首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, the tensile strength and elongation of polyester/viscose blended needle-punched nonwovens were analyzed. For this purpose, five different blend ratios of polyester/viscose webs were produced, cross-lapped and needled in four different mass per unit areas and three different needling/punching densities. The tensile properties of the nonwovens were determined by performing the standard test methods and the data obtained from tests were statistically analyzed in Design Expert software. In addition, a mixture process crossed regression model with two mixture components (polyester and viscose blend ratios) and two process variables (fabric mass per unit area and needling density) was developed to analyze the tensile strength and elongation of polyester/viscose blended needled nonwovens. In conclusion, the regression model indicated that the tensile strength of the needle-punched nonwovens decreases with the increase of polyester proportion in the mixture and increases with the increase in mass per unit area and punching density.  相似文献   

2.
The tensile properties of spun yarns decisively influence its performance in various mechanical processing stages. This study is primarily aimed at simultaneous analysis of two tensile properties of spun yarns namely tenacity and breaking strain, which play crucial role in determining the frequency of warping breaks. The threshold values of yarn tenacity and breaking strain required for 20’s Ne carded cotton yarn to sustain the imposed stresses and strains during warping process have been determined using a bivariate normal distribution model. This study opens up the possibility of minimizing end breakage rate in various manufacturing processes of textile industry by engineering of spun yarns devoid of potential weak spots which are responsible for breaks.  相似文献   

3.
Core spun yarns are applied for various purposes that especially require the multi-functional performance. This research reports on the core spinning effect on the yarn strength. We prepared various core yarns by combining different kinds of high tenacity filaments in core with cotton staples in sheath with various twist levels in the ring spin system. And the tensile strength was tested to investigate the contribution of the core-sheath structure to the core yarn strength. The influence of the twist level was also checked up on the relationship between the core-sheath structure and the yarn strength. Results turned out that the core-sheath weight ratio had influence on the tensile properties of the ring core-spun yarns in different ways according to the core filaments used for the yarn. Increasing the twists yielded a monotone decreasing strength for the aramid and the basalt core yarns, while the PET core yarns showed almost unchanged strength, which could be ascribed to the extensional property of the filaments.  相似文献   

4.
In this study, an artificial neural network (ANN) and a statistical model are developed to predict the unevenness of polyester/viscose blended open-end rotor spun yarns. Seven different blend ratios of polyester/viscose slivers are produced and these slivers are manufactured with four different rotor speed and four different yarn counts in rotor spinning machine. A back propagation multi layer perceptron (MLP) network and a mixture process crossed regression model (simplex lattice design) with two mixture components (polyester and viscose blend ratios) and two process variables (yarn count and rotor speed) are developed to predict the unevenness of polyester/viscose blended open-end rotor spun yarns. Both ANN and simplex lattice design have given satisfactory predictions, however, the predictions of statistical models gave more reliable results than ANN.  相似文献   

5.
In the present study, effect of OPP (oxidized PP) fraction on the mechanical and structural properties of produced fibers is investigated. Polypropylene powder without antioxidant materials was oxidized at the suitable thermal condition. The various fractions of OPP were blended with PP in the chips shape, and employed as starting material in a melt spinning machine for production of filament yarn. Then as-spun filaments were drawn and finally textured. Structural properties including density, birefringence and FTIR and physical properties consisting of shrinkage, tensile properties and crimp properties were measured. Results show that blending of OPP with virgin PP reduces tacticity and crystallinity, but it hasn’t any effect on orientation. Physical properties of drawn yarns and textured yarns were reduced with increasing of OPP fraction. Moreover, increasing of OPP fraction in blend, reduce crimp properties of textured yarn.  相似文献   

6.
In this study, an analysis on the breaking elongation mechanism of the polyester/viscose blended open-end rotor spun yarns has been carried out. In addition, a back propagation multi layer perceptron (MLP) network and a mixture process crossed regression model with two mixture components (polyester and viscose blend ratios) and two process variables (yarn count and rotor speed) are developed to predict the breaking elongation of polyester/viscose blended open-end rotor spun yarns. Seven different blend ratios of polyester/viscose slivers are produced and these slivers are manufactured with four different rotor speed and four different yarn counts in rotor spinning machine. In conclusion, ANN and statistical model both have given satisfactory predictions; however, the predictions of ANN gave relatively more reliable results than those of statistical models. Since the prediction capacity of statistical models is also obtained as satisfactory, it can also be used for breaking elongation (%) prediction of yarns because of its simplicity and non-complex structure. In addition, it is also found in this study that yarn count, rotor speed and breaking elongation of polyester-viscose fibers and the blend ratios of these fibers in the yarn have major effects on yarn breaking elongation.  相似文献   

7.
In this research, possibility of producing and processing antibacterial organic/inorganic nanocomposite polypropylene filament yarns for permanent antimicrobial efficiency has been investigated. First PP powder and inorganic nanocomposite filler were mixed in a twin screw extruder and modified masterbatch was produced. Continuous filament yarn was made by a pilot plant melt spinning machine from the blend of PP granule and various blending contents of the prepared masterbatch. Pure PP and all other combined samples showed acceptable spinnability at the spinning temperature of 240 °C and take-up speed of 2000 m/min. After producing as-spun filament yarns, samples were drawn, textured and finally weft knitted. Physical and structural properties of as-spun and drawn yarns with constant and variable draw ratios were investigated and also tensile and crimp properties of textured yarns were evaluated. Moreover, the DSC, SEM, FTIR techniques have been used for characterization of samples. Finally antibacterial efficiency of knitted samples was evaluated. The experimental results indicated that the maximum crystallinity reduction of modified drawn yarns has reached to 5 %. The observed improvement in the tensile properties of modified as-spun yarns compared to the pure PP was significant. Drawing process improved generally the tensile properties of as-spun yarns. Tensile properties of modified textured and drawn yarns were higher than the pure PP. An optimum of antibacterial activity has been observed in the sample containing 0.75 wt% of nano-filler. It is interesting that the optimum of tensile properties has been also obtained for the sample with maximum bioactivity.  相似文献   

8.
Murata vortex spinning system is based on the air jet spinning system. The vast majority of previous works deal with the properties of vortex spun (VS) yarn and the spinning system. In this study, we investigated knitted fabrics from VS yarn in comparison with fabrics from ring (RS), compact (CS) and open-end rotor (OES) spun yarns made from viscose. The effect of yarn spinning system on dimensional and physical properties of knitted fabrics was explained with specific attention to fabrics from VS yarn. Shrinkage of fabrics from VS yarn has the lowest at widthwise direction, while having the highest at lengthwise direction. It is shown that the order of fabric spirality and twist liveliness for yarns from different spinning systems are quite similar. However, relation between loop shape factor and angle of spirality is inconsistent. Angle of spirality of fabrics from VS yarn is higher than fabrics from OES yarn, but lower than that of others. The bursting strength of fabrics from VS yarn is lower than that of those from RS and CS yarns and higher than that of those from OES yarn. From this study, it is also evident that fabrics from VS yarn have the lowest pilling tendency and highest resistance to abrasion.  相似文献   

9.
This work investigated the effects of date palm leaf fiber (DPLF) content on the thermal and tensile properties; and morphology of compatibilized polyolefin ternary blend. Recycled polyolefin ternary blend consisting of low density polyethylene (RLDPE), high density polyethylene (RHDPE) and polypropylene (RPP) were fabricated at different parts per hundred resin (phr) of DPLF. Maleic anhydride grafted polyethylene (MAPE) was used as compatibilizer to enhance the adhesion between filler and polymer matrix. The composites were prepared using melt extrusion and tests samples were produced via injection molding process. Thermal conductivity results showed that as much as 11 % reduction in thermal conductivity was achieved with the incorporation of 30 phr DPLF. Highest tensile strength was observed with the incorporation of 10 phr DPLF. The elongation at break was reduced with the addition of DPLF due to impediment of chain mobility by the fillers. Initial degradation temperature increased with the addition of DPLF. Hence, it is concluded that DPLF can be used to develop green and thermally insulating composites. It is hoped that the present results will stimulate further studies on the thermally insulative materials based on natural fibers reinforced polymer composites for applications in the building industries.  相似文献   

10.
PLA/LPCL/HPCL blend fibers composed of poly (lactic acid) (PLA), low molecular weight poly (ɛ-caprolactone) (LPCL), and high molecular weight poly (ɛ-caprolactone) (HPCL) were prepared by melt blending and spinning for bioabsorbable filament sutures. The effects of blending time and blend composition on the X-ray diffraction patterns and tensile properties of PLA/LPCL/HPCL blend fibers were characterized by WAXD and UTM. In addition, the effect ofin vitro degradation on the weight loss and tensile properties of the blend fibers hydrolyzed during immersion in a phosphate buffer solution at pH 7.4 and 37°C for 1–8 weeks was investigated. The peak intensities of PLA/LPCL/HPCL blend fibers in X-ray diffraction patterns decreased with an increase of blending time and LPCL contents in the blend fibers. The weight loss of PLA/LPCL/HPCL blend fibers increased with an increase of blending time, LPCL contents, and hydrolysis time while the tensile strength and modulus of the blend fibers decreased. The tensile strength and modulus of the blend fibers were also found to be increased with an increase of HPCL contents in the blend fibers. The optimum conditions to prepare PLA/LPCL/HPCL blend fibers for bioabsorbable sutures are LPCL contents of 5 wt%, HPCL contents of 35 wt%, and blending time of 30 min. The strength retention of the PLA/LPCL/HPCL blend fiber prepared under optimum conditions was about 93.5% even at hydrolysis time of 2 weeks.  相似文献   

11.
Intra-layer and inter-layer hybrid composite laminates were made with epoxy resin and compositions were varied in six different proportions. In-plane compressive mechanical properties were studied using finite element analysis and experiments, and the results found were in good agreement. Properties of intra-layer and inter-layer hybrids were compared with plain carbon/epoxy and plain glass/epoxy composites, and a comparison among themselves was also made. It was found that intra-layer hybrids to some extent exhibit better compressive properties compared to inter-layer hybrids. Percentage enhancement in compressive failure strain was noticed. Negative hybrid effects on compressive strength was noticed for both intra-layer and inter-layer hybrid configurations. It was found that proportion of carbon fiber content plays a key role in determining the compressive properties. According to macro-scale observation all composite laminates failed catastrophically under compressive loading. SEM observation depicted that under compressive loading carbon fibers break first followed by glass fiber.  相似文献   

12.
In this study, the dimensional and some physical properties of plain knitted fabrics made from 50/50 bamboo/cotton blended yarns are investigated. In order to see the differences and similarities, the results are then compared with those for similar fabrics knitted from 50/50 conventional viscose/cotton and 50/50 modal/cotton blended yarns. Each fabric type was produced with three different stitch lengths. After all fabrics were dyed under identical dyeing conditions, they were subjected to dry and full relaxation treatments. For dimensional properties of fabrics, course, wale and stitch densities were measured. Then, by calculating statistically best-fit lines passing both through the experimental points and the origin, dimensional constants i.e. k values were predicted in terms of the fiber types. The result show that each fabric type knitted from bamboo/cotton, viscose/cotton and modal/cotton blended yarns behaves in a similar manner. However, in both dry and fully relaxed states, the modal/cotton knitted fabrics tend to have slightly higher k values than the bamboo/cotton and viscose/cotton knitted fabrics. For physical properties, fabric weight per unit area, thickness, bursting strength, air permeability and pilling were evaluated. The results show that the weight, thickness and air permeability values are independent of the fiber type. Plain knitted fabrics from modal/cotton blended yarns have the highest bursting strength values. Plain knitted fabrics from bamboo/cotton blended yarns tend to pill less.  相似文献   

13.
Semicrystalline poly(ethylene terephthalate) (cPET)/amorphous poly(ethylene terephthalate) with isophthalic acid (aPET) blends with 100/0, 75/25, 50/50, 25/75, and 0/100 by weight ratios were dissolved in a mixture of trifluoroacetic acid (TFA)/methylene chloride (MC) (50/50, v/v) and electrospun via the electrospinning technique. Solution properties such as solution viscosity, surface tension and electric conductivity were determined. The solution viscosity slightly decreased as aPET content increased, while there was no difference in surface tension with respect to aPET composition. The characteristics of the electrospun cPET/aPET blend nonwovens were investigated in terms of their morphology, pore size and gas permeability. All these measurements were carried out before and after heat treatment for various blend weight ratios. The average diameter of the fibers decreased with increasing aPET composition due to the decrease in viscosity. Also, the morphology of the electrospun cPET/aPET blend nonwovens was changed by heat treatment. The pore size and pore size distribution varied greatly from a few nanometers to a few microns. The gas permeability after heat treatment was lower than that before heat treatment because of the change of the morphology.  相似文献   

14.
This paper discusses the inter fiber cohesion in man made and blended yarns. The fiber parameters such as fiber length and fineness influence the cohesion. Studies have been focused on polyester and viscose spun yarns. Though polyester and viscose yarns show similar trend in cohesion, viscose yarns exhibit better cohesion due to their serrated cross section. Studies on the effect of blend proportion of polyester cotton and polyester viscose yarns reveal that increase of polyester and viscose in the respective blends improve the inter fiber cohesion.  相似文献   

15.
In this study, the color and whiteness properties of fabrics knitted from ring, siro and compact core-spun yarns containing metal wire were investigated. In general, an increase in the metal ratio of yarns causes a decrease in the whiteness and color strengths of fabrics. In our study, spinning method had no statistically significant effect on either the T w or K/S values of fabrics while the effect of spinning method on the whiteness index of fabrics was briefly observed. Fabrics knitted from siro spun yarns showed higher whiteness properties than those of fabrics knitted from compact and ring spun yarns. This might be explained by the superior covering effectiveness of the siro spinning method on metal wire.  相似文献   

16.
This paper is aiming to develop high shrinkable differential shrinkage and mixed fibre nylon composite yarns by applying the high shrinkable polyester manufacturing technology. The wet and dry thermal shrinkages and mechanical properties of developed nylon composite yarns are measured and discussed with processing factors in the spinning and texturing processes. And the effects of the processing factors on the physical properties of high shrinkable nylon composite yarns are investigated. For this purpose, twenty seven nylon 30d/12f SDY were prepared with variation of spinning temperature, 2nd godet roller temperature and draw ratio on the spinning machine. The optimum spinning condition which showed maximum wet thermal shrinkage and stress was determined and high shrinkable nylon 30d/12f SDY spun under this optimum condition used as a core and three kinds of regular nylon filaments used as sheath were processed on the texturing machine with variation of 1st and 2nd heater temperatures. The optimum texturing process condition was decided through analysis of dry thermal shrinkage of these core and sheath nylon filaments. Finally, high shrinkable differential shrinkage and mixed fibre nylon composite yarns were made under the optimum texturing condition on the texturing machine, its wet thermal shrinkage was 13.8 %, which was much more higher than that of regular nylon composite yarns. The differential shrinkage effect of the developed nylon composite yarns was found in the yarn surface and cross section profiles by microscope and SEM.  相似文献   

17.
The effects of alkali (aqueous NaOH and KOH solutions) pre-treatment on dye exhaustion, color values, color fastness, tensile and surface properties of lyocell yarns were investigated. Dye exhaustion and color yield of lyocell yarns increased by increasing alkali concentrations. The lyocell yarns showed weight loss due to the decrease in carboxyl groups during alkali pre-treatment. The tensile strengths of lyocell yarns decreased with the increase of alkali concentrations because of the decrement of yarn diameter by weight loss the open twist spirals, and the increased volume of lyocell yarns after alkali pre-treatment. The washing and perspiration fastness results of untreated lyocell yarns were better than alkali pre-treated lyocell yarns, while the light fastness results of untreated and alkali pre-treated samples were similar.  相似文献   

18.
Blending of nylon filament with viscose can overcome the drawbacks of these yarns. Thermoplastic and thermoset filament yarns can be blended in air-jet texturising method. The characteristics of nylon/viscose blended filament yarns are required to be understood in order to convert them in to useful products. Therefore, nylon/viscose blended yarns in different proportions were produced using nylon 6 and viscose filament yarns in air jet texturising machine. The textured yarns were also produced in dry and pre-wet conditions to understand the effect of water on textured yarn characteristics. It was found that the loops frequency, bulkiness of nylon/viscose blended textured yarns increase with increase in viscose proportion. The Loops stability, tenacity and breaking elongation decrease with increase in viscose proportion. Pre-wet textured yarn show higher loops, bulkiness, and good loop stability than their corresponding dry textured yarns.  相似文献   

19.
PLA/LPCL/HPCL blends composed of poly(lactic acid) (PLA), low molecular weight poly(ε-caprolactone) (LPCL), and high molecular weight poly(ε-caprolactone) (HPCL) were prepared by melt blending for bioabsorbable filament sutures. The effects of blend composition and blending time on the ester interchange reaction by alcoholysis in the PLA/LPCL/HPCL blends were studied. Their thermal properties and the miscibility due to the ester interchange reaction were investigated by1H-NMR, DSC, X-ray, and UTM analyses. The hydroxyl group contents of LPCL in the blends decreased by the ester interchange reaction due to alcoholysis. Thus, the copolymer was formed by the ester interchange reaction at 220 °C for 30–60 minutes. The thermal properties of PLA/LPCL/HPCL blends such as melting temperature and heat of fusion decreased with increasing ester interchange reaction levels. However, the miscibility among the three polymers was improved greatly by ester interchange reaction. Tensile strength and modulus of PLA/LPCL/HPCL blend fibers increased with increasing HPCL content, while the elongation at break of the blend fibers increased with increasing LPCL content.  相似文献   

20.
Spirality is one of the major potential problems in knitted fabrics and garments. It affects the aesthetics and physical properties of the garment produced, such as the seam displacement, shape retention, pattern distortion and sewing difficulties. In this paper, a comparative study has been carried out to evaluate the physical performance of 100 % cotton knitted fabrics and garments produced by the modified low twist and conventional ring yarns through the actual wearing and washing trials. Experimental results showed that the properties of side seam displacement, fabric spirality, dimensional stability and skewness change of the T-shirts and sweaters made by the modified single yarns are comparable to those of garments made from the control plied yarns but much improved when compared to those from the control single yarns. In addition, the pilling resistance and bursting strength of the knitted fabrics made by the modified single yarns can still maintain a reasonably high level at a low yarn twist.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号