首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The influence of undersown green manure crops for fallows – set-aside land – in view of vegetation-development and the dynamic of nitrate
In view of the establishment of rotational fallows - set-aside land - as well as the bridging of the vegetation-free winter period the suitability of different undersown grasses and legumes m winter cereals was investigated in field trials. Festuca rubra developed well in winter barley and winter wheat. The success of the cultivation of Lolium perenne, Trifolium pratense and Trifolium repens in winter cereals is uncertain because of the risk of light and water deficiences. Dactylis glomerata caused an negative influence on the yield of the cover crop. During the fallow period only low levels of nitrate could be found in the soil. Under fallow tilled repeatedly complete fallow- a nitrate accumulation could be observed during the fallow period. After ploughing up the fallow vegetation, nitrate concentrations - depth 0–150 cm – increased to 60 kg NO3-N · ha-1 after the natural fallow without seeding, between 60 and 130 kg NO3-N · ha-1 after Trifolium and between 160 and 210 kg NO3-N · ha-1 after complete fallow. Lowest nitrate levels were observed from the grass-sites. Undersown Festuca rubra seems to be the best choice in order to compete with weeds, to form a dense sod and to prevent nitrate leaching. In general a seed rate of 8 kg · ha-1 can be recommended.  相似文献   

2.
Field studies on nitrogen dynamics after cultivation of grain legumes Field trials were conducted in order to study the nitrogen dynamics in soil after cultivation of grain legumes and to investigate the possibility of reduction of nitrate leaching due to catch crops or suitable following crops. Accordingly, in 1989/90 soil samples were taken on 12 farms at depths of 0–80 cm in 4 week intervals and analysed for NO3-N. Furthermore, Brassica napus and Sinapis alba were sown after grain legumes on two farms, and at the experimental station Roggenstein field trials were carried out with different catch crops (Sinapis alba, Raphanus sativus, Lolium multiflorum and Pisum sativum) after grain peas. Considerable amounts of nitrogen (100–150 kg N/ha) in the form of crop residues (straw and grains) were left on the fields cultivated with grain legumes. After harvesting, nitrate content in the soil layer 0–80 cm was on grain legume fields almost twice as high as on fields cultivated with winter wheat. During autumn, the soil nitrate contents increased remarkably. In the soil layer 0–80 cm the maximum values rose to 140 kg N/ha after peas, to 120 kg N/ha after faba beans and only to 65 kg N/ha after winter wheat. The more intensive N-mineralization after peas compared to faba beans is due to a lower C/N-ratio of crop residues and an earlier harvest time of 2-3 weeks of peas. In winter extremely high N-leaching was measured on fallow land after cultivation of grain legumes. Cultivation of catch crops makes it possible to retain up to 110 kg N/ha in plant material. Raphanus sativus and Sinapis alba are most suitable for this purpose due to their high N-uptake even when they are sown late. Ploughing up catch crops in autumn results in a fast mineralization of their immobilized nitrogen. This implies the risk of N-leaching into deeper soil layers during winter, depending on the amount of rainfall and water capacity of the soil. Particularly on soils with low water capacity, early N-mineralization needs to be prevented by cultivating catch crops which freeze off or survive in winter. Cultivation of Brassica napus (winter form) after grain legumes leads to an extensive uptake of soil nitrate before the beginning of the seepage period, and therefore almost excludes enhanced N-leaching.  相似文献   

3.
Effects of preceding "break crops" on winter wheat and influence of cultural practices
Between 1979—83 there was tested the effect of 5 "break crops" (biennial alfalfa, clover-grass, faba bean, winter-rape, silomaize) on succeeding winter wheat and the interaction with changed cultural practices such as N-fertilization and conventional or reduced primary tillage (plough ↔ rotary tiller).
After the break crops wheat yield decreased within a range of 4 dt/ha as follows: alfalfa → beans → rape/ clover-grass/maize. Raising N-fertilization hardly allowed to improve the value of the break crops; most likely that of maize and with rotavating. Adaption of N-dressings promised greater influence.
The manner of primary tillage exerted stronger influence on the yield than the level of N-fertilization. Concerning long-term yield the rotary tiller equaled the plough after 4 break crops; after faba bean it was superior. Increasing N-fertilization tendentially favoured the rotary tiller after bean, rape and maize. Using the rotary tiller, at beginning of growth there may be calculated on 15 % higher NO3-values and/or higher N-mineralization or N-transformation.
Eyespot disease could not be prevented sufficiently and purposefully by an other break crop, N-fertilization or primary tillage. Recurrent rotavating suppressed weed less than ploughing.  相似文献   

4.
In organic grain production, weeds are one of the major limiting factors along with crop nitrogen deficiency. Relay intercropping of forage legume cover crops in an established winter cereal crop might be a viable option but is still not well documented, especially under organic conditions.Four species of forage legumes (Medicago lupulina, Medicago sativa, Trifolium pratense and Trifolium repens) were undersown in six organic wheat fields. The density and aerial dry matter of wheat, relay-intercropped legumes and weeds were monitored during wheat-legume relay intercropping and after wheat harvest until late autumn, before the ploughing of cover crops.Our results showed a large diversity of aerial growth of weeds depending on soil, climate and wheat development. The dynamics of the legume cover crops were highly different between species and cropping periods (during relay intercropping and after wheat harvest). For instance, T. repens was two times less developed than the other species during relay intercropping while obtaining the highest aerial dry matter in late autumn. During the relay intercropping period, forage legume cover crops were only efficient in controlling weed density in comparison with wheat sole crop. The control of the aerial dry matter of weeds at the end of the relay intercropping period was better explained considering both legumes and wheat biomasses instead of legumes alone. In late autumn, 24 weeks after wheat harvest, weed biomass was largely reduced by the cover crops. Weed density and biomass reductions were correlated with cover crop biomass at wheat harvest and in late autumn. The presence of a cover crop also exhibited another positive effect by decreasing the density of spring-germinating annual weeds during the relay intercropping period.  相似文献   

5.
To gain information about the possible use of legume cover crops as an alternative and sustainable weed-control strategy for winter wheat (Triticum aestivum L.), an experiment was conducted at two sites in the Swiss Midlands in 2001/2002. Under organic farming conditions winter wheat was direct-drilled into living mulches established with four different legume genotypes or into control plots without cover crops. Compared to NAT (control plots without cover crops but with a naturally establishing weed community), white clover (Trifolium repens L.), subclover (Trifolium subterraneum L.), and birdsfoot trefoil (Lotus corniculatus L.) reduced the density of monocotyledonous, dicotyledonous, spring-germinating, and annual weeds by the time of wheat anthesis. Strong-spined medick (Medicago truncatula Gaertner) was less efficient in this regard. While the grain yield was reduced by 60% or more for all legumes when compared to NOWEED (control plots kept weed-free), a significant negative correlation between the dry matter of the cover crop and weeds as well as between the cover crop and the winter wheat was observed by the time of wheat anthesis. The effect of manuring (60 m3 ha−1 liquid farmyard manure) was marginal for weeds and cover crops but the additional nutrients significantly increased total winter wheat dry matter and grain yields. The suppression achieved by some legumes clearly demonstrates their potential for the control of weeds in such cropping systems. However, before living legume cover crops can be considered a viable alternative for integrated weed management under organic farming conditions, management strategies need to be identified which maximise the positive effect in terms of weed control at the same time as they minimise the negative impact on growth and yield of winter wheat.  相似文献   

6.
In order to obtain information about the impact of legume cover crops on the weed community in organic farming, winter wheat (Triticum aestivum L.) was directly drilled in rows 0.1875 and 0.3750 m apart in living mulches that consisted of Trifolium repens L. (TRFRE), T. subterraneum L. (TRFSU), Medicago truncatula Gaertner (MEDTR), and Lotus corniculatus L. (LOTCO). A control treatment without cover crops (NAT, the site‐specific weed community) was also established. The vegetation between the wide rows was either mulched or left undisturbed. The effect of liquid farmyard manure (60 m3 ha−1) was also tested. TRFRE, TRFSU, and LOTCO effectively suppressed Poa annua L. and Matricaria recutita L. at site 1 and P. annua, Capsella bursa‐pastoris (L.) Med., and Stellaria media (L.) Vill. at site 2 when compared with NAT. MEDTR, which died during the winter, provided little weed suppression. Mulching significantly suppressed dicotyledonous weed species, but favoured Poa trivialis L. No manure effect was observed. Winter hardy legume cover crops contribute to weed suppression in winter wheat. However, careful evaluation of cover crop × weed × management interactions is necessary to understand the risk for the establishment of problematic weeds.  相似文献   

7.
Current agricultural practice favours winter cover crops, which can not only optimize N management in field crop rotation; but also affect subsequent crops. Three field experiments were carried out in Eastern Slovenia to examine the effects of Italian ryegrass (Lolium multiflorum Lam.), winter rape (Brassica napus ssp.oleifera (Metzg.) Sinsk), subclover (Trifolium subterraneum L.), and crimson clover (Trifolium incarnatum L.) as winter cover crops on the mineral N (Nmin) content of soil and on the yield and N content of subsequent maize (Zea mays L.), fertilized with 120 kg N ha−1. Italian ryegrass and winter rape decreased soil Nmin contents before winter and in spring more than both clovers. In contrast, clovers accumulated significantly higher amounts of N in organic matter and had lower C/N ratios than winter rape and especially Italian ryegrass. In comparison to the control (bare fallow without cover crop), clovers increased the whole above ground maize dry matter yield, maize grain yield and N contents in whole above ground plants and in grain. The yields and N contents of maize following winter rape were on the same level as the control, while yields and N contents of maize following Italian ryegrass were, in two of the experiments, at the same level as the control. The effects of Italian ryegrass on the maize as subsequent crop in the third experiment were markedly negative. Maize in the control treatment exploited N much more efficiently than in treatments with cover crops. Therefore, cover crop N management should be improved, especially with a view to optimizing the timing of net N mineralization in accordance with the N demands of the subsequent crop.  相似文献   

8.
In a crop rotation trial, conducted from 1985 to 1988 at TU-Munich's research station in Roggenstein, the transfer of grain legume nitrogen was evaluated in crop rotations containing fababeans and dry peas as well as oats (reference crop) and winter wheat and winter barley as following crops. The results obtained can be summarized as follows: Dinitrogen fixation by fababeans ranged from 165 to 240 kg N ha1, whereas N2-fixation by peas amounted from 215 to 246 kg N ha?1. In all seasons the calculated N-balance where only grain was removed was positive, with a net gain being on average 106 (peas) and 84 (fababeans) kg N ha?1. After the harvest of peas 202 kg N ha?1 remained on the field on average over seasons (158 kg N ha?1 in the above ground biomass and 44 kg N ha?1 as NO3-N in 0–90 cm depth). As compared to peas, fababeans left 41 kg N ha?1 less due to smaller amounts of nitrogen in the straw. After oats very small amounts of residual nitrogen (33 kg N ha?1) were detected. After the harvest of grain legumes always a very high nitrogen mineralization was observed during autumn especially after peas due to a close C/N-relationship and higher amounts of nitrogen in the straw as compared to fababeans. In comparison with fababeans, N-mineralization after the cultivation of oats remained lower by more than 50%. During winter, seepage water regularly led to a considerable decrease of soil NO3-N content. The N-leaching losses were especially high after cultivation of peas (80 kg N ha ?1) and considerably lower after fababeans (50 kg N ha?1) and oats (20 kg N ha?1). As compared to oats, a higher NO3-N content in soil was determined at the beginning of the growing period after preceding grain legumes. Therefore, winter wheat yielded highest after preceding peas (68 dt ha?1) and fababeans (60 dt ha?1) and lowest after preceding oats (42 dt ha?1). The cultivation of grain legumes had no measurable effect on yield formation of the third crop winter barley in either of the growing seasons.  相似文献   

9.
The fate of 15NH4-N labelled cattle slurry applied before sowing in September of a winter wheat crop was studied on a loamy sand soil. The aim was to quantify immobilization of slurry NH4-N into microbial biomass, the speed at which nitrate derived from the slurry NH4-N was transported down the soil profile, and the utilization of slurry NH4-N by the winter wheat crop. Cattle slurry was applied at a rate corresponding to 75 kg NH4-N ha−1 , with very little loss by volatilization (<4%) due to rapid incorporation by ploughing. The slurry amendment resulted in a doubling of soil surface CO2 flux, an index of microbial activity, over non-amended soil within the first c. 2 weeks, but ceased again after c. 4 weeks, due to depletion of the easily degradable substances, e.g. volatile fatty acids, in the slurry. Nitrification of the applied NH4-N was fast and complete by 3 weeks from application, and at this time, the maximum immobilization of slurry NH4-N into the microbial biomass (23% of applied 15NH4-N) was also observed, although no significant increase in total microbial biomass was observed. Rapid turnover of the microbial biomass quickly diluted the assimilated 15N, with only 6% of applied 15NH4-N remaining in the microbial biomass by next spring. Downwards transport of nitrate was rapid in spite of lower than normal precipitation, and slurry-derived 15NO3-N appeared in ceramic suction cups installed at 60 cm depth already 2 months after slurry application. Due to the unusually low winter precipitation in the experimental year, wheat yields were high, and the recovery of N in above-ground plant biomass derived from slurry NH4-N at harvest reached 32%. An additional 45% of the applied slurry NH4-N could be found in the soil to a depth of 100 cm (mostly in organic form in the plough layer), indicating that 23% had been lost by leaching or in gaseous form. It was concluded that although significant immobilization of slurry NH4-N did occur, this was not sufficient to prevent leaching of slurry-derived N over the winter and that the relatively high recovery of slurry-derived N in the wheat crop was due partly to lower than normal winter percolation and partly to a relatively high rooting depth on this particular site.  相似文献   

10.
Field experiments with silage maize were conducted in 1987 and 1988 on a loess-derived Luvisol in southwest Germany. Four nitrogen fertilizer treatments were compared: application of preplanting NH4 N (plus a nitrification inhibitor, dicyandiamide as Didin) and preplanting NO3-N, split application of NO3-N (preplanting and side dressed 45 days after planting) and a control without nitrogen fertilizer in 1987 and with 64 kg N ha?1 as calcium ammonium nitrate in 1988. The total amounts of soil mineral nitrogen (Nmin+ fertilizer N) were 200 kg N ha?1 in 1987 and 240 kg N ha?1 in 1988. Suction cups and tensiometer were installed at five depths and samples were taken in regular intervals. Nitrate concentrations in the suction solution steeply increased at 15 cm and 45 cm soil depth 3-4 weeks after fertilizer application (1987 up to 160mgNl?1; 1988 up to 170mgN l?1) and steeply decreased up to 75 cm depth with the onset of intensive N uptake at shooting. Ammonium concentrations in the suction solution were very low (0-0.16 mg N l?1). Compared to preplanting NCyN application, preplanting NH4-N and split NO3-N application decreased nitrate concentrations in the suction solution in spring 1987. In 1988, however, nitrate concentrations in the suction solution of preplanting NH4-N and split NO3-N application plots did not fall below 50mgNl?1 at 15 cm depth during the growing season. Nitrate concentrations of split NO3-N application increased again in autumn 1988 and hence doubled the calculated N losses by leaching during the winter months compared to preplanting N applications. At shooting, plants of the preplanting NH4-N treatment had lower nitrate concentrations in leaf sheaths compared to plants of preplanting NO3-N application. Total N uptake of maize between shooting and early grain filling of preplanting NH4-N and split NO3 -N application tended to be higher compared to preplanting NO3-N application, reflecting the higher N availability in the soil later in the season. However, final dry matter yields and N uptake were not significantly affected by N form or time of N application. Since N losses by nitrate leaching between N application and onset of N uptake by plants were negligible on the experimental site, preplanting NH4-N application and split NO3-N application showed no agronomic advantages. High amounts of side dressed NO3-N may increase nitrate leaching during the winter months, especially in years with delayed rainfall after application.  相似文献   

11.
Soils were collected from an experimental site (initiated in 1991) at which leguminous crops were grown as natural soil cover in the interspaces of a 19‐year‐old coconut plantation. Atylosia scarabaeoides, Centrosema pubescens, Calopogonium mucunoides and Pueraria phaseoloides were grown in separate plots during the rainy season and ploughed into the soil towards the end of the monsoon (in December every year). Soil samples were collected from this site at the end of the 7th year and incubated in PVC columns at 35 ± 1°C and 0.01 MPa moisture content for 36 weeks. The soils were then leached at periodic intervals for up to 36 weeks and nitrogen (N) mineralization rates and kinetics were determined by the double exponential model. The N mineralization rates were highest during the first week and decreased with time in all soils. Soils amended (in situ ploughing) with cover crops leached 191 mg kg–1 more NO3 + NO2‐N than the unamended control. The per cent organic N mineralized (total and net) and the cumulative inorganic N mineralized (NO3 + NO2‐N) varied with the amount (biomass) and type of cover crop incorporated into the soil. In general, soils amended with cover crops had greater N mineralization potentials and rate constants than the unamended control. The kinetic parameters NoS and No(1 – S) and their respective rate constants h and k also varied with the amount and type of cover crops incorporated into the soil. The results further indicated that the lignin + polyphenol : N ratio of the cover crops is extremely important in predicting the rate of decomposition and N mineralization in soils.  相似文献   

12.
Economically optimal N-fertilization as influenced by location, preceding crop, cultivation of soil, phosphatic and potassic fertilization and choice of variety.
– The economically optimal quantity of N-fertilization is mainly influenced by location, preceding crop, cultivation of soil, phosphatic and potassic fertilization and choice of variety. The optimal organization of these factors, however, to the extent that it can be influenced by the farmer, is a precondition of an effective N-fertilization.
– Depending on the above-mentioned factors the economically optimal quantity of N-fertilization shows a great variation. In the majority of cases the optimal N-quantity to winter wheat ranges between 100 and 180 kg/ha and to sugar beets between 120 and 200 kg/ha.  相似文献   

13.
Parasitic nematodes damage white clover (Trifolium repens) roots, negatively impacting forage yield and persistence. No single gene resistance to nematodes has been identified in white clover. Trifolium semipilosum (2n = 2x = 16) genotypes exhibiting either complete resistance or susceptibility to infection by the clover root-knot nematode (CRKN), Meloidogyne trifoliophila, were identified. F1 progeny (n = 92) of a pair-cross between ‘TsR’, a plant heterozygous for the resistance phenotype and ‘TsS’, a plant homozygous for the susceptible phenotype, were challenged with infective CRKN juveniles and evaluated subsequently for root galling. Segregation analysis indicated the resistance phenotype may be conferred by a single dominant allele at a locus (designated TRKR, Trifolium Root-knot Resistance) subject to segregation distortion. TsR, TsS, and bulked resistant and bulked susceptible F1 progeny (n = 12/bulk) were screened using T. repens microsatellite (SSR) markers. Three SSRs revealed polymorphism in TsR and the resistant bulk, of which prs090 and prs247 map to loci on T. repens linkage group D2. Progeny were genotyped with these three SSRs and 23 additional SSRs from T. repens groups D1 and D2. Linkage analysis in both TsR and TsS demonstrated macro-synteny between T. repens group D homoeologues and the T. semipilosum linkage group (designated DTs) containing the TRKR locus. Significant segregation distortion was detected in TsR, and recombination in the central region of the T. semipilosum linkage group was suppressed relative to T. repens in both parents. These data demonstrate the opportunities and challenges for comparative mapping in Trifolium and characterisation of loci conferring resistance to plant-parasitic nematodes.  相似文献   

14.
Hybrids between the stoloniferous Trifolium repens (2n = 4x = 32) and the rhizomatous Trifolium ambiguum (2n = 4x = 32) have been produced using T. repens as the recurrent parent. Morphological characteristics of the parent species and the F1, BC1, BC2 and BC3 hybrids were examined in a glasshouse experiment. Leaflet ratios and general plant shape indicated that the BC3 hybrid was similar to T. repens. Separation of plants into components of above- and below-ground growth showed that T. repens had a greater total plant dry weight than T. ambiguum but 24% of its dry weight was in roots compared with 22% in roots and 44% in rhizomes in T. ambiguum. The BC3 generation contained plants that were predominantly T. repens-like with stolons, but also had a small proportion of their total dry weight (3%) as rhizome, confirming the potential to produce plants that combine stoloniferous and rhizomatous growth. The proportions of rhizome and stolon varied within the BC3 generation, enabling farther selection and plant breeding. The BC3 hybrids produced similar numbers of inflorescences to T. repens however, fertility was lower, although there was some variation within the BC3 for both characters.  相似文献   

15.
为探讨小麦/玉米/大豆套作对氮素营养的种间促进机制, 采用叶片15N富积标记法研究了小麦/玉米/大豆(A1)和小麦/玉米/甘薯(A2) 2种套作系统中不同施氮水平下的土壤培肥效果和氮素转移规律。结果表明,施氮可以提高小麦、玉米的土壤总氮含量,以施纯氮150~300 kg hm-2处理最高;大豆较甘薯更有利于保持土壤肥力,施氮0、150、300和450 kg hm-2水平下种植大豆后的土壤总氮含量比种植大豆前(小麦收获后)高38.6%、20.2%、9.4%和16.7%,而种植甘薯则降低总氮含量3.1%、1.8%、14.0%和3.8%。A1系统中小麦和玉米季土壤中NO3-N含量低于A2系统,且随施氮量的增加而增加;大豆季土壤中NO3-N含量高于甘薯季。A1和A2系统均存在15N的双向转移,15N转移量随施氮量的增加而降低,且A1的15N净转移量和转移强度高于A2;A1系统中小麦、玉米和大豆的15N净转移量比A2系统的15N净转移量分别高3.3%~12.1%、27.0%~166.2%和26.2%~78.7%。玉米与小麦之间的15N净转移方向为从玉米向小麦,玉米与大豆之间的15N净转移方向为从大豆向玉米,玉米与甘薯之间的15N净转移方向为从玉米向甘薯。  相似文献   

16.
Performance of Timothy-based Grass/Legume Mixtures in Cold Winter Region   总被引:1,自引:0,他引:1  
This study sought to identify grass/legume mixtures that increase the yield and persistence of forage stands with improved nutritive quality in cold‐winter regions, compared with the standard mixture of timothy (Phleum pratense L.)/red clover (Trifolium pratense L.)/alsike clover (Trifolium hybridum L.). Timothy was mixed with either perennial ryegrass (Lolium perenne L.), meadow fescue (Festuca pratensis L.) or Kentucky bluegrass (Poa pratensis L.). The legumes in mixtures were red clover, alfalfa (Medicago sativa L.) or white clover (Trifolium repens L.). Averaged over three production years, the majority of mixtures had greater dry matter (DM) yields than the standard (8.35 t ha?1). Timothy, grown alone and in three mixtures, outyielded the standard by 19–30 %. Yield reductions in mixtures over the 3‐year period were greatest with red clover, and least with bluegrass. Mixtures with alfalfa were highest in nitrogen (28.4 g kg?1), while grasses grown alone (24.6 g kg?1) and the standard mixture (25.1 g kg?1) were the lowest in N. Mixtures with red clover or alfalfa had the least neutral detergent fibre (NDF), averaging 418 and 429 g kg?1 respectively. Mixtures including white clover were initially low in NDF at 347 g kg?1 in year 1 but increased to 550 g kg?1 in year 3 as white clover composition declined in the sward.  相似文献   

17.
Improved short‐ or long‐term fallows are considered suitable low external input technologies for maintaining productivity and sustainability of tropical smallholder upland cropping units, although comparisons on the benefits of this technology are not widely reported. A field study evaluated the impact of improved short (6 months) and long‐term fallow (18 months) using Crotalaria juncea and Tithonia diversifolia, in relation to a natural fallow of the same durations, on the productivity of maize (Zea mays), the most important upland cereal in tropical Asia, over a minor season. The use of improved fallows, especially Tithonia, increased maize yields over the Crotalaria or natural fallow. While the overall yields of maize after a long fallow were greater, the beneficial impact of the green manures was significantly higher in the short fallows. The causal factors for this trend, including biomass production of the improved fallows and possible impact on soils, along with the greater benefits of short‐term fallows for increasing maize yields in the tropics due to lower requirements of unproductive time are presented.  相似文献   

18.
Nitrogen Balance of Legume-Wheat Cropping Sequences   总被引:1,自引:0,他引:1  
In a lysimeter trial the legumes faba bean ( Vicia faba ), red clover ( Trifolium repens ), and alfalfa ( Medicago sativa ) were grown for two years, followed by winter wheat on all plots in the third year. Plots fertilized with mineral nitrogen and a rye/maize – wheat cropping sequence were included for comparisons. These four cropping sequences were replicated twice in 1982–1984 and 1985–1987, respectively. Two soils, a loamy sand and a sandy loam were used.
On average of both soils:
– N fixation during two years was 461 kg N/ha, 803 kg N/ha, and 790 kg N/ha for faba bean, red clover, and alfalfa, respectively.
– Leaching of nitrogen occurred mainly during the periods of winter fallow or, in case of the perennial legumes, after incorporation of residues into the soil and planting of wheat. Average leaching for all 6 years was 49, 28, and 29 kg ha−1 year−1 for faba bean, red clover, and alfalfa, respectively.
– In the period of wheat growth and before planting the new crop (1.5 years) in 1984/85 51–64 kg N/ha and 1986/87 68–94 kg N/ha were leached after growing legumes. Leaching was less for rye/maize fertilized with mineral N, 41 kg N/ha in 1984/85, and 51 kg N/ha in 1986/87, respectively.
– Winter wheat grown after legumes took up 18 kg N/ha < 47 kg N/ha < 65 kg N/ha on average of both soils and 2 years (1984, 1987) after faba bean, red clover, and alfalfa, respectively. This indicates a nitrogen recovery of 24–44% of the legume N potentially available, and consequently a loss by leaching from 56 to 76 %.
On the sandy loam amount of drainage water and N leaching were lower, and faba bean and wheat yields higher than on the loamy sandy soil.  相似文献   

19.
Experiments were conducted to evaluate the effect of mouldboard‐ or chisel‐ploughing and rotations on barley crops and associated weeds in a semi‐arid location. Two primary soil tillage operations and eight crop rotation‐tillage operation combinations were evaluated over two successive seasons. Drought conditions prevailed (<152 mm annual precipitation) and affected the measured parameters. Barley grown in mouldboard‐ploughed plots had higher biomass compared with chisel‐ploughed plots. Barley grain yield was greater in mouldboard‐ploughed plots in a fallow‐fallow‐barley rotation. Weed species densities varied between tillage systems and rotations. Density of Hordeum marinum, for example, was high in fallow‐barley‐fallow in chisel‐ploughed plots, and was high under more continuous fallow in mouldboard‐ploughed plots. Similar variations were also observed in weed fresh weights and in numbers of seed produced. The results describe the productivity of barley under extremely dry conditions, where an advantage for mouldboard ploughing was observed. The results also indicate the complexity of weed communities in their response towards different tillage‐rotation combinations.  相似文献   

20.
Weed competition can cause substantial maize (Zea mays L.) yield reductions. Interseeding maize with cover crops or a combination of interrow cultivation and interseeded cover crops are possible alternative methods of weed control. This study was conducted to examine the potential of interrow cultivation plus cover crops to reduce weed density in maize without reducing the grain yield. Field experiments were conducted in 1993 and 1994 at two sites in Québec to determine the effects of planting 12 cover crops with maize on weed control. Fall rye (Secale cereal L.), hairy vetch (Vicia villosa Roth), a mixture of red clover (Trifolium pratense L.) and ryegrass (Lolium multiflorum Lam), a mixture of white clover (Trifolium repens L.) and ryegrass, subterranean clover (Trifolium subterraneum L.), yellow sweet clover (Meliotus officinalis Lam), black medic (Medicago lupulina L.), Persian clover (Trifolium resupinatum L.), strawberry clover (Trifolium fragiferum L.), crimson clover (Trifolium incarnatum L.), alfalfa (Medicago sativa L.), and berseem clover (Trifolium alexandrinum L.) were seeded at two planting dates, 10 and 20 days after maize emergence. Interrow cultivation was carried out weekly until forage seeding, with a final cultivation being conducted just prior to cover crop seeding. Cover crop planting date did not affect maize yields or the ability of interrow tillage plus cover crops to suppress the development of weed populations. Maize yield was less affected by the interseeded cover crops under conditions of adequate rainfall. Corn planted in fields heavily infested with weeds resulted in substantial yield reductions even when rainfall was adequate. Except for 1993 at l'Assomption interrow tillage plus cover crop treatments had consistently lower weed biomass when compared to the weedy control. Most of the weed control was due to the interrow cultivation performed prior to seeding of the cover crops. The lowest weed density occurred in the herbicide treated plots. The ability of interrow tillage plus cover crops to suppress the development of weeds was affected by the level of weed infestation, the growing conditions and location. The cover crops provide additional weed control but the interrrow tillage or some herbicide application may still be necessary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号