首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The tensile-recoil compressional behavior of the carbon nanotube reinforced mesophase pitch (MP)-based composite carbon fibers (CNT-re-MP CFs) was investigated by using Instron and SEM. The CNT-re-MP CFs exhibited improved, or at least equivalent, compressive strength as compared with commercial MP-based carbon fibers. Particularly, when CNT of 0.1 wt% was reinforced, the ratios of recoil compressive strengths to tensile strength of CNT-re-MPCFs were much higher (the difference is at least 10% or higher) than those for the commercial counterparts and even than those for PAN-based commercial carbon fibers. FESEM micrographs showed somewhat different fractography from that of a typical shear failure as the CNT content increased.  相似文献   

2.
A study on the tensile and flexural properties of jute-glass-carbon fibers reinforced epoxy hybrid composites in inter-ply configuration is presented in this paper. Test specimens were manufactured by hand lay-up process and their tensile and flexural properties were obtained. The effects of the hybridization, different fibers content and plies stacking sequence on the mechanical properties of the tested hybrid composites were investigated. Two-parameter Weibull distribution function was used to statistically analyze the experimental results. The failure probability graphs for the tested composites were drawn. These graphs are important tools for helping the designers to understand and choose the suitable material for the required design and development. Results showed that the hybridization process can potentially improve the tensile and flexural properties of jute reinforced composite. The flexural strength decreases when partial laminas from a carbon/epoxy laminate are replaced by glass/epoxy or jute/epoxy laminas. Also, it is realized that incorporating high strength fibers to the outer layers of the composite leads to higher flexural resistance, whilst the order of the layers doesn’t affect the tensile properties.  相似文献   

3.
The introduction of carbon nanotubes (CNTs) into conventional fiber to construct a hierarchical structure in polymer composites has attracted great interest owing to their merits of performance improvement and multiple functionalities. However, there is a challenge for realizing the scalable preparation of the multi-scale CNT-glass fiber (CNTGF) reinforcements in practical application. In this work, we present a simple and continuous method of the mass production of multiscale CNT-glass fiber (CNT-GF) reinforcements. Scanning electron microscopy and thermo gravimetric analysis indicated ~1.0 wt% CNTs were highly dispersed on the whole fiber surface through a facile surfactant-assisted process. Such hybrid CNT-GF fillers were found to effectively enhance the stiffness, strength and impact resistance of polypropylene polymer. Increased storage modulus, glass transition temperature and crystallization temperature of the composites filled with the CNT-GF fillers were also observed in the differential scanning calorimetry and dynamic mechanical analysis compared with the composites containing the pristine GF fillers. Fracture surface analysis revealed enhanced interfacial quality between CNT-GF and matrix, which is likely responsible for improved performance of the hierarchical polymer composites.  相似文献   

4.
Fiber reinforced polymer composites have played a dominant role for a long time in a variety of applications for their high specific strength and modulus. The fiber which serves as a reinforcement in reinforced plastics may be synthetic or natural. To this end, an investigation has been carried out to make use of coir, a natural fiber abundantly available in India. Natural fibers are not only strong and lightweight but also relatively very cheap. The present work describes the development and characterization of a new set of natural fiber based polymer composites consisting of coconut coir as reinforcement and epoxy resin as matrix material. The developed composites are characterized with respect to their mechanical characteristics. Experiments are carried out to study the effect of fiber length on mechanical behavior of these epoxy based polymer composites. Finally, the scanning electron microscope (SEM) of fractured surfaces has been done to study their surface morphology.  相似文献   

5.
The interface of fiber-reinforced composites has remained a vexing problem that limits the use of the excellent properties of carbon fiber (CF) in composite applications. In the present study, waterborne polyurethane (WPU) hybrid sizing agents were prepared to improve the performances of CFs and the interface strength of CF/PA6 composites. The structural and mechanical properties of the single-CF and CF/PA6 composites were systematic investigated. The results showed that the mechanical properties of the CF/PA6 composites were significantly improved by adding of WPU hybrid sizing agent. The tensile and flexural strengths of the WPU/SiO2/Al2O3 hybrid sizing agent treated CF/PA6 composites were increased by 24.0 % and 25.7 % than those of no-sizing treated CF/PA6 composites, respectively.  相似文献   

6.
In this study, electrically conducting composite membranes were prepared by incorporating carboxylic multi-walled carbon nanotubes (c-MWCNTs) into Bacterial Cellulose (BC) pellicles. The biocathode and bioanode were prepared by a simple method of adsorption. An enzyme biological fuel cell (EBFC) composed of a biocathode and an enzymatic bioanode were developed and tested. The materials was characterised by field emission scanning electron microscope (FESEM), Fourier Transform Infrared (FTIR) Spectroscopy and Thermogravimetric analysis (TGA). The results showed that the presence of c-MWCNTs on BC was certified, on which c-MWCNTs loading was calculated as 30.02/100 g. The BC/c-MWCNTs/Lac composite membranes was characterized by cyclic voltammetry (CV). An EBFC was characterized by linear sweep voltammetry (LSV). The results showed EBFC exhibited excellent performance with the largest open circuit voltage (0.76 V) and a maximum power density value (55 uW/cm3). Additionally, the cell also exhibited acceptable stability over the recording of 30 days. BC was considered to be suitable for advanced applications such as an enzymatic carrier of biological fuel cells.  相似文献   

7.
The effects of graphene nanoplatelets (GNP) and multiwall carbon nanotube (MWCNT) hybrid nanofillers on the mechanical and thermal properties of reinforced polyethylene terephthalate (PET) have been investigated. The nanocomposites were melt blended using the counter rotating twin screw extruder followed by injection molding. Their morphology, mechanical and thermal properties were characterized. Combination of the two nanofillers in composites formulation supplemented each other which resulted in the overall improvement in adhesion between fillers and matrix. The mechanical properties and thermal stability of the hybrid nanocomposites (PET/GNP1.5/MWCNT1.5) were significantly improved compared to PET/GNP3 and PET/MWCNT3 single filer nanocomposites. However, it was observed that GNP was better in improving the mechanical properties but MWCNT resulted in higher thermal stability of Nanocomposite. The transmission electron microscopy (TEM) and field emission scanning electron microscopy (FESEM) revealed uniform dispersion of the hybrid fillers in PET/GNP1.5/MWCNT1.5 nanocomposites while agglomeration was observed at higher filler content. The MWCNT prevented the phenomenal stacking of the GNPs by forming a bridge between adjacent GNP planes resulting in higher dispersion of fillers. This complimentary geometrical structure is responsible for the significant improvement in the thermal stability and mechanical properties of the hybrid nanocomposites.  相似文献   

8.
Present technological development and innovation needs a better class of material that meets all the practical applications along with its environmental friendly nature and economical value. Hybrid natural fiber composites, a sector of natural composites meets these requirements. This paper deals with fabrication, mechanical characterization of a hybrid (Jute+Flax+GFRP) composite and also the comparison of it with the (Jute+GFRP) based composite. These composites are fabricated using hand lay-up technique. The arrangement of hybrid composite is such that a layer of vertically laid flax fiber is flanked between layers of horizontally laid jute fiber. Epoxy resin alongside with HY951 hardener is used as the binding agent throughout the layer. Glass fiber laminates are used on both sides for improving the surface finish and surface hardness. The volumetric fraction is such that one third of total volume is occupied by Jute and Flax fibers. Test results shows that the hybrid natural composite has excellent properties under tensile, flexural loading. At last failure morphology analysis is done using Scanning Electron Microscope (SEM) and the internal structure of the broken specimen is discussed.  相似文献   

9.
The tribological performance of PA6 and carbon fiber reinforced polyamide 6 (CF/PA6) under dry sliding condition was examined. Different contents of carbon fibers were employed as reinforcement. All filled and unfilled polyamide 6 composites were tested against CGr15 ball and representative testing was performed. The effects of carbon fiber content on tribological properties of the composites were investigated. The worn surface morphologies of neat PA6 and its composites were examined by scanning electron microscopy (SEM) and the wear mechanisms were discussed. Moreover, all filled polyamide 6 have superior tribological characteristics to unfilled polyamides 6. The optimum wear reduction was obtained when the content of carbon fiber is 20 vol%.  相似文献   

10.
Glass fiber, GF, which was first hydroxylated and silanized, was incorporated into epoxy resin modified with amino-terminated hyperbranched polymer (ATHBP) to obtain high performance composite. The effects of GFs content on the mechanical properties of composites were investigated, discussing the results from flexural, tensile, and impact tests. The composites revealed noticeable improvement in flexural strength, tensile strength as well as impact strength but slow decrease in elongation at break, compared to the epoxy/ATHBP thermoset. FESEM morphology results indicated the good compatibility between epoxy matrix and GF in the appearance of ATHBP and showed that the toughening mechanism was mainly attributed to the stress transfer mechanism.  相似文献   

11.
The aim of this study is to investigate mechanical and fracture behavior of plane weave glass fiber reinforced high density polyethylene (HDPE) thermoplastic composite using a middle tension (MT) specimen with inclined through-thickness cracks under static tension. In this study, crack growth, crack opening displacement (COD), stress intensity factors and fracture toughness are studied. Crack growth and crack opening displacement values are taken as a damage parameter factor for crack geometry calculations. Experimental results are evaluates using both J-integraland stress intensity factormethods.  相似文献   

12.
This work focuses on the modification of the mechanical properties and morphology, cure behavior and other characterization of nano CaCO3 filled SEBS (Styrene-ethylene-butadiene-styrene) elastomers. The tensile strength was increased and compression set characterization was decreased with increasing content of nCaCO3 value. The influence of the interfacial area and the volume fraction of filler were studied. Furthermore, isothermal cure characterization of neat and filled systems was performed using a torque rheometer. The most important finding base on the rheological studies was the catalytic effect of nCaCO3 on cure reaction of SEBS, leading to the shorter curing time. Moreover, the kinetic analyses of rheograms revealed a marked decrease in the activation energy of the cure process upon raising nCaCO3 content. Interestingly, MFI, Hardness, Tensile, Compression set testes showed that the hardness and tensile properties were dramatically increased and MFI and elongation decreased by the addition of nano CaCO3 into SEBS system compared to pure blend resin. It was shown that the relative increase in tensile yield stress when increasing amount of interfacial agent was added, both depends on the volume of filler and the interfacial area. The nanoparticles shape, size and dispersion state were investigate through X-ray diffraction (XRD), transmission electron microscopy (TEM) and scanning electron microscopy (SEM) method.  相似文献   

13.
Unsaturated polyester (UP) resin has been blended with phenolic resin (PF) resole type at various ratios to obtain a homogeneous blend with improved flame resistance compared to its parent polymers. The polymer blend was reinforced with 20 wt% kenaf using hand lay out technique. Fourier transform infrared spectroscopy (FT-IR) was used to characterize changes in the chemical structure of the synthesized composites. The thermal properties of the composites were investigated using thermogravimetric analysis (TGA). The thermal stability of UP/PF kenaf composites co-varies with the PF content, as shown by the degradation temperature at 50 % weight loss. The char yield of the composites increases linearly with PF content as shown by the TGA results. The flammability properties of the composites were determined using the limiting oxygen index (LOI) and UL-94 fire tests. The LOI increased with the PF content while the composites exhibit improved flame retardancy as demonstrated by UL-94 test. The mechanical and morphological properties of the composites were determined by tensile test and scanning electron microscopy (SEM), respectively. The tensile strength and the Young’s modulus of the blend/composites slightly decreased with increasing PF content albeit higher than PF/kenaf fiber composites.  相似文献   

14.
Multi-walled carbon nanotubes (MWNTs) nanocomposites with the polymer matrix composed of blends of poly(vinylidene fluoride) (PVDF) and polyurethane (PU) were prepared via functionalization of 3,4,5-triflouroaniline (TFA) on MWNTs. The MWNTs/polymer nanocomposites showed a dominantly enhanced elongation due to incorporation of PU molecules in PVDF matrix and the improved MWNTs dispersion in the polymer matrix resulting from functionalization of MWNTs with TFA. The functionalization of TFA on MWNTs was confirmed by the measurements of Raman, FT-IR spectra, SEM, and TEM images. In addition, the dielectric constant of nanocomposites increased with an increase of TFA-functionalized MWNTs in PVDF/PU/MWNTs nanocomposites. The polymer blend nanocomposites incorporating MWNTs may be available as an alternative potential route for the actuator materials.  相似文献   

15.
Nanocomposite of polyurethane (PU), Nylon66 (nylon), and montmorillonite (MMT) was prepared by a twin screw extruder, and the dispersion of MMT and the mechanical properties of the nanocomposite were analyzed. Dimethyl hydrogenated tallow 2-ethylhexyl ammonium modified Cloisite 25A (C25A) and methyl tallow bis-2-hydroxyethyl ammonium modified Cloisite 30B (C30B) were used as MMT. XRD and TEM analysis indicated that the continuous melt mixing by a twin screw extruder was effective in MMT dispersion. C30B having hydroxyl group on its surface has better dispersion than C25A in the PU/nylon matrix. Maximum stress and strain at break were the maximum at 1 wt% MMT regardless of matrix composition, and decreased at higher MMT content. Best MMT dispersion was also observed at 1 wt% MMT for the entire matrix composition. Aggregation of MMT occurred at MMT content higher than 1 wt%. Nylon addition also induced the aggregation of MMT because of the high polarity of nylon surface. Dispersion of MMT was very important in improving the mechanical properties of PU/nylon nanocomposite.  相似文献   

16.
This paper presents the results of a current research of the tensile properties: ultimate strength and stiffness modulus in composites using natural reinforcements. Hemp short fibres and pine sawdust were randomly distributed in polypropylene matrices to produce composite plates with 5 mm thickness by injection moulding technique. The specimens were cut from these plates with bone dog shape or plane bars, and tested in tensile and four points bending, respectively. Stiffness modulus and ultimate stresses were obtained for different weight fraction content of reinforcement and discussed taking in account the failure modes. Four series of pine sawdust reinforced specimens were immersed in water in periods up to 20 days. Periodically, the specimens were removed from the water recipient and immediately tested. The damage effect of water immersion time was discussed based in the tensile results and in the water absorption curves.  相似文献   

17.
This research work was concerned with the evaluation of the effect of fibre content on the mechanical properties of composites. Composites were fabricated using jute/phenol formaldehyde (PF), rockwool/PF, and jute/rockwool hybrid PF with varying fibre loadings. Jute and rockwool fibre reinforced PF composites were fabricated with varying fibre loadings (16, 25, 34, 42, 50, and 60 vol.%). The jute/rockwool hybrid PF composites were manufactured at various ratios of jute/rockwool fibres such as 1:0, 0.92:0.08, 0.82:0.18, 0.70:0.30, 0.54:0.46, 0.28:0.72, and 0:1. Total fibre content of the hybrid composites was 42 vol.%. The results showed that tensile strength of the composite increased with increasing fibre content up to 42 vol.% over which it decreased for jute and rockwool fibre reinforced PF composites. Flexural strength of the composite was noted to peak at a fibre loading of 42 vol.% for jute/PF composites, and 34 vol.% for rockwool/PF composites. Impact strength of jute/PF composites increased with increasing fibre loading but that of rockwool/PF composites decreased at higher (>34 vol.%) fibre loadings. Tensile, flexural, and impact strengths of jute/PF composites were found to be higher than those of rockwool/PF composites. The maximum hardness values were obtained 42 vol.% for jute/PF composite, and 34 vol.% for rockwool/PF composite. Further increase in fibre loading adversely affected the hardness of both composites. For jute/rockwool hybrid PF composites, tensile and impact strengths decreased with increasing rockwool fibre loading. The maximum flexural strength of jute/rockwool hybrid PF composites was obtained at a 0.82:0.18 jute/rockwool fibre ratio while maximum hardness was observed at a 0.28:0.72 jute/rockwool fibre ratio. The fractured surfaces of the composites were analysed using scanning electron microscope in order to have an insight into the failure mechanism and fibre/matrix interface adhesion.  相似文献   

18.
The creep and recovery behaviors of UHMWPE and UHMWPE/CNTs composite fibers at different temperature were studied using Dynamic Mechanical Analysis (DMA). It was found that the creep strain of the UHMWPE and the UHMWPE/CNTs fibers increased with temperature rising. And creep strain of the composite fibers was always lower than that of the neat UHMWPE fiber. Burger’s model and Weibull distribution are employed to simulate the creep and recovery behaviors of the two fibers. The results show elasticity, stiffness and the recovery property of the composite fiber were improved by adding multi walled carton nanotubes.  相似文献   

19.
Present research investigates the mechanical properties of jute-coir fiber reinforced hybrid polypropylene (PP) composite with fiber loading variation and observes the effect of chemical treatment of fiber on property enhancement of the composites. Composites were manufactured using hot press machine at four levels of fiber loading (5, 10, 15 and 20 wt%). Fiber ratio’s were varied (jute:coir=1:1, 3:1 and 1:3) for 20 % fiber loaded composites. Both jute and coir fiber was treated using 5 % and 10 % NaOH solutions. Composites were also prepared using treated fiber with jute-coir fiber ratio of 3:1. Tensile, flexural, impact and hardness tests and Fourier transform infrared spectroscopic analysis were conducted for characterization of the composites. Tensile test of composite showed a decreasing trend of tensile strength and increasing trend of the Young’s modulus with increase in fiber loading. During flexural, impact and hardness tests, the flexural strength, flexural modulus, impact strength and hardness values were found to be increased with increase in fiber loading. All these properties enhanced with the enhancement of jute content except impact strength. 5 % NaOH treatment provided an improving trend of properties whereas, 10 % NaOH treatment showed the reverse one. The FTIR analysis of the composites indicated decrease of hemicelluloses and lignin content with alkali treatment.  相似文献   

20.
In this study, the maleic anhydride grafted styrene-ethylene-butylene-styrene block copolymer (SEBS-g-MA) is used as the compatilizer for polylactic acid (PLA)/carbon fiber (CF) composites. The effects of SEBS-g-MA on the mechanical properties, thermal behavior, interfacial compatibility, and electrical characteristics of composites are then evaluated. The mechanical property tests indicate that when the amount of compatilizer increases, the tensile properties and flexural property of the composites decrease while their impact strength increases. The SEM results show that the compatilizer can decrease the interstices between PLA and CF, and thereby augments their interfacial compatibility. The differential scanning calorimetry (DSC) results confirm that the compatilizer results in a greater crystallization temperature and a greater crystallinity of the composites. The electrical characteristic results indicate that neither PLA nor SEBS-g-MA is not interfered with the conductive network that is constructed by CF, which is exemplified by an average electromagnetic shielding effect of above ?30 dB. This study confirms that SEBS-g-MA can improve interfacial compatibility and toughness, as well as attain good electrical characteristics of PLA/CF composites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号