首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Feedlot performance and testicular and pituitary function were assessed in cattle actively immunized against GnRH. In Trial 1, 50 steers were either unimmunized (n = 10), actively immunized against keyhole limpet hemocyanin (KLH; n = 10), or immunized against a GnRH-KLH conjugate (n = 30). Fifteen of 30 steers immunized against GnRH-KLH received a secondary immunization 8 wk after primary immunization. Antibodies against GnRH were not evident in unimmunized steers or steers actively immunized against KLH. Antibodies against GnRH were noted in all immunized animals (n = 30) within 6 wk of primary immunization and anti-GnRH antibody concentrations became maximal 20 to 24 wk after immunization. The increasing anti-GnRH titer in immunized steers was associated with decreasing serum concentrations of LH. Serum concentrations of LH were depressed (P less than .05) within 8 wk of primary immunization and reached a nadir by wk 20. The patterns of increase in GnRH titer and decrease in serum concentrations of LH did not differ (P greater than .05) in animals receiving primary immunization alone or primary and secondary immunization. Feedlot performance and carcass quality were not affected (P greater than .05) by immunization against KLH or the GnRH-KLH conjugate. In Trial 2, 60 bull calves (mean weight = 325.2 +/- 2.8 kg) were randomly assigned to a 2 x 3 factorial experiment. The two classes (n = 30) were 1) unimplanted and 2) implanted with Synovex-S. The three treatments (n = 20) were 1) intact control, 2) actively immunized against GnRH, and 3) castrate.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Six pony geldings were actively immunized against GnRH conjugated to bovine serum albumin (BSA) to study 1) the relative dependency of LH and FSH storage, secretion and response to GnRH analog on GnRH bioavailability and 2) the effects of reduced GnRH bioavailability on GnRH storage in the hypothalamus. Five geldings were immunized against BSA. Geldings were immunized in December and 4, 8, 14, 20, 26 and 32 wk later. Ponies immunized against GnRH had increased (P less than .01) GnRH binding in plasma within 6 wk. By June, plasma concentrations of LH and FSH in ponies immunized against GnRH had decreased (P less than .02) by 86 and 59%, respectively, relative to ponies immunized against BSA. The LH response to an injection of GnRH analog, which did not bind to anti-GnRH antibodies, was reduced (P less than .005) by 90% in ponies immunized against GnRH relative to ponies immunized against BSA. In contrast, the FSH response to GnRH analog was similar (P greater than .1) for both groups. Immunization against GnRH reduced (P less than .05) weight of the anterior pituitary (AP) by 31%, LH content in AP by 91% and FSH content in AP by 55% relative to ponies immunized against BSA. There was no effect of GnRH immunization on prolactin characteristics or on GnRH concentrations in the median eminence, preoptic area or body of the hypothalamus.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Ghrelin has been implicated in the control of food intake and in the long-term regulation of body weight. We theorize that preventing the ability of ghrelin to interact with its receptors, would eventually lead to decreased appetite and thereby decrease body weight gain. To test our hypothesis, pigs were actively immunized against ghrelin. Ghrelin((1-10)) was conjugated to BSA and emulsified in Freund's incomplete adjuvant and diethylaminoethyl-dextran. Primary immunization was given at 19 weeks of age (WOA), with booster immunizations given 20 and 40 days after primary immunization. Body weight (BW) and plasma samples were collected weekly beginning at 19 WOA, and feed intake was measured daily. Fourteen days after primary immunization, the percentage of bound (125)I-ghrelin in plasma from immunized pigs was increased compared with control animals (P<0.001). Voluntary feed intake was decreased more than 15% in animals that were actively immunized against ghrelin compared with controls. By the end of the experiment, immunized pigs weighed 10% less than control animals (P<0.1). Concentrations of GH were increased (P<0.05) in immunized pigs. Apoptosis was not observed in post-mortem samples obtained from the fundic region of the stomach. Our observations suggest that immunization against ghrelin induces mild anorexia. This procedure could potentially be used as a treatment to control caloric intake and obesity.  相似文献   

4.
In this study, the performance of male pigs immunized against GnRH was determined in relation to the onset of their biological response to the immunization. Pigs were immunized at 9 and 17 wk of age and were housed in a pen together with both a surgically castrated and an intact boar littermate. Feed intake was restricted to 2.8 to 3.2 times maintenance requirement for energy. Animals were weighed weekly and slaughtered at 108 kg BW. Depending on the time of onset of the response after immunization in terms of biological effects, immunized pigs were retrospectively grouped into two categories. One category consisted of the immunized pigs, which had undetectable or low levels of LH and testosterone at the time of booster immunization-known as "early" responding immunocastrates (E-IM, n = 8), whereas the "late" responding immunocastrates (L-IM, n = 7) had substantial LH and testosterone levels at that time. This dichotomy of the response to immunization also was reflected in testis weight, with 17 g and 40 g for E-IM and L-IM pigs, respectively. At slaughter, testis size and weight were reduced (P < 0.001) in the immunocastrated pigs as compared to the intact boars. Androstenone concentrations in backfat of all immunocastrated pigs were undetectable. Growth performance (i.e., ADG and feed efficiency [FE, g gain/kg feed]), was better in boars and L-IM pigs than in surgical castrates and E-IM pigs (P < 0.05). Average daily gain and FE did not differ between E-IM pigs and the surgical castrates, but intact boars performed better than L-IM (P < 0.02). There were no significant differences in carcass quality (backfat thickness and meat percentage) between boars and surgical castrates at slaughter. However, for both characteristics L-IM pigs and intact boars performed better (P < 0.03) than E-IM pigs. Thus, growth performance in L-IM is better than in either E-IM or surgical castrates.  相似文献   

5.
It is well established that GnRH can stimulate the release of LH and FSH in mammals. Two GnRHs have been found in the chicken hypothalamus, cGnRH-I and -II. There is controversy as to whether either peptide can stimulate release of FSH in birds. The present studies compared the ability of cGnRH-I and -II to stimulate the release of FSH and LH in chickens. Lamprey (l) GnRH-III may be a specific-releasing factor for FSH, as it selectively stimulates FSH release in rodents and cattle, and has been detected in the hypothalamus of rodents, sparrows and chickens. Therefore, the ability of lGnRH-III to stimulate LH and FSH release was also examined. In our first experiment, the effects of cGnRH-I and -II were studied using 17-week prepubertal females. Intravenous injection of cGnRH-II at 1 and 10 microg/kg BW significantly increased LH secretion more than did cGnRH-I. Neither peptide significantly increased plasma FSH levels. In our second study, we administered cGnRH-I, -II or lGnRH-III to mature males maintained on a short photoperiod. cGnRH-II was again more potent than cGnRH-I in stimulating LH release, while lGnRH-III produced a modest LH rise. No GnRH peptide provided specific or potent stimulus to FSH secretion, although the high dose of cGnRH-II modestly enhanced FSH levels in the adult male (P < 0.05). Our results are not consistent with the view that lGnRH-III is a specific FSH-releasing hormone across multiple classes of vertebrates. We conclude that the mechanism by which independent release of FSH occurs in chickens remains unresolved.  相似文献   

6.
Peri- and postpubertal boars accumulate substances (e.g., androstenone and skatole) in their fatty tissue that are responsible for boar taint in pork. The objective of this study was to assess the efficacy of a GnRH vaccine, Improvac, in eliminating boar taint. Three hundred male (200 intact boars, 100 barrows) crossbred (Large White x Landrace) pigs were used in a 2 x 3 factorially arranged experiment. The respective factors were sex group (barrows, boars treated with placebo, or boars treated with Improvac) and slaughter age (23 or 26 wk). Vaccines were administered 8 and 4 wk before slaughter. All Improvac-treated pigs exhibited anti-GnRH titers. Testes and bulbo-urethral gland weights in treated pigs were reduced by approximately 50% (P < 0.001) and serum testosterone levels were below 2 ng/mL in the majority of treated boars (94 and 92% across both age groups at 2 and 4 wk, respectively). Boar taint, as assessed by the concentration of androstenone and skatole in s.c. fat, was suppressed to low or undetectable levels in 100% of Improvac-treated boars. No Improvac-treated pigs had significant concentrations of either androstenone (> 1.0 microg/g) or skatole (> 0.20 microg/g). In contrast, 49.5% of placebo-treated controls had significant androstenone and 10.8% had significant skatole levels, resulting in 10% of the control boars with high concentrations of both compounds. The mean concentrations of taint compounds in the Improvac-treated pigs were not significantly different from those in barrows. Improvac-treated boars grew more rapidly (P = 0.051 and < 0.001 for pigs slaughtered at 23 and 26 wk of age, respectively) than control boars over the 4 wk after the secondary vaccination, possibly because of reduced sexual and aggressive activities. Compared with barrows, Improvac-treated boars were leaner and had superior feed conversion efficiency. The vaccine was well tolerated by the pigs, and no observable site reactions could be detected at the time of slaughter. Vaccination of boars with Improvac allows production of heavy boars with improved meat quality through prevention and control of boar taint.  相似文献   

7.
Two experiments were conducted to determine the effect of exogenous gonadotropins on follicular development in gilts actively immunized against gonadotropin releasing hormone (GnRH). Four gilts, which had become acyclic after immunization against GnRH, and four control gilts were given 1,000 IU pregnant mare serum gonadotropin (PMSG), while four additional control gilts were given saline. Control animals were prepuberal crossbred gilts averaging 100 kg body weight. Control gilts given saline had ovaries containing antral follicles (4 to 6 mm in diameter). Control gilts given PMSG exhibited estrus and their ovaries contained corpora hemorrhagica and corpora lutea. PMSG failed to stimulate follicular growth in gilts immunized against GnRH, and ovaries contained regressed corpora albicantia and small antral follicles (less than 1 mm in diameter). Concentrations of luteinizing hormone (LH) and estradiol-17 beta (E2) were non-detectable in gilts immunized against GnRH and given PMSG. In the second experiment, five gilts actively immunized against GnRH were given increasing doses of PMSG every third day until unilateral ovariectomy on d 50. PMSG failed to stimulate follicular growth, and concentrations of follicle stimulating hormone (FSH), E2 and LH were not detectable. Six weeks later, gilts were given a booster immunization and then were given 112 micrograms LH and 15 micrograms FSH intravenously every 6 h for 9 d. The remaining ovary was removed on d 10. Although LH and FSH concentrations were elevated, administration of gonadotropins did not stimulate follicular growth or increase E2 concentrations. These results indicate that neither PMSG or exogenous LH and FSH can induce E2 synthesis or sustain follicular development in gilts actively immunized against GnRH.  相似文献   

8.
Three experiments were conducted to evaluate methods of immunization against GnRH on antibody titer, luteal activity, and pregnancy in beef heifers. Experiment 1 evaluated the efficacy of adjuvants with 30 heifers. Control heifers were immunized against human serum albumin (HSA) emulsified in Freund's complete adjuvant (FCA). The other 4 treatments contained GnRH conjugated to HSA (HSA-GnRH) emulsified in FCA, Freund's incomplete adjuvant (FIA), DEAE dextran (DD) + mineral oil (MO), or DD+FIA. Treatment was in the mammary gland for all experiments. Titers against GnRH for heifers immunized against HSA-GnRH with FCA, DD+MO, or DD+FIA were greater than titers for HSA-GnRH with FIA or control heifers (P < 0.01). Body weight was reduced (P < 0.05) in control and FCA heifers compared with FIA, DD+MO, and DD+FIA heifers. Heifers immunized with DD+MO and DD+FIA had fewer granulomas in mammary glands than heifers treated with FCA (P < 0.01). In Exp. 2, 36 heifers were used to determine the effect of the protein conjugated to GnRH on titers against GnRH. Heifers (6/treatment) received a primary immunization against GnRH conjugated to HSA (HSA-GnRH), ovalbumin (OA-GnRH), or keyhole limpet hemocyanin (KL-GnRH), or heifers were immunized against each carrier protein. Antigens were emulsified in DD+FIA. Immunization of heifers against OA-GnRH, KL-GnRH, or HSA-GnRH suppressed luteal activity (P < 0.01) for 23, 16, and 12 wk, respectively, and antibody titers against GnRH were greater (P < 0.01) for 19, 5, and 7 wk, respectively, compared with heifers immunized against the carrier proteins. In Exp. 3, 90 heifers were used to determine the effect of immunization against GnRH on ovarian activity and pregnancy rate. Heifers (30/treatment) received a primary and 2 or 3 booster immunizations against GnRH conjugated to OA, and controls received a primary and 2 booster immunizations against OA. All antigens were emulsified in DD+FIA. At 8 wk after primary immunization, heifers were exposed to fertile bulls for 24 wk. Pregnancy rate was less (P < 0.01) for 3-booster heifers (13%) compared with control (83%) and 2-booster (62%) heifers. We conclude that immunization against GnRH, conjugated to OA and emulsified in DD+FIA, does not influence ADG and produces sufficient titers against GnRH to prevent estrous cycles with few mammary granulomas. Immunization against GnRH with 3 booster immunizations prevented luteal activity and pregnancy in most beef heifers for more than 4 mo.  相似文献   

9.
Prepubertal crossbred beef bulls served as controls or were actively immunized against the N-terminal, 30-amino acid synthetic fragment of porcine inhibin alpha, pI alpha (1-30). Antibody titers were detected in sera (greater than 40% B/BO in sera diluted 1,000-fold) but not in rete testis fluid of 390-d-old bulls. Serum FSH and inhibin remained static during a 5-h intensive bleed; inhibin was not acutely affected by a 15-fold LH rise and a threefold FSH rise induced by exogenous GnRH. Serum FSH, but not LH or testosterone, was consistently elevated (P less than .05) in immunized bulls compared with control bulls. Neither pituitary weight, pituitary gonadotropin content nor pituitary FSH/LH ratios were affected (P greater than .10) by pI alpha(1-30) active immunization. Testicular sperm density was greater (60 x 10(6) vs 45 x 10(6) sperm/g testis; P less than .10) in immunized bulls, but testes weight, epididymides weight and total daily sperm production remained unchanged. These results suggest that inhibin is important for regulation of FSH secretion and testicular function. Immunization with suitable inhibin vaccines may improve bull fertility.  相似文献   

10.
Thirteen crossbred boars were immunized at 1 mo of age against either testosterone-3-oxime-equine serum albumin (treated boars) or equine serum albumin (control boars) to test the hypothesis that active immunization against testosterone stimulates testicular growth and development in the prepubertal boar. All boars were injected with the appropriate antigen at 2, 3, 4, 5 and 6 mo of age and were slaughtered at 14 mo of age. Active immunization against testosterone resulted in an increase (P less than .05) in tritiated-testosterone binding by plasma within 60 d after the primary immunization; the degree of binding decreased by 6 mo but remained elevated (P less than .05) relative to controls through 12 mo of age. There was no effect of treatment on body weights through 12 mo of age. Concentrations of testosterone in plasma were higher (P less than .05) in testosterone-immunized boars than in controls; this increase was likely due to antibody binding rather than increased testosterone secretion because (1) concentrations of androgen in testicular parenchyma at slaughter were not altered by treatment and (2) plasma concentrations of estrogens were generally not affected by treatment. Concentrations of luteinizing hormone (LH) and follicle stimulating hormone (FSH) were markedly suppressed in testosterone-immunized boars during the time when concentrations of these gonadotropins were high in control boars (greater than 3 mo of age). In spite of suppression of average LH and FSH concentrations, testicular weights, daily sperm production rates and seminal characteristics were similar for the two groups of boars at slaughter. (ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
10头公猪在3月龄时用促性腺激素并列体二聚体(GnRHTD)主动免疫,观测内源GnRH被免疫中和所产生的内分泌和生殖机能的变化。注射GnRHTD与卵清蛋白(OVA)的偶联物2次,结果发现GnRHTD主动免疫能降低外周血清睾酮浓度,睾丸重量也明显下降。组织切片显示,曲细精管有少数退化的精原细胞。这些变化表明:公猪接种GnRHTDOVA能诱发免疫反应,中和内源GnRH的生物活性,且抑制睾酮的合成,从而导致性器官发育受阻。  相似文献   

12.
Sexually mature gilts (n = 20) were actively immunized against GnRH. Primary and booster immunizations of GnRH conjugated to bovine serum albumin induced production of antibodies in all gilts. Nineteen of the gilts became acyclic with suppressed concentrations of gonadotropins and estradiol. Intravenous challenges with 100 micrograms GnRH and 5 micrograms D-(Ala6, des-Gly-NH2(10)) ethylamide GnRH (a GnRH agonist that did not cross-react with antibodies produced by the gilts) caused release of LH and FSH, indicating maintenance of secretory capacity of pituitary gonadotropes in the immunized animals. Gilts were given 100 ng GnRH agonist at 2-h intervals for 72 h (n = 4) or 144 h (n = 10) or did not receive agonist (n = 5). Blood samples were taken every 6 h, and detectable concentrations of LH were observed in 42% and 52% of samples taken from gilts treated with or without agonist. In contrast, serum concentrations of FSH and estradiol were undetectable. Reproductive tracts and anterior pituitaries were taken from gilts at the conclusion of pulsatile administration of GnRH agonist or at 144 h for controls. Pituitary concentration of LH and FSH, uterine wet and dry weight, and size of the uterus were similar among groups. Paired ovarian weights for treated gilts pulsed with GnRH agonist for 72 h were heavier (P less than .05); however, ovaries from all immunized gilts were atrophied without follicular structures.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Five lighthorse mares were actively immunized against gonadotropin releasing hormone (GnRH) conjugated to bovine serum albumin (BSA) to study the involvement of GnRH in luteinizing hormone (LH) and follicle stimulating hormone (FSH) secretion following ovariectomy (OVX) and after administration of testosterone propionate (TP). Five mares immunized against BSA served as controls. Immunizations were started on November 1, and OVX was performed in June (d 1). All mares were treated with TP from d 50 to 59 after OVX. On the day of OVX, concentrations of LH were lower (P less than .05) in GnRH-immunized mares than in BSA-immunized mares and were generally nondetectable; FSH concentrations were reduced (P less than .05) by 50% in GnRH-immunized mares relative to BSA-immunized mares. In contrast to BSA-immunized mares, plasma concentrations of LH or FSH did not increase after OVX in GnRH-immunized mares. The LH response to GnRH analog (less than .1% cross-reactive with GnRH antibodies) on d 50 was reduced (P less than .05) by 97% in GnRH-immunized mares relative to BSA-immunized mares, whereas the FSH response was similar for both groups. Treatment with TP for 10 d reduced (P less than .01) the LH response and increased (P less than .01) the FSH response to GnRH analog in BSA-immunized mares, but it had no effect (P greater than .1) on the response of either gonadotropin in GnRH-immunized mares.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Mature boars were subjected to chronic treatment with a gonadotropin-releasing hormone (GnRH) agonist, goserelin (D-Ser[But]6, Azgly-NH210), and serum luteinizing hormone (LH) and testosterone concentrations were measured. Ten sexually mature boars were randomly assigned to treatment (n = 5) or control (n = 5) groups. On day 0, boars were implanted sc (day 0) with 2 GnRH agonist implants (1 mg of GnRH/implant) or sham implants. Blood samples were collected at 12-hour intervals on days -2 and -1, at 6-hour intervals on days 0 through 4, and at 12-hour intervals on days 5 through 8. In addition, blood samples were collected at 15-minute intervals for 6 hours on days -1, 0, 4, and 8. Serum testosterone and LH concentrations were determined by radioimmunoassay. Maximal LH (7 +/- 1 ng/ml) and testosterone (26 +/- 3 ng/ml) concentrations were observed at 5 and 18 hours, respectively, after GnRH agonist treatment. Subsequently, LH and testosterone concentrations decreased to pretreatment values (0.3 +/- 0.1 ng/ml and 1.8 +/- 0.4 ng/ml, respectively) by 24 and 48 hours, respectively, after GnRH agonist implantation. Few differences in the characteristics of pulsatile LH release were observed between the groups. Testosterone and LH concentrations in samples collected at 6- and 12-hour intervals and pulsatile LH release did not change after sham treatment of control boars. Whereas previous reports indicated that chronic GnRH administration suppressed serum LH and testosterone concentrations in rams, rats, and dogs, our results indicate that chronic GnRH agonist treatment induced transitory increases, without subsequent suppression, in LH and testosterone concentrations in mature boars.  相似文献   

15.
Two trials were conducted to examine reproductive function and feedlot performance by heifers after active immunization against GnRH. In trial 1, heifers were not immunized or were immunized with one of three doses of a GnRH-KLH (keyhole limpet hemocyanin) conjugate in Freund's complete adjuvant. Antibodies against GnRH were not detectable in non-immunized heifers (n = 9). However, antibodies against GnRH were noted in all immunized animals (n = 30) within 8 wk of primary immunization; anti-GnRH antibody concentrations were at a maximum 16 to 20 wk after immunization. This increased anti-GnRH titer was associated with a decreased serum concentration of progesterone. Ovarian and uterine weight and tissue concentrations of LH and GnRH receptor were reduced (P less than .05) by immunoneutralization of GnRH. Similarly, immunization against GnRH reduced (P less than .05) weight gain during feedlot confinement. In trial 2, feedlot performance after insertion of anabolic steroid implants (Synovex H) was evaluated in non-immunized heifers (n = 15), heifers actively immunized against GnRH-KLH (n = 15) or KLH alone (n = 15), or non-immunized heifers treated with melengestrol acetate (MGA; n = 15). Serum concentrations of progesterone were depressed in anti-GnRH and MGA-fed groups, but ovarian and uterine weights were depressed (P less than .05) only in heifers immunized against GnRH. Total weight gain and gain during the final 4 wk of confinement did not differ (P greater than .05) among groups with steroid implants. The GnRH-KLH conjugate is an effective immunogen in heifers, leading to suppression of reproductive activity. The depression of weight gain that attends development of anti-GnRH titers may be reversed by use of implants that contain anabolic steroids.  相似文献   

16.
The purpose of this research was to compare the frequency of aggressive behavior's in beef bulls actively immunized against gonadotropin-releasing hormone relative to contemporary nonimmunized control bulls and surgically castrated steers. Eight males were assigned to each ofthese treatments in each of 4 yr. Immunized males were treated with a GnRH-keyhole-limpet hemocyanin (KLH) conjugate at approximately 4 mo of age. A secondary (booster) immunization was administered at 12 mo. Steers were castrated at 4 mo of age. Animals in each treatment in each year were housed as a single group prior to testing. At approximately 16 mo of age, each group of eight animals was placed in a 10- x 16-m enclosure for 20 min on five occasions at 2 to 3 d intervals. An observer recorded butts initiated by each animal as well as participation in bouts of sparring. Relative to control bulls, immunocastration reduced the frequency of butts initiated (P < 0.05) and participation in sparring bouts (P < 0.05) to levels typically observed in steers (P > 0.05). These observations indicate that active immunization against GnRH reduces the incidence of aggressive behavior in male beef cattle and are consistent with our postulate that immunoneutralization of GnRH is an effective alternative to surgical castration in the management of beef cattle.  相似文献   

17.
Yorkshire boars were used to evaluate the influence of duration of photoperiod and hemicastration on growth and testicular and endocrine functions. At 10 wk of age, 5 hemicastrate (HC) and 5 intact (I) boars were assigned to either 8 or 16 hr of light daily until 6 mo of age. Body weights were recorded biweekly throughout the experiment. Venous cannulae were placed in all boars at 6 mo of age, and serum was collected at 30 min intervals from 0800 to 2000 hr. Gonadotropin releasing hormone (GnRH) was infused at 2000 hr (50 micrograms) and at 2030 hr (250 micrograms), and samples of serum were collected until 2400 hr. The following day, all boars were castrated, and the weights and sperm content of the testes and epididymides were determined. At castration, all pigs were given implants containing testosterone. Two weeks later, pigs were again canulated, and serum was obtained at 15 min intervals for 2 hr. Growth of boars was not significantly affected by duration of photoperiod or number of testes. Duration of photoperiod did not affect weight or sperm content of testes or epididymides. Hemi-castrated boars had greater testicular (P less than .01) and capita-corpora (C-C) epididymal weights (P less than .05) and more testicular and C-C sperm (P less than .01) per testis. Neither average concentrations of luteinizing hormone (LH) nor number and amplitude of pulses of LH were affected by photoperiod treatment. However, HC boars had greater average concentrations of LH (P less than .05) than I boars (.71 +/- .05 vs .52 +/- .05 ng/ml). Hemicastrated boars in 16 hr light daily had greater concentrations of FSH in serum (P less than .05) than 8I, 8HC, and 16I boars. Intact and HC boars had similar concentrations of prolactin (PRL) and testosterone. Similarly, concentrations of PRL and testosterone were not affected by duration of photoperiod. Secretion of LH and testosterone after treatment with GnRH was not significantly affected by duration of photoperiod. In general, HC boars released more LH in response to GnRH treatment than I boars. Concentrations of LH were greater (P less than .05) in HC than I boars at .5, 1, 2, and 3 hr after GnRH and tended (P less than .10) to be elevated at 1.5, 2.5, 3.5 and 4 hr after GnRH. The FSH response to GnRH was greater (P less than .05) for 16HC than 8I, 8HC, or 16I boars.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
The objectives of this study were to evaluate the effects of immunization against recombinant GnRH fusion proteins and growth promotants on onset of puberty, feedlot performance, and carcass characteristics of beef heifers. Heifers were immunized against an ovalbumin fusion protein containing 7 GnRH peptides (oGnRH, n = 12), a thioredoxin fusion protein containing 7 GnRH peptides (tGnRH, n = 12), a combination of oGnRH plus tGnRH (otGnRH, n = 12), or a combination of ovalbumin and thioredoxin (control, n = 11). Each heifer received a primary immunization containing 1 mg of protein in 1 mL of adjuvant injected into the mammary gland at wk 0 (mean age = 38 wk) and booster immunizations at wk 6 and 12. Six heifers within each treatment received Synovex H implants at wk -2. Weekly blood samples were collected from wk -2 to 26 for determination of serum progesterone concentrations and GnRH antibody titers. In GnRH-immunized heifers, GnRH antibody titers increased after the first booster injection, peaked after the second booster injection, and remained elevated through the end of the study (P < 0.01). Heifers immunized against oGnRH achieved greater (P < 0.05) GnRH antibody titers than tGnRH heifers but did not differ (P = 0.20) from otGnRH heifers. During the 26-wk study, ovulation was prevented (P < 0.05) in 10 out of 12, 12 out of 12, 11 out of 12, and 0 out of 11 tGnRH, oGnRH, otGnRH, and control heifers, respectively. At slaughter, uterine weights were lighter (P < 0.01) for GnRH-immunized heifers than control heifers. Synovex H-implanted heifers had greater (P < 0.05) ADG from wk -2 to 26, greater LM area, and lesser percentages of KPH, yield grade, and quality grade than nonimplanted heifers, regardless of the immunization treatment. Immunization against GnRH fusion proteins resulted in production of antibodies against GnRH that prevented ovulation in 92% of the heifers without affecting feedlot or carcass performance. Implanting heifers with Synovex H improved ADG, LM area, and yield grade. Improvements in delivery of the oGnRH vaccine may provide a feasible alternative to surgical spaying of heifers.  相似文献   

19.
Two experiments were conducted to determine whether 1) administration of estradiol-173 (E2) implants to barrows elevates serum concentrations of E2 to levels similar to those of adult boars and subsequently affects the anterior pituitary gland IGF system and 2) administration of E2 to barrows increases serum concentrations of E2, serum and anterior pituitary concentrations of IGF-I, and relative amounts of serum and anterior pituitary IGF-binding proteins (IGFBP), vs boars and unimplanted barrows. In Exp. 1, 20 crossbred barrows (150 +/- 6 d, 103 +/- 8 kg) were administered varying number of E2 implants (0, 2, 3, 4; n = 5/group) on d 1. Blood samples were collected weekly by jugular venipuncture, beginning on d 1. Pigs were killed on d 36 when a blood sample and anterior pituitary were collected. Serum concentrations of E2 were increased (P < 0.05) in pigs with 2,3, and 4 implants vs 0 implants, but no difference (P > 0.05) was detected in serum concentrations of E2 among pigs with 2, 3, and 4 implants. Orthogonal contrasts identified that three or four E2 implants were necessary to increase serum concentrations of E2 to that similar to boars. Serum and anterior pituitary concentrations of IGF-I were increased (P < 0.05) in pigs with 2, 3, and 4 implants vs 0 implants. Relative amounts of anterior pituitary IGFBP-2 and - 5 increased (P < 0.05) in response to administration of E2. In Exp. 2, three treatment groups were randomly allotted by litter; boars (n = 11), E2-implanted barrows (n = 9), and unimplanted barrows (n = 12). A blood sample was taken from all pigs on d 1 and every 14 d thereafter. Implanted pigs received four implants on d 1. Pigs were killed on d 91, when a blood sample and anterior pituitary were collected. Mean serum concentrations of E2 were greater (P < 0.05) in implanted pigs vs boars. Mean serum concentrations of IGF-I (ng/mL) were greater (P < 0.05) in boars (238.7 +/- 6.8) than in implanted barrows (170.2 +/- 8.9) and unimplanted (150.4 +/- 6.7) pigs and tended to be greater (P = 0.08) in implanted vs unimplanted pigs. Mean anterior pituitary concentrations of IGF-I (ng/mg tissue) were greater (P < 0.05) in implanted (773.6 +/- 57.0) pigs than boars (251.9 +/- 51.6) and unimplanted (185.6 +/- 49.4) pigs. Relative amounts of serum IGFBP-2 were greater (P < 0.05) in implanted pigs vs boars. Relative amounts of anterior pituitary IGFBP-2 and -5 were greater (P < 0.05) in boars than in implanted and unimplanted pigs. These data suggest that E2 may influence components of the porcine IGF system in the serum and anterior pituitary. Other gonadal factors present in boars may additionally affect the serum and anterior pituitary IGF system.  相似文献   

20.
Three studies examined the effects of early postnatal treatment with a GnRH agonist on plasma concentrations of testosterone, dehydroepian-drosterone sulfate, 16-androstene steroids in fat and salivary glands, androstenone in fat and plasma, and testicular development of intact male pigs. The first study involved 45 7-d-old pigs assigned to three treatment groups: 1) boars administered 100 microg/kg of Lupron depot, 2) boars administered 200 microg/kg of Lupron depot, and 3) control boars receiving a saline carrier. The second study involved 20 7-d-old pigs assigned to two treatments: daily injection of 200 microL of 0.5 mg/mL Lupron from d 7 to 35 and controls treated with saline. The third study involved a total of 100 animals assigned to 10 groups of 10 based on their age at slaughter. These groups were subdivided into one of two treatments: 1) boars injected with 200 microL of 0.5 mg/mL of Lupron from d 3 to 35 and 2) control boars injected with saline. Testicular steroid hormone concentrations in plasma decreased (P < 0.01) within 7 d of GnRH agonist treatment. Following cessation of treatment, steroid levels increased to control levels and remained constant until the final rise at 5 mo. Plasma testosterone levels in the 100 microg/kg depot treatment group were higher (P < 0.05) than that of the 200 microg/kg and control group at 164 d of age. There were no differences between treatments (P > 0.05) in testicular steroid hormone levels at the end of study 2 or 3. There were no differences (P > 0.05) in concentrations of 16-androstene steroids in salivary glands between any of the treatment groups at market weight in studies 1 and 2. Fat androstenone levels measured in the third study ranged between 0.6 microg/g and 4.2 microg/g at 7 to 28 d of age. Treatment with GnRH agonist decreased plasma steroid levels and testicular development; however, by d 60 testicular size and weight were at control levels and remained similar until 180 d of age. The results of these studies indicate that daily administration of a GnRH agonist significantly decreased testicular development and steroidogenesis only during treatment, but testis growth and steroidogenesis had returned to control levels by 60 d of age in male pigs. Suppression of the early postnatal rise in testicular steroid hormones did not affect growth performance or steroid hormone levels at 5 to 6 mo of age.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号