首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hydrophilic and flexible polyurethane foams were prepared using sodium alginate as a polyol, and characterized by optical microscopy, FT-IR spectroscopy, density measurements, volume swelling, and water absorbency. Optical microscopy revealed that the resulting cells were closed with round and elongated shapes. FT-IR confirmed that the urethane linkages were formed between the isocyanate and sodium-alginate. As an indirect measurement of porosity, the apparent density indicated an initial decrease followed by an increase with increasing glycerin content. The volume-swelling ratio was initially constant, followed by a gradual decrease with glycerin content. The volume swelling ratio increased with PEG molecular weight. The water absorbency initially increased, followed by a decrease with increasing glycerin content. The correlation-ships between water absorbency, density, and volume-swelling ratio indicated that the absorbency was predominantly influenced by density when the PEG molecular weight was low and was greatly affected by the volume-swelling ratio when the PEG molecular weight was relatively high.  相似文献   

2.
In this study, rigid polyurethane foams were prepared using starch as the main component of polyols and their structural, thermal, and mechanical properties were investigated. The starch content in polyols was 30∼50 wt.%. The prepared polyurethane foams had a cell structure. When the starch content and -NCO/-OH molar ratio (TS4-05, TS3-07, and TS3-05) was low, polyurethane foams were not formed. To confirm the formation of a urethane linkage between -OH of the starch and -NCO of the 2,4-TDI, FT-IR spectroscopic analysis was performed. The thermal properties of polyurethane foams were analyzed by DSC and TGA. DSC thermograms showed two endothermic peaks: a sharp peak at a lower temperature and a broad peak at a higher temperature. Both peaks were shifted to higher temperature with starch content in polyols and -NCO/-OH molar ratio. Thermal degradation of polyurethane foams began at a lower temperature and ended at a higher temperature than that of starch. The impact resistance, compressive stress and modulus of polyurethane foams increased with -NCO/-OH molar ratio and starch content.  相似文献   

3.
In this study, polyurethane foams (PUF) were prepared using alginic acid, glycerin, and poly(ethylene glycol) (PEG) as polyols, 1,6-hexamethylene diisocyanate (HDI) as a diisocyanate, and water as a foaming agent by one-shot process. Their structura, mechanical, and water-absorbing properties were investigated. The amount of alginic acid was varied up to 30 wt%. Fourier transform infrared (FT-IR) analysis showed that urethane linkage was formed by the reactions between −NCO groups of diisocyanate and −OH groups of all polyols used. Also urea linkage was formed by the reactions between −NCO groups of HDI and water or −COO groups of alginic acid. The reaction times for cream forming increased with increasing alginic acid but foam structures were not formed when alginic acid content in polyols was above 30 wt%. The optical micrographs showed that the average cell size of PUF slightly increased with increasing alginic acid. However, the density of PUF decreased with alginic acid content. The compressive modulus of PUF decreased with increasing alginic acid content. In the mean time, the water absorbency of PUF increased with increasing alginic acid content.  相似文献   

4.
In this study, polyurethane films were prepared using starch as the main polyol component, and the mechanical properties of these films were investigated. The starch content of the polyols was 30–50 wt%. To confirm the formation of a urethane linkage between the −OH of starch and −NCO of toluene 2,4-diisocyanate, Fourier transform infrared (FT-IR) spectroscopic analysis was performed. Differential scanning calorimetry (DSC) thermograms of the polyurethanes resulted in two endothermic peaks, which shifted to higher temperatures with increasing starch content and −NCO/−OH molar ratio. Due to the melting behavior of polyurethane, films could be prepared by hot pressing at an appropriate temperature. Polyurethane films were prepared with various polyol starch content and −NCO/−OH molar ratios. Tensile testing indicated that the breaking stress and elastic modulus increased significantly with starch content and −NCO/−OH molar ratio. In addition, bending tests indicated an increase in breaking stress and bending modulus with starch content and −NCO/−OH molar ratio and decreased breaking strain. The strain rate in both tensile and bending tests had a significant effect on the mechanical properties.  相似文献   

5.
FTIR-ATR (Fourier Transform Infrared Spectroscopy working in the mode of Attenuated Total Reflectance) was applied to study the formation of lignin-based polyurethanes. Although some studies related to the use of lignin in polyurethane synthesis, are available in literature, still persist a gap for a systematic study of this kind of systems, involving the measurement of kinetic data, modelling and optimization of the polymerization process. The present methodology allows the test of different formulations at a scale of 3–5 g, considering several process variables: temperature, NCO/OH ratio, type and average molecular weight of the polyol, type of isocyanate, type and weight content of lignin.This work aims to describe the methodology used to perform the FTIR experiments by presenting a case study. The polyurethane samples have been prepared starting with 4,4′-methylene-diphenylene isocyanate (MDI), policaprolactonediol (PCL) of three different average molecular weights (1000, 750 and 400) and a commercial lignin (Indulin AT from Meadwestvaco) at different weight contents (10, 15, 20 and 25%). The results obtained in this work point out for the validation of the proposed experimental technique and confirm that lignin was incorporated in the final three-component polyurethane sample by chemical reaction with isocyanates, i.e., formation of urethane linkages.  相似文献   

6.
Abstact  The thermal and mechanical properties of castor oil/polycaprolactone-based polyurethane (CPU) films and polyurethane biocomposites reinforced with hemp fibers (HCPU) were investigated. Although similar films can be synthesized from petroleum, the main interest in studying these biomass-based composites is based on the fact that both fiber and matrix are derived from renewable resources. In this study, castor oil was used as a polyol for polyurethane films and hemp fiber was used to reinforce the biocomposites. To control the mechanical properties of CPU and HCPU, polycaprolactone diol (PCL) was added to the polyol mixture. Varying the mixing ratio of castor oil and PCL, the thermal and mechanical properties of the CPU and HCPU samples were investigated by using FT-IR, DSC, DMTA, Minimat, and SEM. In an attempt to improve interfacial adhesion between the fiber and matrix biocomposites, hemp fiber was reacted with MDI. FE-SEM micrographs showed that the surface of the hemp fiber became smoother after reaction with MDI. Urethane bonding formation was confirmed by FT-IR.  相似文献   

7.
Recycled polyols from waste polyurethane (PU) foams were grafted onto PU to improve the properties such as tensile strength, shape recovery, low-temperature flexibility, and water compatibility. The recycled polyol was either purified by column chromatography before grafting or was used directly for grafting. The soft segment melting temperature of PU did not notably increase with the addition of polyol, whereas the glass transition temperature increased with increased polyol content. The tensile strength sharply increased at low polyol content and decreased at high polyol content, while the strain at break did not significantly change with an increase in polyol content. The shape recovery at 10 oC notably improved compared with unmodified PU and remained high after four cyclic tests. Polyol-grafted PU demonstrated better lowtemperature flexibility and reduced the water vapor permeability of PU membranes. Overall, grafting recycled polyol onto PU significantly improved the tensile stress, shape recovery, and low-temperature flexibility of PU.  相似文献   

8.
Polylactides (PLAs) are a type of environmental friendly material. PLA fabrics feature excellent performance in terms of texture, comfort, curling effect, crystallinity, and transparency. However, because of its aliphatic polyester structure, PLA is relatively fragile as compared with the commercially available products like PET or Nylon. This study adopted water-based polyurethane (PU) to modify the surface of PLA fabrics, thereby enhancing the fabrics’ mechanical properties. Various polyols such as polytetrahydrofuran (PTMG), polycaprolactone diol (PCL), and polycarbonates diol (PC) were used and various NCO/OH molar ratios were designed in this study. As the PLA fabric was processed by dipping in various PU dispersions, it was found that the breaking strength of the fabric was increased, while its elongation at breakage decreased. Particularly, the breaking strength of the fabric modified by PUD50PC containing 50 weight percent of PC and two other polyols was the most prominent showing an 80 % increase in strength. Furthermore, the abrasion resistance of the PUD50PC-modified PLA fabric showed a roughly 6 times increase as compared to the plain PLA fabric. SEM images also reveal that after processing with water-based PU, the PLA fibers are bonded tightly with the water-based PU molecules to increase the breaking strength of the PLA fabrics.  相似文献   

9.
Softwood kraft lignin (SKL)-based water-blown flexible polyurethane foams were prepared using SKL as a crosslinking agent and a hard segment polyol. Polyethylene glycol (PEG) as a soft segment diol and 2,4-toluene diisocyanate (TDI) were used. While increasing hard segment content caused the increase in crosslink density in foams, the foams became more and more viscous with increasing hard segment content due to the distinctive phase heterogeneity in foams. In this case, the contributiveness of the filler-like behaviors of separated hard segments always overtook the crosslinking effects derived from SKL in terms of overall viscoelasticity, thus the resultant viscometric properties such as tanδ max and hysteresis loss increased as hard segment content increased. Furthermore, increasing M n,PEG caused the severer microphase separation and intensified the filler effects in foams, thus the foams became more viscous with increasing M n,PEG. The 25 % and 65 % CFD values and Young’s moduli of foams increased with increasing hard segment content due to the increase in crosslink density for foams, and the properties also increased with increasing foam density. Most of foams showed the support factors in the range of 2–3, which are suitable values for cushioning use. Even though the microscopic deformation behaviors in foams are irrelevant to foam density, the cyclic compressive tests showed that the higher foam density possess the better shape recovery performances.  相似文献   

10.
In the present work, polyamide6-room temperature ionic liquid (PA6-RTIL) composite nanofibers and membranes were successfully prepared for the first time by an electrospinning technique. The surface morphology, component analysis, mechanical properties, thermal properties and conductivity of the PA6-RTIL composite membranes were investigated by field-emission scanning electron microscope (FE-SEM), fourier transform infrared spectrometer (FT-IR), tensile testing, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and digit multimeter, respectively. The morphology, fiber diameter, mechanical strength of the obtained fibers can be controlled by changing experimental parameters for electrospinning, especially the content of RTIL in original electrospun mixture solution. The composite fibrous membranes showed ideal mechanical properties and significantly enhanced conductivity, which may be attributed to intrinsic high mechanical strength of PA6 and conductivity of RTIL.  相似文献   

11.
In the present work polyurethane foams containing variable concentrations of nano-sized clay and esparto wool were prepared and studied, with the objective of developing new multi-scalar rigid foams. The addition of montmorillonite clay favoured foaming and the formation of finer and homogeneous cellular structures, resulting in foams with compressive elastic moduli and collapse stresses lower than that of the polyurethane foams. Nevertheless, a comparative analysis versus the foams’ relative density demonstrated that both properties follow one single trend for the two materials. The combination of esparto and montmorillonite further reduced the cell size of foams, at the same time promoting higher open cell contents, resulting in the foams with the lowest mechanical properties. Although no important differences in thermal conductivity were found with adding montmorillonite, its value decreasing with reducing the relative density, the incorporation of esparto led to higher thermal conductivities, independently of the relative density. The combination of esparto and montmorillonite resulted in foams with thermal conductivities halfway between the esparto-reinforced and the montmorillonite-reinforced foams, related to a higher open cell content.  相似文献   

12.
Nanocomposites of polyurethane (PU) and multi-walled carbon nanotubes (MWNTs) were prepared via in-situ polymerization of poly(ɛ-caprolactone)diol (PCL)-grafted-MWNTs, 4,4′-methylene bis(phenyl isocyanate), and 1,4-butanediol. The grafting of PCL onto MWNTs was confirmed by Fourier transform infrared (FT-IR) spectroscopy and transmission electron microscopy (TEM). The nanocomposites showed more improved mechanical properties compared to conventional nanocomposites with the same MWNT loading. The thermo-responsive shape recovery as measured in a cyclic tensile test was observed to be approximately 80 % for in-situ nanocomposites, though it showed a reduced trend as the wt% of MWNTs increased. X-ray diffraction investigation also showed that the addition of MWNTs into the polyurethane increased the crystallinity. Scanning electron microscopy and TEM measurements showed better dispersion of MWNTs in the nanocomposites synthesized using in-situ method. Consequently, the presence of PCL-g-MWNTs made an important contribution to the enhancement of the mechanical and shape memory properties of polyurethane.  相似文献   

13.
The shape memory polyurethane (PU) copolymers cross-linked by celite, a porous inorganic material with enormous surface area and hydroxyl groups on the surface, were prepared to see if the shape memory effect and the mechanical properties were improved. The PU copolymers with different celite contents were compared and characterized by IR, DSC, DMA, and UTM. The melting temperatures of PU soft segment were around 20 oC independent of celite content. The shape memory effect and mechanical properties were dependent on the celite content, and the celite addition into the reaction mixture should be made in the middle of polymerization to get the best shape memory and mechanical properties. The best mechanical properties were found at 0.2 wt% celite content and its shape retention rate went up to 98 %. The inclusion of celite as a cross-linker increased both shape memory effect and mechanical properties. The reasons underlining the improvements by adopting celite as a cross-linker are discussed in this paper.  相似文献   

14.
Herein, a biodegradable and biocompatible composite comprising of support membrane based on crosslinked PVA/PEG film and curcumin loaded electrospun poly(lactic acid) (PLA) nanofiber mat is introduced. The membrane film was prepared from PVA/PEG blend followed by crosslinking with an optimum amount of citric acid, 15 wt.%. After then, PLA solutions with different curcumin content, 0-11 wt.%, were electrospinned on the prepared membrane substrate. The prepared film showed high water absorption, water vapor transmission rate and superior mechanical properties with improved elastic modulus, tensile strength and with an elongation of around 320 % with respect to the non-crosslinked one. Also, the scanning electron microscopy was revealed uniformly dispersed pores throughout the membrane film with a nearly narrow in size distribution centered at 36 μm. As well, a nanostructure porous morphology was found for the electrospun fibrous curcumin loaded PLA from the scanning electron microscopy micrographs and the average fiber diameter was decreased with curcumin content. In vitro drug release from the prepared flexible composite into the vertical diffusion cell was recorded by the measuring curcuminoids content using high performance liquid chromatography and drug release kinetic evaluations were revealed that the release pattern of all prepared samples, containing different content of curcumin, well fitted to the Higuchi’s model signifying diffusion-controlled release mechanism. As well, the determined release rate at the second release stages, i.e. steady state flux (J), was varied from 0.31 to 43.53 μg·cm-2·h-1 with increasing drug content from 1 to 11 wt.%. Regarding this results, this flexible composite by providing the moist environment along with miraculous healing properties of curcumin, can be potential candidate for transdermal drug delivery.  相似文献   

15.
This paper investigated the performance and morphology of ramie fibers degummed using Fenton reagent. In order to deeply understand the reaction characteristics, SEM, XRD and FT-IR were employed to characterize the morphologies, chemical components and crystallinity of degummed fibers. Also, the physical and mechanical properties such as tenacity, breaking elongation, density, softness and degree of polymerization of degummed fibers were measured. The experimental results indicated that Fenton can serve as an effective oxidation degumming agent under weak acid condition. The new degumming method could remove more gummy components from raw ramie, whereas the cellulose content in treated fibers was further increased compared with the alkaline oxidation degumming. The fibers degummed using Fenton showed slight increase in tenacity and significant increase in density as well as breaking elongation comparing with alkaline oxidation degumming. The degummed fibers were also characterized in terms of SEM, XRD and FTIR which confirmed the effectiveness of the new degumming method.  相似文献   

16.
Polyethylene terephthalate (PET)/biomedical polyurethane (BPU) composite nanofibers with modulated mechanical properties are electrospun by varying the weight ratios of PET and BPU polymers in the mixture. The effect of BPU content on the morphology, porosity, thermal properties, and crystalline structures are systematically investigated. It is shown that uniform PET/BPU nanofibers can be formed through optimization. When the content of BPU is low (0?C7 %), better elongation of the nanofibrous mats is obtained with the increase of BPU content, whereas further increasing the BPU polymer (up to 15 %) results in a decreased breaking elongation as well as the mechanical strength of composites. The formed nanofibrous mats may find potential applications in tissue engineering and vascular graft.  相似文献   

17.
In order to improve the water swelling, thermal/mechanical and adhesion properties of waterborne polyurethane (WBPU), a series of the crosslinkable WBPUs containing hydrophilic ionic component, dimethylol propionic acid (20 mole%), were prepared by in-situ polymerization using a cross-linker hexakis (methoxymethyl) melamine (HMMM). Effects of the HMMM content (2, 4, and 6 wt%) and curing temperature on these properties of the crosslinked WBPUs samples were investigated. All properties were found to increase with increasing HMMM content. It was found that the optimum curing temperature of the WBPU films and adhesives was near 120°C, which was not dependent on the HMMM content.  相似文献   

18.
This research focused on the improvement of the physical properties of biopolyurethane (BPU) using cellulose nanowhisker (CNW). For the study, BPU was synthesized by one-shot polymerization from corn sugar-based polyol and methylene diiscocyanate (MDI). CNW was prepared via conventional acid hydrolysis of pulp using sulfuric acid. The synthesized BPU was mixed with the CNW and then electrospun. The addition of CNW improved simultaneously the hydrophilicity and the mechanical properties of BPU. The improved properties will give more opportunity to BPU for medical applications.  相似文献   

19.
We prepared a series of polyurethane(PU)/chitosan composite foams with different chitosan content of 5∼20 wt% and investigated their adsorption performance of acid dye (Acid Violet 48) in aqueous solutions with various dye concentrations and pH values. It was observed that PU/chitosan composite foams exhibited well-developed open cell structures. Dye adsorption capacities of the composite foams increased with the increment of chitosan content in composite foams, because amine groups of chitosan serve as the binding sites for sulfonic ions of acid dyes in aqueous solutions. In addition, dye adsorption capacities of composite foams were found to increase with decreasing the pH value, which stems from the fact that the enhanced chemisorption between protonated amine groups of chitosan and sulfonic ions of acid dye is available in acidic solutions. The dye adsoption kinetics and equilibrium isotherm of the composite foams were well described with the pseudo-second order kinetic model and Langmuir isotherm model, respectively. The maximum adsorption capacity (q max) for the PU/chitosan composite foams with 20 wt% chitosan content is evaluated to be ca. 30 mg/g.  相似文献   

20.
The prepolymer and the final polyurethane (PU) block copolymer were synthesized by reacting 4,4-methylene bis(phenylisocyanate) with poly(tetramethylene glycol) and the prepolymer with 1,4-butanediol as a chain extender, respectively, to investigate the relation between phase separation and it’s resulting properties. According to FT-IR data, the phase separation of hard and soft segments in the prepolymer and the PU block copolymer grew bigger by increasing the hard segment content, and the PU showed more dominant phase separation than the prepolymer. The heat of fusion due to soft segments decreased in both the prepolymer and the PU by increasing the hard segment content, whereas the heat of fusion due to hard segments increased in the PU did not appear in the prepolymers. The breaking stress and modulus of the prepolymer increased by increasing the hard segment content, and the elongation at break decreased gradually, and the PU showed the highest breaking stress and modulus at 58 % hard segment content. However, the best shape recovery of the PU was obtained at 47 % hard segment content due to the existence of proper interaction among the hard segments for shape memory effect. Consequently, the mechanical properties and shape memory effect of the PU were influenced by the degree of phase separation, depending on the incorporation of chain extender as well as the hard segment content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号