured using 7.78 dtex FRPFs, 10 % PET low-melting-temperature fiber and 5 layers of loose nonwoven sheet. The limit oxygen index is 35.  相似文献   

4.
Odour formation in the textile is a serious and embarrassing problem for an individual. The axilla born bacterial species are noted as the main reason for odour formation in axilla. In this research an attempt has been made to identify the odour generating compounds on the textile material after wear trial using gas chromatography and mass spectrum (GC-MS). The result indicates that the worn textile material consisted steroidal fractions of 5a-androst-16-ene-3-one and cholesterol, the major odour forming source from axilla. The results also identified the other important odour forming fatty acids and alcohols like lauric acids, diethyl esters of 1,2-benzenedicarboxylic acid, methyl esters of tetradecanoic acid, 3- methylhexanoic acid, Tetradecanol and acetic acid in axilla worn textile. These components were the derivatives of axilla specific odourous components like phthalic acid, myristic acid, isobutric acid and alcohols. The effect of Terminalia chebula extract finish on the odour formation also analysed and the results shows a considerable reduction in odour causing short chain volatile fatty acids (VFAs) in the worn textile compare to the untreated textile. The analysis also identified more amounts of active components of Terminalia chebula on the fabric surface instead of the odourous components from axilla.  相似文献   

5.
Zirconium carbide (ZrC) films are deposited onto polyester fabric through magnetron sputtering. The deposited films are then examined by using field scanning electron microscopy and energy dispersive X-ray spectroscopy. The photothermal conversion property, film thickness, infrared reflectance and transmittance, and thermal conductivity are also evaluated. The results show that the highest far-infrared emissivity of polyester fabric deposited with ZrC is 0.9379. The ZrC deposited samples showed a small increase in thermal conductivity with a difference of 0.0611W/m·K, and a higher photothermal conversion efficiency with a temperature increase of 27.5 °C in 100 s, when the thickness of the ZrC film is 1920 nm. These therefore indicate that coating fabrics with ZrC through magnetron sputtering is an environmentally friendly means to produce textiles with photo-thermal conversion and heat insulation properties.  相似文献   

6.
A fibrous composite membrane consisting of a chitosan (CS) barrier layer and a poly(hydroxybutyrate-cohydroxyvalerate) (PHBV) fibrous substrate was manufactured as a filter for water purification. The PHBV fibrous supporting layer was fabricated via electrospinning technique, and then the CS solution cast on the PHBV fibers to form the top barrier layer. The structural morphology, mechanical property and adsorption capability of the PHBV/CS membranes were thoroughly investigated. Three heavy metal ions were used to evaluate the equilibrium absorption capacities of the chosen membranes. The equilibrium absorption capacities for Cu(II), Pb(II) and Cd(II) were 64.08 mg/g, 90.32 mg/g and 148.96 mg/ g, respectively. Meanwhile, the rejection ratio of PHBV/CS composite membrane for two disperse dyes could reach to 99 %. The results indicated that PHBV fibrous substrate could not only enhance the mechanical strength of the top barrier layer, but also improve the water permeation of the membrane. This study extended the application of an environmentally friendly material in the water purification without causing much trouble about scrap film.  相似文献   

7.
The thermal characteristics of hollow polyester fibers were compared with solid polyester fibers in order to study their processing behavior and performance characteristics. The effects of different processing and structural properties including fiber diameter, bulk density of layer, and surface pressure on layers of needle-punched nonwoven fabrics with hollow fibers on thermal resistance properties were also investigated. The results show that hollow fibers have a higher thermal resistance in comparison with solid ones. This is a consequence of air trapping inside the fibers, higher bulkiness, and higher surface area of hollow fibers. Furthermore, thermal resistance of microfibers is better than those of macrofibers in both hollow and solid fibers. The thermal resistance of nonwoven subjected to this study, have an inverted-U-shaped pattern versus the bulk density of the fabric. The results also showed that thermal resistance of needle-punched nonwoven fabrics can be affected by the range of heater temperature during the test, however considerably can be affected by fabric thickness as a main structural property of nonwoven fabrics.  相似文献   

8.
The present paper reports the development of novel braided structures using polyamide 6.6 fibers for application as artificial anterior cruciate ligaments (ACLs). The developed structures were circular braids, axially reinforced with either a number of core yarns or braided structures. Tensile behavior of these structures was characterized and the effects of number of axial yarns or braids and, the number of yarns used in the axial braids were thoroughly investigated. From the experimental results, it was observed that the braided structures with axial braids could mimic the load-elongation behaviour of native ACL. The average breaking extension and strain at toe region were 30 % and 4.3 % respectively, which are in the range of native ACLs. The maximum breaking force and stiffness achieved with 7 axial braids, each produced using 6 yarns were 274 N and 13.5 N/mm respectively and, both breaking force and stiffess showed linear increase with the number of axial braids as well as number of yarns used in the axial braids. Therefore, it is possible to design an artificial graft using these novel braided sturctures with mechanical properties similar to that of native ACLs, through adjustment of these structural parameters, as these braided structures have much smaller diameter (0.5 mm) than native ACLs (11 mm).  相似文献   

9.
An investigation was made of the effect of basic spinning process parameters on the structure and properties of butyric-acetate copolymer of chitin (BOC) fibres. It was found that, considering the resulting tenacity of 20.3 cN/tex simultaneously with high water sorption and retention properties, it is favourable for the BOC fibre spinning process to be carried out with 1 % HAp or TCP nanoadditive. Furthermore, when 3 % of the HAp or TCP nanoadditive is incorporated into the BOC fibre material, no significant changes in the crystal structure occur compared with fibres without the nanoadditives, formed in similar conditions. Analysis of the porous structure and the properties of the surface of BOC fibres with HAp or TCP nanoadditive shows that the parameters are favourable for their medical application.  相似文献   

10.
The aim of this paper is to develop a green composite using only flax fiber material for thermal insulations and sound absorbing using flax-tows and thus enhance the less noble part of the flax plant. The Lin-K process is a simple patented manufacturing process used to develop these self-linked materials. Thermal conductivity, absorbing acoustic coefficient, hydric properties and the effect of several parameters on these performances are reviewed. The use of fine flax-tows leads to extract more organic substances of the inner fibers during the microwave treatment which improves the mechanical performances and reduces the thermal conductivities of these materials. The environment has very significant effects on thermal stability and durability of these materials.  相似文献   

11.
Novel composite nanofibrous materials of poly(vinylidene fluoride) (PVDF) or poly(vinylidene fluoride-cohexafluoropropylene) (PVDF-HFP) and ZnO nanoparticles were prepared by conjunction of electrospinning and electrospraying techniques. Simultaneous electrospinning of concentrated solution of PVDF or PVDF-HFP and electrospraying of suspension of ZnO in diluted PVDF or PVDF-HFP solution enable the preparation of materials consisting of fibers on which ZnO was deposited on the fibers’ surface (design type “on”). These fibrous materials were compared with materials consisting of PVDF or PVDF-HFP fibers in which ZnO was incorporated in the fibers (design type “in”) and which were obtained by one-pot electrospinning of a suspension of ZnO nanoparticles in concentrated PVDF or PVDF-HFP solution. The fiber morphology and the presence of ZnO “in” or “on” the fibers were observed by scanning electron microscopy (SEM) and by transmission electron microscopy (TEM). The effect of the used technique on the type, size and shape of the obtained structures was discussed. The fibrous mats were studied by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), X-ray diffraction (XRD), contact angle measurements and mechanical tests as well. It was found that the decoration of fibers with ZnO resulted in increase of their thermal stability and hydrophobicity. The microbiological tests showed that the materials of design type “on” possessed strong antibacterial activity against the pathogenic microorganism Staphylococcus aureus. The results suggest that, due to their antibacterial activity, the obtained composite materials are suitable for wound dressing applications.  相似文献   

12.
通过对多处麻田的定点观测和取样测定,分析了栽培大麻的主要土壤类型和土壤条件,明确了影响大麻纤维产量和品质的主要土壤理化因素及相关程度.  相似文献   

13.
Cell sheet technology is a unique technique in tissue engineering where cell sheets are generated from thermoresponsive substrates, by simple variation of temperature. Though the cell sheets have intact cell-cell and cell-extra cellular matrix junctions, the transfer of large sheets needs a carrier or transfer tool to prevent it from rolling and folding. In this study polycaprolactone electrospun mats with porous fibers (PPCL) functionalized with thrombin is proposed as a cell sheet transfer tool. The biofunctionalised mats were evaluated for cytocompatibility and analyzed for its efficiency to form a clot when exposed to blood plasma. This property was utilized to use the mats for cell sheet engineering. The efficacy of the biofunctionalised mat as a carrier was successfully demonstrated in the transfers of human lung epithelial and mouse fibroblast cell sheets generated from a thermoresponsive N-Isopropylacrylamide-co-Glycidylmethacrylate substrates. The clot acts like a sacrificial adhesive between the cells and the mat making the later to be used as a carrier tool in cell sheet engineering.  相似文献   

14.
The generation and development of thermal convection based on inhomogeneous water surface cooling were examined by hydraulic and numerical experiments to examine the characteristics of thermal convection in a closed water body with aquatic plants. A visualization experiment revealed the structural characteristics of a whirlpool when thermal convection was generated quantitatively by using PIV analysis. Then, a water temperature measurement experiment demonstrated that a steady cold water mass generated based on the heat flux transport from the water surface increases. This explained each of the three stages in the convection development process. Moreover, aquatic plants, which grow thickly on the water surface, cause not only vertical but also horizontal flows based on the density difference with the water surface that is not covered by plants, and thus change the development process of the convection cell.  相似文献   

15.
16.
通过对多处麻田的定点观测和取样测定 ,分析了栽培大麻的主要土壤类型和土壤条件 ,明确了影响大麻纤维产量和品质的主要土壤理化因素及相关程度。  相似文献   

17.
The ultrafine composite fibers consisting of lauric acid (LA) and polyamide 6 (PA6) as form-stable phase change materials (PCMs), were prepared successfully by electrospinning. The effect of carbon nanotubes (CNTs) on the structural morphology, phase change behaviors, thermal stability, flammability and thermal conductivity properties of electrospun LA/PA6 composite fibers was investigated by field-emission scanning electron microscopy (FE-SEM), differential scanning calorimetry (DSC), thermogravimetric analyses (TGA), microscale combustion calorimeter (MCC) and melting/freezing times measurements, respectively. SEM observations indicated that the LA/PA6 and LA/PA6/CNTs composite fibers possessed flat and ribbon-shaped morphologies, but the neat PA6 fibers had cylindrical shape with smooth surface; and the average fiber diameters for LA/PA6 composite fibers decreased generally with the addition of CNTs. DSC measurements indicated that the heat enthalpies of the composite fibers were lower that that of neat LA powders, while the amounts of CNTs had no appreciable effect on the phase change temperatures and heat enthalpies of the composite fibers. TGA results showed that the addition of CNTs increased the onset thermal degradation temperature, maximum weight loss temperature and charred residue at 700 °C of the composite fibers, attributed to the improved thermal stability properties. It could be found from MCC tests that there were two-step combustion processes for composite fibers, and corresponded respectively to combustion of LA and polymer chains (PA6) in composite fibers. The addition of CNTs reduced the peak of heat release rate (PHRR) of electrospun composite fibers, contributing to the decreased flammability properties. The improved thermal conductivity performances of LA/PA6/CNTs composite fibers was also confirmed by comparing the melting/freezing times of LA/PA6 composite fibers with that of neat LA powders. The results from the SEM observation showed that the composite fibers had no appreciable variations in shape and diameter after heating/cooling processes.  相似文献   

18.
Accurate modeling of fibrous filter pressure drop and particle capture/loading behavior includes many phenomena, including partial-to-full slip flow at fiber boundaries, random fiber location and orientation, particle/fiber and particle/particle adhesion and bouncing. Filter media fibers are usually joined together by binders which form significant percentages of the solid material in the media. Complete simulation of media geometry would be three-dimensional (3-D). However, complex 3-D geometries in computational fluid dynamics (CFD) demand powerful computing resources, and hence have been limited to a few fibers. Studies using 2-Dimensional (2D) models were effective in predicting media airflow resistance and particle capture for simple geometries. More realistic 2-D simulations reflecting the random diameter distribution and positioning of fibers with appropriate local boundary conditions should allow still better predictions. To this end we measured the geometric properties of three glass fiber media. 2-D models of fibers with binder links were developed. Statistical fiber diameter distributions were evaluated to determine which provided closer agreement with the measured fiber diameter distributions under the geometric constraints present. For the high standard deviations of fiber diameters present in these media, the number of fibers needed for valid statistics is rather large, which means that complete 3-D simulations are probably not practical.  相似文献   

19.
To develop waterproof breathable materials for diverse consumer applications, we used electrospinning to fabricate layered fabric systems with varying composite structures. Specifically, we developed layered fabric structures based on electrospun nanofiber webs with different levels of nanofiber web density, as well as different substrates and layer structures, and then examined the breathability and waterproofness of the material. The breathability and waterproofness of the layered fabric systems were compared with those of traditional waterproof breathable fabrics, including densely woven fabric, microporous membrane laminated fabric, and hydrophilic nonporous polyurethane coated fabric. Different breathability and barrier performance levels were achieved by varying the layer structure and substrates in the electrospun nanofiber web layered fabric systems. The uniformity of the nanofiber web and lamination process also affected the barrier and comfort performances. The comparison of waterproofness and breathability performances between the new materials and the traditional waterproof breathable materials revealed that the layered structures based on electrospun nanofiber webs provide a higher level of resistance to water penetration than densely woven fabrics and a higher degree of moisture vapor and air permeability than microporous membrane laminates and coated fabrics, with a proper selection of layer structure, substrate fabric, and lamination process.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号