首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Bats are hosts of diverse coronaviruses (CoVs) known to potentially cross the host–species barrier. For analysing coronavirus diversity in a bat species‐rich country, a total of 421 anal swabs/faecal samples from Costa Rican bats were screened for CoV RNA‐dependent RNA polymerase (RdRp) gene sequences by a pancoronavirus PCR. Six families, 24 genera and 41 species of bats were analysed. The detection rate for CoV was 1%. Individuals (n = 4) from four different species of frugivorous (Artibeus jamaicensis, Carollia perspicillata and Carollia castanea) and nectivorous (Glossophaga soricina) bats were positive for coronavirus‐derived nucleic acids. Analysis of 440 nt. RdRp sequences allocated all Costa Rican bat CoVs to the α‐CoV group. Several CoVs sequences clustered near previously described CoVs from the same species of bat, but were phylogenetically distant from the human CoV sequences identified to date, suggesting no recent spillover events. The Glossophaga soricina CoV sequence is sufficiently dissimilar (26% homology to the closest known bat CoVs) to represent a unique coronavirus not clustering near other CoVs found in the same bat species so far, implying an even higher CoV diversity than previously suspected.  相似文献   

2.
Rabies is caused by infection with a lyssavirus. Bat rabies is of concern for both public health and bat conservation. The current method for lyssavirus prevalence studies in bat populations is by oral swabbing, which is invasive for the bats, dangerous for handlers, time‐consuming and expensive. In many situations, such sampling is not feasible, and hence, our understanding of epidemiology of bat rabies is limited. Faeces are usually easy to collect from bat colonies without disturbing the bats and thus could be a practical and feasible material for lyssavirus prevalence studies. To further explore this idea, we performed virological analysis on faecal pellets and oral swabs of seven serotine bats (Eptesicus serotinus) that were positive for European bat 1 lyssavirus in the brain. We also performed immunohistochemical and virological analyses on digestive tract samples of these bats to determine potential sources of lyssavirus in the faeces. We found that lyssavirus detection by RT‐qPCR was nearly as sensitive in faecal pellets (6/7 bats positive, 86%) as in oral swabs (7/7 bats positive, 100%). The likely source of lyssavirus in the faeces was virus excreted into the oral cavity from the salivary glands (5/6 bats positive by immunohistochemistry and RT‐qPCR) or tongue (3/4 bats positive by immunohistochemistry) and swallowed with saliva. Virus could not be isolated from any of the seven faecal pellets, suggesting the lyssavirus detected in faeces is not infectious. Lyssavirus detection in the majority of faecal pellets of infected bats shows that this novel material should be further explored for lyssavirus prevalence studies in bats.  相似文献   

3.
Bat rabies cases are attributed in Europe to five different Lyssavirus species of 16 recognized Lyssavirus species causing rabies. One of the most genetically divergent Lyssavirus spp. has been detected in a dead Miniopterus schreibersii bat in France. Brain samples were found positive for the presence of antigen, infectious virus and viral RNA by classical virological methods and molecular methods respectively. The complete genome sequence was determined by next‐generation sequencing. The analysis of the complete genome sequence confirmed the presence of Lleida bat lyssavirus (LLEBV) in bats in France with 99.7% of nucleotide identity with the Spanish LLEBV strain (KY006983).  相似文献   

4.
Hendra virus (HeV) causes potentially fatal respiratory and/or neurological disease in both horses and humans. Although Australian flying‐foxes of the genus Pteropus have been identified as reservoir hosts, the precise mechanism of HeV transmission has yet to be elucidated. To date, there has been limited investigation into the role of haematophagous insects as vectors of HeV. This mode of transmission is particularly relevant because Australian flying‐foxes host the bat‐specific blood‐feeding ectoparasites of the genus Cyclopodia (Diptera: Nycteribiidae), also known as bat flies. Using molecular detection methods, we screened for HeV RNA in 183 bat flies collected from flying‐foxes inhabiting a roost in Boonah, Queensland, Australia. It was subsequently demonstrated that during the study period, Pteropus alecto in this roost had a HeV RNA prevalence between 2 and 15% (95% CI [1, 6] to [8, 26], respectively). We found no evidence of HeV in any bat flies tested, including 10 bat flies collected from P. alecto in which we detected HeV RNA. Our negative findings are consistent with previous findings and provide additional evidence that bat flies do not play a primary role in HeV transmission.  相似文献   

5.
Bats are considered as the reservoirs of several emerging infectious disease, and novel viruses are continually found in bats all around the world. Studies conducted in southern China found that bats carried a variety of viruses. However, few studies have been conducted on bats in northern China, which harbours a diversity of endemic insectivorous bats. It is important to understand the prevalence and diversity of viruses circulating in bats in northern China. In this study, a total of 145 insectivorous bats representing six species were collected from northern China and screened with degenerate primers for viruses belonging to six families, including coronaviruses, astroviruses, hantaviruses, paramyxoviruses, adenoviruses and circoviruses. Our study found that four of the viruses screened for were positive and the overall detection rates for astroviruses, coronaviruses, adenoviruses and circoviruses in bats were 21.4%, 15.9%, 20% and 37.2%, respectively. In addition, we found that bats in northern China harboured a diversity of novel viruses. Common Serotine (Eptesicus serotinu), Fringed long‐footed Myotis (Myotis fimriatus) and Peking Myotis (Myotis pequinius) were investigated in China for the first time. Our study provided new information on the ecology and phylogeny of bat‐borne viruses.  相似文献   

6.
The intensification of dog, cat and livestock vaccination campaigns significantly reduced rabies cases in humans and domestic animals in Ceará State, Brazil. However, sylvatic animals—bats (order Chiroptera), wild canids, raccoons and non‐human primates— remain as reservoirs for the virus. Our hypothesis is that surveillance and monitoring of rabies virus in bats, especially passive surveillance, is of fundamental importance, besides the implementation of health education and strengthening of surveillance actions in humans exposed to aggressions. Thus, we assessed the occurrence of rabies virus in animals focusing on bats, before and after launching of the Sylvatic Rabies Surveillance Program in 2010. Surveillance data from the 184 municipalities of Ceará State were analysed, collected during the periods 2003–2010 (active surveillance) and 2011–2016 (passive surveillance), respectively. A total of 13,543 mammalian samples were received for rabies diagnosis from 2003 to 2016. Of these, 10,960 were from dogs or cats (80.9%), 1,180 from bats (8.7%), 806 from other sylvatic animals (foxes, marmosets, raccoons; 6.0%) and 597 from herbivores (cattle, goats, sheep, equines, pigs; 4.4%). A total of 588 (4.3%) samples were positive for rabies. About 8.4% (99/1,180) of the bat samples were infected with rabies virus, 92 (92.9%) of these were from non‐haematophagous bat species and 7 (7.1%) from haematophagous species. The number of bat samples received and infection rates increased considerably, after a shift from active surveillance (9/355 [2.5%] samples positive), to passive surveillance (90/825 [10.9%] samples positive). Surveillance of rabies virus in bats is fundamental for human and domestic animal health in Ceará State. Bats have to be considered as targets in surveillance and control programmes. Virus lineages should be characterized to increase knowledge on transmission dynamics of sylvatic rabies virus to domestic animals and the human population, and to provide additional evidence for planning and implementation of improved control measures.  相似文献   

7.
8.
Bats have been implicated as reservoirs of relapsing fever group spirochaetes since the beginning of the last century. Recently, bat‐associated spirochaetes have been reported as human pathogens. In 1968, a spirochaete was detected in blood of the bat Natalus tumidirostris captured inside the Macaregua cave, Colombia. Data on this microorganism were never published again. The aim of this study was to evaluate the presence of Borrelia DNA in blood from bats of Macaregua cave. We performed molecular analyses using a genus‐specific real‐time PCR targeting the 16S rRNA to detect DNA of Borrelia in blood samples from 46 bats captured in the Macaregua cave. Positive samples were submitted to a battery of PCRs aiming to amply Borrelia 16S rRNA, flaB, glpQ, p66, ospC, clpA, clpX, nifS, pepX, pyrG, recG, rplB and uvrA genes. Seventeen samples were positive for Borrelia after real‐time PCR. With the exception of flaB gene, attempts to amplify further loci were unsuccessful. Nucleotide and amino acid divergences of four flaB haplotypes characterized from blood of Carollia perspicillata showed Borrelia burgdorferi sensu lato (Bbsl) as the most closely related group. A phylogenetic tree including 74 sequences of the genus confirmed this trend, since Borrelia genotypes detected in bats from Macaregua formed a monophyletic group basally positioned to Bbsl. Our results suggest that Borrelia genotypes characterized from bats roosting in the Macaregua cave might constitute a new taxon within the genus. This is the first molecular characterization of a Borrelia sp. in Colombia.  相似文献   

9.
Historically, Australia was considered free of rabies and rabieslike viruses. Thus, the identification of Australian bat lyssavirus (ABLV) in 1996 in a debilitated bat found by a member of the public precipitated both public health consternation and a revision of lyssavirus taxonomy. Subsequent observational studies sought to elaborate the occurrence and frequency of ABLV infection in Australian bats. This paper describes the taxonomic diversity of bat species showing evidence of ABLV infection to better inform public health considerations. Blood and/or brain samples were collected from two cohorts of bats (wild‐caught and diagnostic submissions) from four Australian states or territories between April 1996 and October 2002. Fresh brain impression smears were tested for ABLV antigen using fluorescein‐labelled anti‐rabies monoclonal globulin (CENTOCOR) in a direct fluorescent antibody test; sera were tested for the presence of neutralising antibodies using a rapid fluorescent focus inhibition test. A total of 3,217 samples from 2,633 bats were collected and screened: brain samples from 1,461 wild‐caught bats and 1,086 submitted bats from at least 16 genera and seven families, and blood samples from 656 wild‐caught bats and 14 submitted bats from 14 genera and seven families. Evidence of ABLV infection was found in five of the six families of bats occurring in Australia, and in three of the four Australian states/territories surveyed, supporting the historic presence of the virus in Australia. While the infection prevalence in the wild‐caught cohort is evidently low, the significantly higher infection prevalence in rescued bats in urban settings represents a clear and present public health significance because of the higher risk of human exposure.  相似文献   

10.
BackgroundBats have been considered natural reservoirs for several pathogenic human coronaviruses (CoVs) in the last two decades. Recently, a bat CoV was detected in the Republic of Korea; its entire genome was sequenced and reported to be genetically similar to that of the severe acute respiratory syndrome CoV (SARS-CoV).ObjectivesThe objective of this study was to compare the genetic sequences of SARS-CoV, SARS-CoV-2, and the two Korean bat CoV strains 16BO133 and B15-21, to estimate the likelihood of an interaction between the Korean bat CoVs and the human angiotensin-converting enzyme 2 (ACE2) receptor.MethodsThe phylogenetic analysis was conducted with the maximum-likelihood (ML) method using MEGA 7 software. The Korean bat CoVs receptor binding domain (RBD) of the spike protein was analyzed by comparative homology modeling using the SWISS-MODEL server. The binding energies of the complexes were calculated using PRODIGY and MM/GBGA.ResultsPhylogenetic analyses of the entire RNA-dependent RNA polymerase, spike regions, and the complete genome revealed that the Korean CoVs, along with SARS-CoV and SARS-CoV-2, belong to the subgenus Sarbecovirus, within BetaCoVs. However, the two Korean CoVs were distinct from SARS-CoV-2. Specifically, the spike gene of the Korean CoVs, which is involved in host infection, differed from that of SARS-CoV-2, showing only 66.8%–67.0% nucleotide homology and presented deletions within the RBD, particularly within regions critical for cross-species transmission and that mediate interaction with ACE2. Binding free energy calculation revealed that the binding affinity of Korean bat CoV RBD to hACE2 was drastically lower than that of SARS-CoV and SARS-CoV-2.ConclusionsThese results suggest that Korean bat CoVs are unlikely to bind to the human ACE2 receptor.  相似文献   

11.
Antibody detection against selected potentially zoonotic vector‐borne alphaviruses and flaviviruses was conducted on sera from bats from all six parishes in Grenada, West Indies. Sera were tested for (i) antibodies to flaviviruses West Nile virus, St. Louis encephalitis virus, Ilhéus virus, Bussuquara virus (BSQV), Rio Bravo virus and all four serotypes of dengue virus (DENV) by plaque reduction neutralization test (PRNT); (ii) antibodies to alphaviruses western equine encephalitis virus, Venezuelan equine encephalitis virus and eastern equine encephalitis virus by epitope‐blocking enzyme‐linked immunosorbent assay (ELISA); and (iii) antibodies to the alphavirus chikungunya (CHIKV) by PRNT. Two species of fruit bats were sampled, Artibeus jamaicensis and Artibeus lituratus, all roosting in or within 1,000 m of human settlements. Fifteen (36%) of the 42 bats tested for neutralizing antibodies to CHIKV were positive. The CHIKV‐seropositive bats lived in localities spanning five of the six parishes. All 43 bats tested for epitope‐blocking ELISA antibody to the other alphaviruses were negative, except one positive for Venezuelan equine encephalitis virus. All 50 bats tested for neutralizing antibody to flaviviruses were negative, except one that had a BSQV PRNT80 titre of 20. The CHIKV serology results indicate that bats living close to and within human settlements were exposed to CHIKV in multiple locations. Importantly, bats for this study were trapped a year after the introduction and peak of the human CHIKV epidemic in Grenada. Thus, our data indicate that bats were exposed to CHIKV possibly during a time of marked decline in human cases.  相似文献   

12.
Species in the bacterial genus, Bartonella, can cause disease in both humans and animals. Previous reports of Bartonella in bats and ectoparasitic bat flies suggest that bats could serve as mammalian hosts and bat flies as arthropod vectors. We compared the prevalence and genetic similarity of bartonellae in individual Costa Rican bats and their bat flies using molecular and sequencing methods targeting the citrate synthase gene (gltA). Bartonellae were more prevalent in bat flies than in bats, and genetic variants were sometimes, but not always, shared between bats and their bat flies. The detected bartonellae genetic variants were diverse, and some were similar to species known to cause disease in humans and other mammals. The high prevalence and sharing of bartonellae in bat flies and bats support a role for bat flies as a potential vector for Bartonella, while the genetic diversity and similarity to known species suggest that bartonellae could spill over into humans and animals sharing the landscape.  相似文献   

13.
Since the emergence of Middle East respiratory syndrome coronavirus (MERS‐CoV) in 2012, there have been a number of clusters of human‐to‐human transmission. These cases of human‐to‐human transmission involve close contact and have occurred primarily in healthcare settings, and they are suspected to result from repeated zoonotic introductions. In this study, we sequenced whole MERS‐CoV genomes directly from respiratory samples collected from 23 confirmed MERS cases in the United Arab Emirates (UAE). These samples included cases from three nosocomial and three household clusters. The sequences were analysed for changes and relatedness with regard to the collected epidemiological data and other available MERS‐CoV genomic data. Sequence analysis supports the epidemiological data within the clusters, and further, suggests that these clusters emerged independently. To understand how and when these clusters emerged, respiratory samples were taken from dromedary camels, a known host of MERS‐CoV, in the same geographic regions as the human clusters. Middle East respiratory syndrome coronavirus genomes from six virus‐positive animals were sequenced, and these genomes were nearly identical to those found in human patients from corresponding regions. These data demonstrate a genetic link for each of these clusters to a camel and support the hypothesis that human MERS‐CoV diversity results from multiple zoonotic introductions.  相似文献   

14.
15.
Bats represent the largest dietary radiation in a single mammalian order, and have become an emerging model group for studying dietary evolution. Taste receptor genes have proven to be molecular signatures of dietary diversification in bats. For example, all 3 extant species of vampire bats have lost many bitter taste receptor genes (Tas2rs) in association with their dietary shift from insectivory to sanguivory. Indeed, only 8 full-length Tas2rs were identified from the high-quality genome of the common vampire bat (Desmodus rotundus). However, it is presently unknown whether these bitter receptors are functional, since the sense of taste is less important in vampire bats, which have an extremely narrow diet and rely on other senses for acquiring food. Here, we applied a molecular evolutionary analysis of Tas2rs in the common vampire bat compared with non-vampire bats. Furthermore, we provided the first attempt to deorphanize all bitter receptors of the vampire bat using a cell-based assay. We found that all Tas2r genes in the vampire bat have a level of selective pressure similar to that in non-vampire bats, suggesting that this species must have retained some bitter taste functions. We demonstrated that 5 of the 8 bitter receptors in the vampire bat can be activated by some bitter compounds, and observed that the vampire bat generally can not detect naturally occurring bitter compounds examined in this study. Our study demonstrates functional retention of bitter taste in vampire bats as suggested by cell-based functional assays, calling for an in-depth study of extra-oral functions of bitter taste receptors.  相似文献   

16.
Bats are essential to the global ecosystem, but their ability to harbour a range of pathogens has been widely discussed, as well as their role in the emergence and re‐emergence of infectious diseases. This paper describes the first report of coinfection by two zoonotic agents, rabies virus (RABV) and the fungus Histoplasma suramericanum in a bat. The bat was from the Molossus molossus species, and it was found during the daytime in the hallway of a public psychiatric hospital in a municipality in São Paulo State, southeastern Brazil. RABV infection was diagnosed by the direct fluorescent antibody test and mouse inoculation test. The fungus was isolated by in vitro culture. Both diagnoses were confirmed by molecular techniques. Phylogenetic analysis showed that the fungus isolate had proximity to H. suramericanum in the Lam B clade, while the RABV isolate was characterized in the Lasiurus cinereus lineage. Since the M. molossus bat was found in a peri‐urban transition area (urban/peri‐urban), the possibility of cross‐species transmission of this RABV lineage becomes more plausible, considering that this scenario may provide shelter for both M. molossus and L. cinereus. These are relevant findings since there has been an increase in bat populations in urban and peri‐urban areas, particularly due to environmental modifications and anthropogenic impacts on their habitat. Thus, the detection of two zoonotic agents in a bat found in a public hospital should raise awareness regarding the importance of systematic surveillance actions directed towards bats in urban areas.  相似文献   

17.
It has been speculated that bats serve as reservoirs of a huge variety of emerging coronaviruses (CoVs) that have been responsible for severe havoc in human health systems as well as negatively affecting human economic and social systems. A prime example is the currently active severe acute respiratory syndrome (SARS)-CoV2, which presumably originated from bats, demonstrating that the risk of a new outbreak of bat coronavirus is always latent. Therefore, an in-depth investigation to better comprehend bat CoVs has become an important issue within the international community, a group that aims to attenuate the consequences of future outbreaks. In this review, we present a concise introduction to CoVs found in bats and discuss their distribution in Southeast Asia. We also discuss the unique adaptation features in bats that confer the ability to be a potential coronavirus reservoir. In addition, we review the bat coronavirus-linked diseases that have emerged in the last two decades. Finally, we propose key factors helpful in the prediction of a novel coronavirus outbreak and present the most recent methods used to forecast an evolving outbreak.  相似文献   

18.
The present study aimed to investigate the frequency of pathogenic Leptospira spp. in Brazilian bats and to determine possible risk factors associated to it. Ninety two bats of 12 species were evaluated. Whole genomic DNA from kidneys was extracted and real-time PCR specific to pathogenic Leptospira spp. was applied. Association between the frequency of specimens positive for Leptospira spp. and sex, age, bat species or family, season of collection, geographic localization and feeding habits was evaluated. The results showed that 39.13% of analyzed bats were found positive for Leptospira spp. Nine bat species had at least one positive result. There was no association among the evaluated variables and frequency of pathogenic Leptospira spp. Although the limitations due to lack of Leptospira spp. isolation, leptospiral carriage was demonstrated in bats of different species from southern Brazil, which reinforces the need for surveillance of infectious agents in wild animals.  相似文献   

19.
《African Zoology》2013,48(2):350-361
The yellow-bellied Scotophilus dinganii is the only African house bat species reported to occur in the Arabian Peninsula. Formerly, the Arabian house bats were referred to similar-looking white-bellied S. leucogaster, which differs from S. dinganii mainly by the colour of ventral pelage. We reassessed the taxonomic status of house bats from southwestern Yemen using genetic and morphological analyses. The Yemeni specimens clustered within two distantly related mitochondrial lineages of African Scotophilus: East African S. aff. dinganii, which is a paraphyletic group to S. dinganii s.str. from South Africa, andWest African S. leucogaster. This taxonomic assignation was based on published sequences of reference museum specimens. Differences in external and cranial measurements also indicated the presence of two distinct taxa in Yemen. The Yemeni and comparative Ethiopian populations of S. aff. dinganii showed close morphological similarity to the type specimen of S. nigrita colias from Kenya. Because the Yemeni and Ethiopian yellow-bellied house bats cannot be synonymized with S. dinganii, the designation S. colias is tentatively suggested for this particular East African and Yemeni lineage of the S. dinganii complex. However, final correspondence of this name with the respective populations or applicability of some of other available names must yet be explored. Based on environmental differences of the Yemeni localities of origin, S. colias appears to be ecologically delimited to mountainous habitats, while S. leucogaster to harsh lowland deserts. This is consistent with known habitats of African populations of both species.  相似文献   

20.
A large population of straw‐coloured fruit bats (Eidolon helvum) colonizes a prime area in the city of Accra where several public amenities are located. Although the colony is positive to several zoonotic viruses including the Ebola virus, there is limited information on the social dimensions of the existence of the bats. As a step towards effective response to health risk and conservation of the bats, this study assessed the knowledge and attitude of the community living around the bats and determined their level of environmental and public health consciousness. The community generally lacks interest in bat bushmeat consumption but had low knowledge and disease risk perception of the bats. Despite major campaigns during the recent Ebola outbreak in West Africa, elements of risky behaviour including disbelief and disregard for some preventive measures and lack of interest in post‐bat exposure prophylaxis were recorded among a limited proportion of the community. There was the need to focus public health education on the community and possibly others that may have E. helvum colonies in West Africa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号