首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
中子法测定土壤含水量分析   总被引:2,自引:0,他引:2  
基于中子法和烘干法测土壤含水率测定数据,采用SPSS软件进行回归分析,分析表明两种方法的结果近似,用中子法测定土壤含水量结果可靠,快速简便;并用回归方程可对缺测土层深度的含水率进行预测。通过对中子法测定数据分析可知中子法测浅层土壤含水率误差略大,并对其误差进行分析提出一些注意事项。  相似文献   

2.
人工神经网络NIR定量分析方法及其软件实现   总被引:3,自引:3,他引:0  
在Visual C++环境中采用面向对象技术,开发了PCA-MBP-NIR定量分析模型软件。通过40份小麦样品的原始光谱、加噪光谱(信噪比为14dB)与含水率所建立的PLS-NIR与PCA-MBP-NIR模型,对10份未知小麦样品的原始光谱、加噪光谱分别进行含水率的PLS-NIR与PCA-MBP-NIR预测分析。分析表明,对于含噪声的光谱,与PLS建模相比,使用PCA-MBP-NIR对未知样品预测结果具有更高的相关系数,更低的预测误差标准差。  相似文献   

3.
保护性耕作是农业生产的一项重要技术措施。以玉米(东单60)为材料进行秸秆覆盖试验,探讨了保护性耕作对玉米生长和产量以及田间耗水量的影响。采用SPSS软件对实测数据进行分析,结果表明:保护性耕作节水保肥和提高水分利用效率等方面均优于传统耕作,免耕覆盖对耕层土壤含水率影响显著,而浅耕覆盖对土壤耕层养分和作物生长及产量影响显著,水分利用效率最高。  相似文献   

4.
保护性耕作是农业生产的一项重要技术措施。本文以玉米(东单60)为材料进行秸秆覆盖试验,探讨了保护性耕作对土壤耕作层水、肥保持能力及玉米产量的影响。采用SPSS软件对实测数据进行分析,结果表明:保护性耕作水、肥保持能力均优于传统耕作,免耕覆盖对耕层土壤含水率影响显著,而浅耕覆盖对土壤耕层养分和作物产量影响显著。  相似文献   

5.
基于BP神经网络的土壤水热动态预测模型研究   总被引:2,自引:0,他引:2  
以土壤施氮量、灌水量、土壤各层初始温度、各层初始含水率以及时间作为神经网络的输入因子,以土壤温度、含水率作为输出因子,基于BP神经网络,建立了拓扑结构为17-21-14的BP-W-T预测模型,利用Matlab软件对BP神经网络进行训练,并结合实测值对温度分布和含水率分布进行检验。结果表明:土壤温度预测模型模拟值与实测值的平均相对误差、相关系数和决定系数分别为2.28%~3.36%、0.954~0.972和0.910 2~0.944 7;含水率预测模型模拟值与实测值的平均相对误差、相关系数和决定系数分别为1.87%~3.09%、0.974 3~0.992 6和0.949 3~0.985 2;该预测模型具有较高的预测精度和良好的稳定性,可以较好地描述温度梯度下土壤水热动态变化情况,为预测土壤温度与含水率提供了一条新的途径。  相似文献   

6.
牛肉含水率的高低不仅直接影响牛肉品质,而且会对消费者造成经济损失。为此,通过实验探究了采用高光谱图像技术对牛肉含水率进行检测的可行性,为检测牛肉品质提供依据。采用82个牛肉后腿样本作为实验材料,按5×4×1cm的规格通过国际烘干法测量其真实含水量,并采集它们的光谱图像;获取样本的光谱信息后,通过ENVI及Mat Lab软件获取感兴趣区域。同时,利用不同的预处理方法,分别建立BP神经网络和偏最小二乘校正模型,通过比对两种模型结果,偏最小二乘校正模型能够更有效预测牛肉含水率,校正集相关系数为0.91,校正标准差为0.121,预测集的相关系数为0.89,预测标准差为0.118。研究结果证实,利用高光谱图像技术可以快速无损检测牛肉含水率。  相似文献   

7.
保护性耕作是农业生产的一项重要技术措施.本文以玉米(东单60)为材料进行秸秆覆盖试验,探讨了保护性耕作对土壤耕作层水、肥保持能力及玉米产量的影响.采用SPSS软件对实测数据进行分析,结果表明保护性耕作水、肥保持能力均优于传统耕作,免耕覆盖对耕层土壤含水率影响显著,而浅耕覆盖对土壤耕层养分和作物产量影响显著.  相似文献   

8.
基于高光谱技术的基质含水率快速测定方法   总被引:1,自引:0,他引:1  
为了寻找一种基质含水率的快速检测方法,应用高光谱技术获得不同含水率基质样品光谱信息,阐释基质含水率光谱规律,对基质含水率进行定量分析,为设施基质栽培水分快速测定提供参考。以稻壳基质为研究对象,对基质光谱信息进行基线校正和平滑处理后,利用逐步回归分析法提取稻壳基质光谱反射率一阶微分变换的敏感波段,建立基于敏感波段组合的基质含水率预测模型,并对模型进行了检验。结果表明,在敏感波段527、796和959 nm处,采用反射率一阶微分建立的稻壳基质含水率三波段指数预测模型的预测效果较好,模型预测相关系数(RP)为0.91,预测均方根误差(RMSEP)为5.55%,可以实现对稻壳基质含水率的快速准确检测。  相似文献   

9.
不同深度基质含水率变化规律与预测模型研究   总被引:1,自引:0,他引:1  
为探明不同深度的基质含水率变化规律,使用干燥法分别对多个EC-5型传感器进行校准,并将4个传感器分别放置垂向距滴头5、10、15、20cm 4个不同深度处,测量不同滴头流量及滴灌量条件下垂向基质含水率的变化,建立了不同深度基质含水率预测模型。试验结果表明,在滴灌开始后第1层(距滴头5cm处)基质含水率最先上升并迅速达到较高水平,滴灌停止后水分将快速扩散至更深基质层,其含水率可提升至根系易利用水平(25.3%及以上),水分快速运移时间持续1h左右,随着初始基质含水率的降低,在相同滴头流量及灌溉量条件下,水分在垂直方向的运移程度更深,将第1层基质初始含水率、滴灌时间、预测时间、预测层高度差、滴头流量作为输入,利用遗传算法优化的BP神经网络算法与随机森林回归算法(RFR),建立滴灌下基质不同深度含水率预测模型。将试验所预测的滴灌后基质含水率与实际测量的不同深度基质含水率进行对比分析,并对不同预测深度的预测结果进行误差分析,结果表明GA-BP预测模型及RFR预测模型的R2分别为0.8664、0.9465,即RFR算法建立的预测模型更加精确,并且预测深度越接近于第1层基质预测结果越准确。  相似文献   

10.
荔枝红外干燥均匀性与果壳孔隙分形色变研究   总被引:3,自引:0,他引:3  
通过含水率试验拟合,比较了荔枝红外干燥过程各果含水率变化的均匀性,应用Image-Pro、SPSS软件,分析对比了干燥不同时刻荔枝果壳孔隙率均值差异及分形维数变化,由相对色差测定,研究了果壳表面色变过程。结果表明:荔枝红外干燥,各果含水率变化过程不均。初始质量较小果,含水率变化速率较大;随干燥时间增加,各果含水率变化速率减小,后期差距加大;干燥不同时刻果壳孔隙率随含水率降低显著性变化,其均值由0.519降至0.381、0.276、0.184,但分形维数由1.486升至1.674、1.708、1.800。荔枝红外干燥各果壳表面,初始DL、Db值变化大,后期变化小。  相似文献   

11.
基于可见光图像的水稻植株含水率检测技术   总被引:2,自引:0,他引:2  
含水率是重要的作物生长信息,利用水稻植株可见光图像颜色的差异检测水稻植株含水率。在大棚环境下,对盆栽的水稻进行定量有差别的供水,使植株的含水率形成差异。对水稻植株RGB彩色图像进行预处理后,提取了Re、Ge、Be、GR、GB、RB共6项颜色特征量,分析其与水稻含水率心之间的关系,并用SPSS进行曲线拟合。研究表明,6项颜色特征量与Rg的相关性均显著,其中,GR与Rg心的相关性最好。  相似文献   

12.
基于IBAS-BP算法的冬小麦根系土壤含水率预测模型   总被引:1,自引:0,他引:1  
为在节水灌溉系统中精确测量和预测根系土壤含水率,将传统天牛须算法每次迭代过程中的一只天牛改进为一个天牛种群,建立了基于改进天牛须搜索算法优化的IBAS BP预测模型,并利用实测浅层土壤含水率数据,对深度50 cm冬小麦根系土壤含水率进行预测。结果表明,与PSO BP预测模型、GA BP预测模型以及原始BAS BP模型相比,IBAS BP模型可准确预测冬小麦根系土壤含水率,有效避免了网络陷入局部极小值的可能性,且相对误差均值仅为0.0045。  相似文献   

13.
牛肉含水率无损快速检测系统研究   总被引:3,自引:0,他引:3  
针对影响牛肉品质的主要指标,开发了基于可见/近红外光谱技术的牛肉含水率品质快速检测系统。阐述了该系统的工作原理、工作过程、硬件组成及软件系统功能。系统的核心是波段分别为400~960 nm和900~2 600 nm的光谱仪,结合控制器、光纤等辅助装置构成了检测系统的硬件部分。基于VC++语言开发了Windows环境下的光谱信息采集和处理的快速无损检测软件。该系统可以实现对牛肉光谱数据的采集、处理、样品品质的快速预测和结果显示。该系统在实验室采集了57个牛肉背最长肌的光谱,分别对可见、近红外和全波段的光谱数据建模,分析显示全波段预测模型能够更好地预测牛肉的含水率,其校正相关系数RC和预测相关系数RP分别为0.96和0.88。然后将预测模型固化于在线检测硬件系统中,在牛肉分割线上采集84个样品进行实验验证,检测正确率为92.8%。含水率结果表明,该快速检测装置检测含水率的精度较高,可靠性较好,可用于牛肉屠宰分割线对含水率品质参数的快速无损检测。  相似文献   

14.
稻壳热压成型工艺参数试验   总被引:5,自引:0,他引:5  
采用四元二次回归正交旋转试验和响应面分析方法,并利用SPSS 11.5和Matlab 7.1软件研究了成型压力、加热温度、含水率和粘结剂添加量对稻壳成型块松弛密度的影响,建立并分析了稻壳成型块松弛密度的数学模型.结果表明,4个因素对稻壳成型块松弛密度影响次序为:加热温度、含水率、成型压力、粘结剂添加比,最优组合为成型压力10 MPa,粘结剂添加比3.5∶1,含水率16%,加热温度100℃,此时成型物松弛密度为0.945 g/cm~3,该密度可以满足成型要求,所得回归方程显著,拟合情况良好.  相似文献   

15.
对油菜的冠层温度特征进行了研究,并在此基础上建立了油菜的冠气温差模型和CWSI模型。利用建立的CWSI模型对植株含水率进行预测,结果表明:油菜含水率预测值与实测值的平均相对误差小于9.2%;CWSI模型能够实现对油菜含水率的定性和定量分析。  相似文献   

16.
牛奶含水率介电谱结合化学计量学检测方法   总被引:1,自引:0,他引:1  
为了实现牛奶含水率的快速检测,采用网络分析仪和同轴探头测量了室温((25±0.5)℃)下20~4 500 MHz间105个牛奶样品的相对介电常数和介质损耗因子。发现基于单一频率下的介电参数很难预测牛奶的含水率。为此,将介电谱与化学计量学方法相结合预测牛奶的含水率。基于X-Y共生距离法进行了样本集划分,得到校正集样本75个和预测集样本30个。采用连续投影算法从全介电谱中提取出了15个用于预测牛奶含水率的特征变量;建立了基于全介电谱和连续投影算法提取的特征变量预测牛奶含水率(87.28%~91.30%)的广义神经网络、支持向量机和极限学习机模型。结果发现,基于连续投影算法提取的特征变量所建立的极限学习机模型是预测牛奶含水率的最优模型,其预测相关系数、预测均方根误差和剩余预测偏差分别为0.988、0.119%和6.723。研究表明,介电谱结合化学计量学方法可用于检测牛奶的含水率。  相似文献   

17.
利用土壤含水率与近红外光谱土壤反射率和土壤电导率三者之间的关系,以土壤含水率为中间变量,间接表达土壤光谱反射率和土壤电导率之间的关系。土壤含水率与土壤光谱反射率存在指数关系,土壤含水率与土壤电导率存在线性关系,消除中间变量(土壤含水率),得到土壤光谱反射率和土壤电导率之间的关系。以土壤水分敏感波段1450nm作为研究对象,研究土壤电导率的预测模型,分别建立指数预测模型和对数预测模型,并分别对两种模型进行验证。本文实验建模集样本72个,验证集样本48个,土壤电导率对数预测模型R2达0.80,土壤电导率指数预测模型R2达0.85,预测效果均可满足农田电导率估算,但对数模型在土壤电导率较低区间预测效果不理想,因此土壤电导率指数预测模型预测效果优于对数模型的预测效果。研究结果表明,土壤光谱反射率预测土壤电导率的方案可行,并为光谱信息预测土壤电导率提供了新思路。  相似文献   

18.
水分和养分是促进作物生长的主要因素。以东单60为材料进行秸秆覆盖试验,探讨了不同耕作方式对土壤耕作层水、肥保持能力及玉米产量的影响。采用SPSS、Excel统计软件对实测数据进行分析,结果表明:耕层土壤含水率的变化趋势为:免耕覆盖>浅松覆盖>条带覆盖>传统耕作;土壤养分的变化趋势为浅松覆盖>免耕覆盖>条带覆盖>传统耕作。综合考虑免耕覆盖保水效果最好、浅松覆盖保肥效果好且增产效果最好。  相似文献   

19.
基于介电特性的薏米含水率检测方法   总被引:5,自引:0,他引:5  
研究了测量信号频率(1~1 000 kHz)、温度(5~40℃)和含水率(14.7%~22.7%)对薏米相对介电常数的影响,分析了影响相对介电常数变化的原因,建立了100 kHz下基于相对介电常数和样品温度预测薏米含水率的数学模型,并对模型进行了验证。研究结果表明,在1~1 000 kHz频段内,薏米的相对介电常数随着样品含水率和温度的升高而增大,却随着信号频率的增大单调减小;频率一定时,可用三次多项式表示含水率与相对介电常数和温度的关系;100 kHz下模型的决定系数是0.997 6,实测薏米含水率与预测含水率的决定系数为0.997 7。  相似文献   

20.
为提高水稻含水率在线检测准确度,以平行板电容器为研究对象,采用翅片式双重极板检测方式对水稻含水率的检测装置进行优化试验。以极板厚度、极板间距和相对面积为试验因素,采用二次回归正交组合试验方法进行电容比灵敏度影响试验,获得最优极板结构参数组合为极板厚度2.98mm、极板间距101.60mm、相对面积 32583.69mm2。应 用Matlab软件建立非线性自回归神经网络NARX的水稻含水率预测与校正模型,通过对比分析确定了模型结构的参数以及优化算法。分析表明:基于量化共轭梯度算法的神经网络NARX水稻含水率预测模型为最佳,模型的隐含层为1层,神经元数量为5,滞后阶数为3,含水率预测值与105℃恒重法实测值的误差范围在 ±0.5% 以内。测试含水率最大相对偏差为0.65%,最小相对偏差为0.26%,平均相对偏差为0.44%。与静态电容式水分仪测试结果相比,本文水稻含水率检测装置的测试偏差浮动较小,检测性能满足水稻干燥生产实际要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号