首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 0 毫秒
1.
基于预测控制的主动悬架与电动助力转向集成控制   总被引:1,自引:5,他引:1  
通过建立主动悬架与电动助力转向集成控制模型,应用预测控制理论,进行了预测控制器的设计,并在Matlab/Simulink环境中进行仿真模拟。仿真结果表明:具有预测控制策略的主动悬架与电动助力转向集成系统不仅能明显改善车辆行驶平顺性,提高转向轻便性,并且对由路面输入引起的振动能够进行有效抑制,使车辆的操纵稳定性和乘坐舒适性均有不同程度的提高。  相似文献   

2.
拖拉机电液助力转向系统的研究   总被引:1,自引:0,他引:1  
设计了一种用于拖拉机的电控液压自动助力转向(EHPS)系统,将方向盘阻力转矩引入到系统中,实现了转矩感应型助力特性的液压助力转向,既可保证转向轻便性,确保实时提供足够助力,又减少能量损失。基于AMESim软件建立了EHPS系统仿真模型,分析结果表明系统具有良好的控制精度和快速响应特性。  相似文献   

3.
汽车转向系统发展趋势   总被引:2,自引:0,他引:2  
介绍了汽车机械转向系统、液压动力转向系统、电控液压动力转向系统、电动助力转向系统、四轮转向系统、主动前轮转向系统以及线控转向系统,并介绍了转向系统的发展趋势,指出转向系统与其他系统的集成控制是未来的发展方向。  相似文献   

4.
针对传统的液压助力转向系统,提出通过脉冲调制控制器、伺服旋转控制阀、转向机构等构成的电控液压助力转向系统的仿真模型。在Matlab环境中对中位开式和中位闭式电控液压助力转向系统进行仿真,通过PWM脉宽调制来调速电动机,达到节能的目的。  相似文献   

5.
在建立了汽车主动悬架与转向系统集成控制模型的基础上,应用LQG控制理论,设计了汽车主动悬架与转向系统LQG集成控制器,并进行了试验仿真,实现了对质心侧偏角、车身横摆角速度、车身垂直加速度、车身俯仰角的集成控制。与被动悬架和转向系统、主动悬架与转向系统单独控制相比,汽车的平顺性、操纵稳定性和安全性都有了显著改善,为汽车底盘集成控制研究提供了依据。  相似文献   

6.
基于代码生成的电控空气悬架系统电子控制单元   总被引:1,自引:0,他引:1  
为提高某型SUV车辆的行驶平顺性、通过性等,对其进行空气悬架改装,并设计了由最小系统、车速信号调理模块、电动气泵控制模块、组合电磁阀控制模块、车身高度检测模块、CAN总线模块、车身加速度测量模块等组成的以Freescale XDP512为核心芯片的电控空气悬架系统电子控制单元,利用Real-Time Workshop(RTW)代码生成技术将所制定电控空气悬架系统控制策略转化为ANSI C代码并下载至电子控制单元,然后对安装电控空气悬架系统的试验车辆进行了车身高度与车速耦合试验、转向试验、急加速试验、急减速试验、平顺性试验,结果表明所设计的电控空气悬架系统控制单元能够实现车速信号调理、车身高度与车速耦合、电动气泵控制及组合阀控制等功能。  相似文献   

7.
电控/电动液压助力转向控制技术研究现状与展望   总被引:6,自引:0,他引:6  
解后循  高翔 《农业机械学报》2007,38(11):178-181
综述电控液压助力转向控制技术的控制策略、方法及其特点。常规电控液压助力转向技术提高了车辆高速转向路感及动态响应,但存在助力特性固定、能量消耗大等缺点。电动液压助力转向技术将成熟的电动机驱动技术与液压伺服技术相结合,在提高高速路感及动态响应的同时,具有节能、环保的优点。建议采用综合控制,进一步提高电动液压助力转向系统的节能、动态响应及自适应能力。  相似文献   

8.
唐斌  江浩斌  陈龙  耿国庆  尧骏 《农业机械学报》2015,46(12):285-293315
为了提高装备电控液压助力转向系统(E-ECHPS)的车辆高速紧急转向稳定性,提出了基于微分几何的线性参考模型反馈跟踪控制策略;建立了包括整车动力学模型、轮胎模型、转向系统模型和ESC模型的非线性动力学模型,通过整车试验和台架试验验证了模型的正确性;推导了系统的仿射非线性状态方程,考虑到轮胎、液压系统和ESC的非线性,运用微分几何理论对系统进行精确线性化得到输入输出伪线性系统;建立了包含转向系统的线性参考模型,为了实现对线性参考模型理想状态的跟踪,构造了反馈跟踪控制器;以方向盘转矩为输入进行了有控制和无控制下的阶跃转向仿真和单移线仿真,结果表明:施加反馈跟踪控制可以显著提高车辆在高速紧急转向工况下的操纵稳定性,为E-ECHPS系统的控制策略设计提供了理论依据。  相似文献   

9.
汽车动力转向系统的发展   总被引:1,自引:1,他引:0  
综述了汽车动力转向技术的发展,分别叙述了液压助力转向系统、电控液压转向系统及电动助力转向系统,主要叙述了液压助力转向系统的结构、工作原理和主要控制策略,探讨了汽车动力转向系统的发展趋势.  相似文献   

10.
运用系统动力学理论,建立了电动助力转向系统的状态空间方程.运用控制理论,分析了电动助力转向系统的补偿控制策略,并结合PID控制理论,在MATLAB/SIMULINK中建立了电动助力转向系统的仿真模型.对电动助力转向系统的补偿控制策略进行仿真研究.仿真结果表明,仿真模型的动态转向效果和回正能力得到了改善,解决了转向轻便性和路感的问题.  相似文献   

11.
四轮转向车辆后轮转角与横摆力矩联合模糊控制   总被引:2,自引:1,他引:1  
为提高车辆在极限工况下的稳定性,充分考虑悬架、转向系统以及轮胎等部件的非线性,运用多体动力学仿真分析软件ADAMS/Car建立了四轮转向车辆的虚拟样机模型.确定了质心侧偏角和横摆角速度具有理想输出响应的控制目标.针对车辆的非线性,提出了后轮转角与横摆力矩联合控制的模糊控制策略,并设计了对应的非线性模糊控制系统.最后应用ADAMS/Car和Matlab/Simulink联合仿真技术,对控制系统的性能进行了仿真验证.仿真结果表明:后轮转角与横摆力矩联合模糊控制可有效防止车辆在极限转向工况下发生侧滑失稳.  相似文献   

12.
转向与悬架系统是汽车底盘系统中影响车身姿态和行驶安全性的两大关键系统。由于汽车的运行工况是经常变化的,因此对转向或悬架的单独控制难以保证汽车操纵稳定性和行驶平顺性同时得到提高。因此,如果对转向与悬架系统进行组合并良好匹配,可以很好地改善汽车的操纵稳定性,又改善了汽车在各种行驶条件下的乘坐舒适性。因此本文对EPS与自适应悬架系统集成控制及控制器的设计进行了初步研究。  相似文献   

13.
在建立汽车电动助力转向和主动悬架系统的集成模型基础上,利用神经网络自适应学习功能推导集成系统模糊控制规律,设计了模糊神经网络控制策略,对转向行驶工况下的集成系统进行了大量的计算分析。研究结果表明,采用所提出的集成控制策略能有效地实现对汽车平顺性、操纵稳定性、安全性的集成优化,从而使得整车动力学性能得到较大改善。  相似文献   

14.
以提高汽车行驶平顺性、操纵稳定性和安全性为目点,建立了半车三自由度汽车转向与主动悬架的综合模型,采用基于小波理论的最小均方(LMS)算法对转向与主动悬架集成系统进行控制。计算结果表明,采用LMS控制的转向与主动悬架集成系统使汽车行驶平顺性和操纵稳定性比被动系统明显改善,有效地提高了汽车综合性能;同时LMS能自动调整权系数,且控制算法简单,便于工程应用。  相似文献   

15.
建立了四轮转向(4WS)和主动悬架的集成系统运动分析模型,研究了横向运动和垂直运动之间的关系以及主动悬架和转向之间的相互作用。以某汽车为对象,进行了集成系统的仿真研究,分析了作动器力大小、前后悬架刚度比等参数对汽车转向性能的影响。研究表明:与2WS相比,4WS能较好地提高车辆转向行驶的安全性;4WS与主动悬架之间具有耦合作用,提高主动悬架作动器力的上限可在一定程度上提高转向的性能;采用4WS能减小主动悬架的能量消耗;较软的前悬架不但能够得到较好的乘坐舒适性,也能在一定程度上改善转向性能。  相似文献   

16.
车辆底盘集成控制系统的电动机控制   总被引:3,自引:2,他引:1  
为协调车辆操纵稳定性和行驶平顺性,在分析半主动悬架和电动助力转向工作原理的基础上,研制出以嵌入式系统为平台的车辆底盘系统集成控制器。硬件上对悬架可调阻尼减振器的步进电动机和转向系统的直流电动机进行控制设计;软件上运用模糊控制和PID控制算法,在Code Warrior集成开发环境下结合超级终端对软硬件进行联调。试验结果表明,控制器运行可靠,电动机控制正确、效果明显,集成控制下车辆的操纵稳定性和平顺性得到改善。  相似文献   

17.
车辆半主动悬架自适应模糊控制   总被引:9,自引:2,他引:9  
给出了车辆半主动悬架自适应模糊控制方法,设计了自适应模糊控制器,将模糊系统辨识和模糊控制结合起来,对自适应模糊控制规则进行了修正,使自适应模糊控制的复杂性得以简化,提高了半主动悬架控制的实时性,从而达到最佳的控制效果。与被动悬架的对比分析表明,自适应模糊控制半主动县架具有优良的减振性能。  相似文献   

18.
基于策略分层的汽车悬架与转向系统主动控制   总被引:3,自引:3,他引:0  
建立了悬架系统7自由度的主动控制模型,设计了悬架系统的最优控制器,运用分离定理,得到随机状态反馈调节器的最优控制率.建立了主动前轮转向系统的转向模型,并设计了可实时跟踪目标横摆角速度的滑模变结构控制器.为改善转向工况下车辆的平顺性,在2个子系统的基础上设计了一个上层协调控制器.协调控制器根据车辆传感器信息,实时地输入给转向和悬架子系统不同的跟踪目标和控制参数,以使车辆获得最好的性能.仿真结果表明:所设计的控制器能够较好地提高整车的平顺性和操纵稳定性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号