首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Field Crops Research》1999,63(1):87-98
Field experiments were carried out to study grain yield, zinc (Zn) efficiency and concentrations of Zn in shoot and grain of 37 bread wheat (Triticum aestivum) and three durum wheat (Triticum durum) cultivars grown in a Zn-deficient calcareous soil with (23 kg Zn ha−1), and without, Zn fertilization in 1993–1994 and 1994–1995. The same Zn-deficient soil was used in greenhouse experiments to study shoot dry weight, Zn efficiency and shoot Zn concentrations of 21 bread and three durum wheat cultivars (same cultivars used in the field experiments). Zinc fertilization of cultivars in the field enhanced grain yield on average by 30% in both years. Increases in grain yield to Zn fertilization varied substantially between cultivars from 8% to 76%. Accordingly, there was large variability in Zn efficiency of cultivars, expressed as the ratio of grain yield or shoot dry-matter yield produced under Zn deficiency compared to that under Zn fertilization. On average, Zn efficiency values ranged from 57% to 92% for grain yield in field experiments and from 47% to 83% for shoot dry weight in greenhouse experiments. Most of the cultivars behaved similarly in their response to Zn deficiency in the field and greenhouse. The cultivars selected from local landraces had both, a high Zn efficiency and high yield under Zn-deficient conditions. The bread wheat cultivars, improved for irrigated conditions, had generally low Zn efficiency and low yield, both in the field and greenhouse. All durum wheat cultivars in this study also showed low levels of Zn efficiency, grain yield and shoot dry weight under Zn deficiency. Overall, there was no relation between Zn efficiency values and Zn concentrations in grain or shoot dry matter. The results presented here demonstrate the existence of substantial variation in Zn efficiency among wheat cultivars, particularly bread wheat cultivars, and suggest that wheat landrace populations are a valuable source of genes to improve high Zn efficiency of wheat for Zn-deficient soils.  相似文献   

2.
150 lines of bread wheat representing diverse origin and 25 lines of durum, spelt, einkorn and emmer wheat species were analysed for variation in micronutrient concentrations in grain. A subset of 26 bread wheat lines was grown at six sites or seasons to identify genetically determined differences in micronutrient concentrations. Substantial variation among the 175 lines existed in grain Fe, Zn and Se concentrations. Spelt, einkorn and emmer wheats appeared to contain higher Se concentration in grain than bread and durum wheats. Significant differences between bread wheat genotypes were found for grain Fe and Zn, but not Se concentration; the latter was influenced more by the soil supply. Grain Zn, but not Fe, concentration correlated negatively with grain yield, and there was a significant decreasing trend in grain Zn concentration with the date of variety release, suggesting that genetic improvement in yield has resulted in a dilution of Zn concentration in grain. Both grain Zn and Fe concentrations also correlated positively and significantly with grain protein content and P concentration, but the correlations with kernel size, kernel weight or bran yield were weak. The results from this study are useful for developing micronutrient biofortification strategies.  相似文献   

3.
Durum wheat (Triticum turgidum L. var. durum) is used predominantly for pasta products, but there is increasing interest in using durum for bread-making. The goal of this study was to assess the bread-making potential of 97Emmer19, an Emmer wheat (Triticum turgidum L. var. dicoccum) and in breeding lines derived from crosses of 97Emmer19 with adapted durum wheat cultivars. 97Emmer19 and its progeny were evaluated in 2005 and 2006 along with five durum wheat cultivars. Three bread wheat (Triticum aestivum L.) cultivars were included as checks to provide a baseline of bread making quality observed in high quality bread wheat cultivars. 97Emmer19 exhibited higher LV than all the durum wheat checks and approached the LV achieved with the bread wheat cultivar ‘AC Superb’. Breeding lines derived from 97Emmer19 had higher LV than those of the durum wheat checks, confirming that this trait was heritable. In general, durum wheat cultivars with elevated gluten strength and/or increased dough extensibility were noted to have higher LV. Dough extensibility appeared to be a more critical factor as gluten strength increased. These results indicate that there is potential to select for genotypes with improved baking quality in durum breeding programs.  相似文献   

4.
Grain protein concentration (GPC) affects wheat nutritional value and several critical parameters for bread and pasta quality. A gene designated Gpc-B1, which is not functional in common and durum wheat cultivars, was recently identified in Triticum turgidum ssp. dicoccoides. The functional allele of Gpc-B1 improves nitrogen remobilization from the straw increasing GPC, but also shortens the grain filling period resulting in reduced grain weight in some genetic backgrounds. We developed isogenic lines for the Gpc-B1 introgression in six hexaploid and two tetraploid wheat genotypes to evaluate its effects on bread-making and pasta quality. In common wheat, the functional Gpc-B1 introgression was associated with significantly higher GPC, water absorption, mixing time and loaf volume, whereas in durum wheat, the introgression resulted in significant increases in GPC, wet gluten, mixing time, and spaghetti firmness, as well as a decrease in cooking loss. On the negative side, the functional Gpc-B1 introgression was associated in some varieties with a significant reduction in grain weight, test weight, and flour yield and significant increases in ash concentration. Significant gene × environment and gene × genotype interactions for most traits stress the need for evaluating the effect of this introgression in particular genotypes and environments.  相似文献   

5.
This study aimed to draw the attention of the all stake holders attention to an underestimated insect pest of wheat in Southeastern Anatolia. The field studies were carried out in the experimental field of GAP Training, Extension and Research Center in Koruklu in 2003–2004 cropping season.

It was found that the number of sawfly damaged spikes varied between 6 and 12% in durum wheat and 8 and 12% in bread wheat. Comparing healthy grains, grain weight spike−1 decreased significantly, giving 0.430 g less kernel weight in durum wheat and 0.385 g in bread wheat. Some of the grain quality characteristics of both sawfly damaged and healthy spikes were tested and it was found that protein content (%) in durum wheat, and 1000 kernel weight in bread wheat were reduced significantly, whilst, the SDS sedimentation value in bread wheat increased significantly for sawfly damaged grains. Grain yield losses by sawfly infestation were found to be 2.23% in durum wheat and 3.32% in bread wheat. Marketing price studies showed that sawfly damage reduced it significantly, resulting in $ 0.016 kg−1 less price in bread wheat. But this was not serious for durum wheat.

It was concluded that income loss, depending on grain yield loss, un-harvestable broken spikes and lower marketing price of sawfly damaged grains, could be no less than $ 68.8 ha−1 in durum wheat and $ 68.6 ha−1 for bread wheat. Therefore, some control methods are required for sawfly infestation, where damage is already over the economic threshold (10–15% stem cut by pest) especially in bread wheat.  相似文献   


6.
为明确叶面施锌肥对紫粒小麦产量及品质的影响,选用小麦山农紫(紫粒)和山农129(红粒)为试验材料,采用大田试验,设置不施锌肥(Zn0,对照)、叶面喷施锌肥10 kg·hm-2(Zn10)、20 kg·hm-2(Zn20)、30 kg·hm-2(Zn30)、40 kg·hm-2(Zn40)5个处理,分析了不同施锌量下紫粒小麦产量和品质相关指标的异同。结果表明,与不施锌肥比较,叶面施锌肥后山农129和山农紫分别增产1.4%~4.7%和2.3%~5.2%;随着施锌量的增加,山农129和山农紫的籽粒锌含量、总蛋白含量及蛋白质产量均表现出先增后降的趋势,分别在Zn30和Zn20处理下达到最高值,比Zn0分别提高25.8%、1.2%、16.8%和44.1%、2.1%、20.1%。两品种叶面施锌肥较其对照显著提高了籽粒蔗糖含量、湿面筋含量、面筋指数(P<0.05),但总淀粉和可溶性糖含量无显著性差异;总体上,山农紫小麦增幅大于山农129。综上所述,本试验条件下,叶面喷施锌肥可提高紫粒小麦产量、锌含量以及营养品质,以喷施锌肥20 kg·hm-2较佳。  相似文献   

7.
高有机质土壤条件下施氮对强筋小麦产量及品质的影响   总被引:3,自引:1,他引:2  
为研究高有机质含量土壤条件下施用氮肥对强筋小麦产量及品质的影响,选择土壤有机质含量为3.09%的地块,通过播前底施和拔节期追施等量氮肥(225kg/ha),对两个强筋小麦品种(8901-11和济麦20)的产量和部分生理及品质指标进行了研究。结果表明,增施氮肥有利于提高叶片叶绿素含量、氮素含量以及旗叶硝酸还原酶活性;施用氮肥可显著提高籽粒产量、籽粒蛋白质含量、蛋白质产量、沉淀值、谷蛋白大聚合体及谷蛋白含量,且追施效果优于底施;追施氮肥可以更好地调节籽粒蛋白的组成及含量,从而改善籽粒营养及加工品质。对于清蛋白、球蛋白和醇溶蛋白等三种蛋白质组分的含量,不同小麦品种的施氮反应不尽相同。本试验中,施氮处理对8901-11的影响大于对济麦20的影响。  相似文献   

8.
A set of 10 bread wheat (Triticum aestivum L.) and six durum wheat (T. turgidum L.) genotypes near-isogenic for either the Rht1 or Rht2 dwarfing genes were analyzed for plant height, kernel weight, coleoptile length and grain yield. Coleoptile length was measured at three different temperatures and plant height, kernel weight and grain yield determined in six different environments. Durum wheat, regardless of stature, produced longer coleoptiles than bread wheat at higher temperature. Within the non-Rht isolines, plant height and coleoptile length were independent characters. The tall durum wheats tended to be taller than their bread wheat counterparts, indicating an absence of minor genes for reduced height. However, a number of bread wheat cultivars showed relatively small height increases following removal of the Rht gene and substantially greater increases in coleoptile length. Coleoptile length was more highly correlated (r2=0.53, P<0.01) with seed weight among the non-Rht isolines compared to cultivars containing either Rht1 or Rht2. Grain yield and plant height were positively correlated among the semi-dwarf Rht isolines in 5 of 6 environments. No equivalent relationship existed among the non-Rht materials. Grain yield (standard sowing depth 3 cm) and coleoptile length were generally not significantly correlated within each isogenic grouping.

Plant breeders should be able to select short statured, non-Rht1 or non-Rht2 hexaploid bread wheat with better emergence characteristics. The non-Rht genotypes developed from the bread wheat cultivars Seri 82 and Culiacan 89 were identified as meeting these criteria. Wheats such as these could offer significant advantages to farmers in environments where deep sowing into stored soil moisture is practiced.  相似文献   


9.
Mineral deficiencies are prevalent in human populations and the improvement of the mineral content in cereal products represents a possible strategy to increase the human mineral intake. Nevertheless, most of the inorganic phosphorus (Pi) present in mature cereal seeds (40–80%) is stored as phytate, an anti-nutritional factor that forms complexes with minerals such as Ca, Mg, Zn and Fe reducing their bioavailability. The present study was undertaken: (i) to determine the variation in phytate and mineral concentrations in the whole grains of 84 Italian durum wheat (Triticum durum Desf.) cultivars representative of old and modern germplasm; (ii) to estimate the magnitude of genotype × environment interaction effects; and (iii) to examine the interrelationships among mineral concentrations in durum wheat with the final aim to identify superior durum wheat cultivars that possess low phytate content and high concentration of mineral elements in their whole-wheat flour. The cultivars were grown in field trials during 2004–2005 at Foggia, Italy and during 2005–2006 at Foggia and Fiorenzuola d’Arda—Southern and Northern Italy. The phytate content was estimated indirectly by using a microtitre plate assay evaluating the Pi absorbance at 820 nm, while the Cu, Fe, Mn, Ca, K, Mg, Na and Zn mineral contents were determined by ICP/OES. The contents of Zn and Fe across years and locations ranged from 28.5 to 46.3 mg/kg for Zn with an average of 37.4 mg/kg and from 33.6 to 65.6 mg/kg for Fe with an average of 49.6 mg/kg. Pi grain content was between 0.46 and 0.76 mg/g showing a positive correlation with all minerals except Cu and Zn. Although breeding activity for Fe and Zn would be difficult because G × E interaction is prevalent, multi-location evaluation of germplasm collection help to identify superior genotypes to achieve this objective. The results here reported open the possibility of designing a specific breeding program for improving the nutritional value of durum wheat through the identification of parental lines with low-Pi and high minerals concentration in whole grains.  相似文献   

10.
Wheat is an important food crop worldwide. Genetic improvements have contributed much to wheat production since the 1960s. Verifying the evolution of agronomic traits and the physiological basis of grain yield will facilitate breeders and agronomists in developing new wheat cultivars, with the aim of stable and high yields. Thirty-five wheat cultivars, bred or widely planted in the Yangtze River Basin from 1950 to 2005, were grown in field experiments under three N rates (0, 112.5, and 225 kg N ha−1) from 2006 to 2009 in Nanjing, China. Wheat grain yield, kernels per spike, 1000-kernel weight (TKW), and harvest index (HI) increased linearly with cultivar development from the 1950s to the 2000s, whereas spikes per unit land decreased significantly with cultivar development during the same period, and stabilized with further genetic improvements in cultivars. Grain yield, kernels per spike, and TKW differed with N rate and with cultivar. Grain yield, spikes per unit land, and kernels per spike increased significantly with increasing N fertilizer, but TKW and HI decreased. Cultivar height decreased with cultivar development from the 1950s to the 1980s, and remained relatively stable in subsequent cultivars. The proportion of the length of the top internode to total plant height increased with cultivar development from the 1950s to the 1980s and thereafter fell, while the length of the basal internode (BI) maintained a shortening trend. Leaf area per culm, leaf area index (LAI), net photosynthetic rate (Pn), and photosynthetic activity duration (PAD) of the flag leaf increased with cultivar development. Leaf area, LAI, and Pn increased significantly with increasing N fertilizer, while PAD did not. Single spike yield increased linearly with genetic development in cultivars, and these increases mainly resulted from increasing kernel number and weight, which were closely related to source size and cultivar. Grain yield was positively correlated to leaf area, LAI, PnMax, PAD, and single spike yield; single spike yield was positively correlated to leaf area, LAI, PnMax, and PAD, suggesting that grain yield improvements were mainly associated with improvements in the source (leaf area, LAI, Pn, PAD, etc.) and sink (single spike yield). Sink-source ratios increased with genetic development of cultivars, suggesting that productivity per leaf improved and that sink-source relationships have reached close to optimum in the Yangtze River Basin. Furthermore, breeding for high yield should be related to improvement in kernels per spike and TKW per unit land and increased sink-source ratios with a feasible LAI, and N fertilizer management should be considered during breeding for higher yields.  相似文献   

11.
Environmental and plant factors critical to the grain yields of bread (Triticum aestivum L.), durum (T. durum L.) and emmer (T. dicoccum L.) wheat cultivars were investigated at two Mediterranean rain-fed field sites: Adana in southeastern Turkey (2009 and 2010) and Aleppo in northern Syria (2009). The grain yield (GY) and biological yield (BY) of most cultivars were higher in Adana than in Aleppo, and the lower GY in Aleppo resulted from lower harvest index (HI) and lower BY due to higher temperatures and lower rainfall. The variations in the HI among cultivars were greater in Adana than in Aleppo. The GY was closely related to the HI but not the BY across cultivars at each site, and a higher GY was accompanied by a superior conversion-efficiency of incident radiation during the grain filling period for grain yield [GY/Ra, where Ra is the cumulative radiation for 30 days after heading (D30)] across all observations. The GY/Ra correlated negatively with the average temperature for D30, and higher HI values resulted in higher GY/Ra. In Adana, the time from anthesis to physiological-maturity decreased as the average temperature for D30 increased, resulting in a lower HI. Cultivars exhibiting the early heading trait can effectively escape the negative impacts of terminal high-temperature and water-shortage conditions on the HI. The results suggested that the HI is a critical factor for GY across diverse wheat cultivars under terminal high-temperatures and water-shortages in Mediterranean areas, and the BY is also an important factor under severe water-limitation conditions.  相似文献   

12.
镉、铅积累与转运在冬小麦品种间的差异   总被引:7,自引:0,他引:7  
在府河污灌区选取代表性农田,采用田间小区试验,研究了北方冬麦区适种的10个小麦品种对镉(Cd)、铅(Pb)积累与转运的差异,以期筛选出具有Cd、Pb低积累潜力且产量较高的小麦品种。结果表明,10个小麦品种的产量和籽粒中Cd、Pb含量在品种间存在不同程度的差异。石新633产量最高,为8 400 kg·hm-2,较其他小麦品种高出7%~23%;石新828和济麦22次之,较其他小麦品种高出1%~15%;籽粒中Cd含量较低的是良星66和济麦22,分别比其他小麦品种低11%~48%和2%~42%。籽粒中Pb含量较低的是鲁元502和济麦22,分别比其他小麦品种低14%~49%和14%~40%。10个小麦品种籽粒中Cd、Pb含量均未超过食品安全国家标准的食品中污染物限量标准(GB 2762-2012)。对10个小麦品种籽粒和秸秆中的Cd、Pb含量进行聚类分析可知,济麦22、中麦175、良星66和鲁元502均属于籽粒、秸秆中Cd、Pb低积累类群。综合评价小麦产量、小麦地上部Cd、Pb含量、富集系数、转运系数等指标发现,济麦22为既高产且籽粒具有低积累Cd、Pb潜力的小麦品种,适宜在黄淮冬麦区北部Cd、Pb轻度污染区推广种植。  相似文献   

13.
《Plant Production Science》2013,16(2):243-249
The contamination of cadmium (Cd) into the food chain can be harmful because Cd causes chronic health problems. To evaluate the breeding potential reducing the Cd concentration in wheat grain, we compared Cd concentrations in 237 wheat genotypes including Japanese landraces, Japanese cultivars and introduced alien cultivars for breeding using grain samples collected from upland fields in 2004?5 and 2005?6 growing seasons. The Cd concentration in wheat grain significantly varied with the growing seasons and with the experimental fields. Cultivars bred in northern Japan, including the recent Japanese leading cultivar ‘Hokushin’, tended to have a low Cd concentration in grain compared with that bred in central and southern Japan. Simple correlation analysis between Cd concentration in grain and agronomic characteristics revealed that the Cd concentration in grain showed significant negative correlations with stem number, culm length and spikelet number per spike, and showed significant positive correlation with SPAD value (chlorophyll content) of flag leaf. Stepwise multipleregression analysis showed that the genotypic variation of Cd concentration in grain was associated with the culm length and spiklet number per spike. This study clarified the geographical pattern of genotypes with different Cd concentrations in grain in Japanese wheat cultivars. Cultivars originating from northern Japan may be useful genetic resources to develop cultivars with a low Cd concentration in grain to be grown in the areas where Cd accumulation in wheat grain is a problem.  相似文献   

14.
Under Mediterranean environments, farmers usually prefer to sow barley rather than wheat as it is generally believed that barley yields more under stressful conditions. As terminal stresses such as high temperature and water are common constraints in Mediterranean regions, higher grain weight stability may confer a clear advantage in order to maintain higher yields. The objective of the present study was to compare the stability in terms of grain weight and its components for barley, bread wheat, and durum wheat, exploring a wide range of nitrogen and water availabilities in experiments conducted in a Mediterranean region. Grain weight ranged from 23.8 to 47.7 mg grain−1, being higher for durum wheat than barley and bread wheat. Durum wheat presented higher variability both in maximum grain filling rate and duration of grain filling period than bread wheat or barley. The three species responded similarly in terms of grain nitrogen content to changes in the environmental conditions explored. It is concluded that in terms of grain weight barley is as stable as bread wheat. However, durum wheat presented a lower stability than barley and bread wheat.  相似文献   

15.
超高产冬小麦四种微量元素的积累及其与产量性状的关系   总被引:1,自引:0,他引:1  
为了明确超高产冬小麦锰、锌、铜、硼的吸收积累特点及与产量相关性状的关系,于2005-2006年冬小麦成熟期测定了不同小麦品种产量相关性状及植株和籽粒中锰、锌、铜、硼的含量与积累量。结果表明,成熟期不同冬小麦品种植株和籽粒中4种元素的含量和积累量存在不同程度的差异,但都表现为锰>锌>铜>硼。植株锰积累量与穗粒数呈显著正相关,植株锰含量和积累量与单株成穗数呈显著负相关。植株和籽粒锌含量和积累量与每穗小穗数、结实小穗数和穗粒数呈正相关,与不孕小穗数呈负相关,但相关均未达到显著水平。植株铜含量与每穗小穂数、结实小穗数、穗粒数和产量均为正相关,且相关达到显著或极显著水平。植株铜积累量与总小穗数、结实小穗数呈显著正相关,与不孕小穗数呈显著负相关。植株硼积累量与产量达到显著正相关水平。综合分析可知,4种微量元素在增加产量和优化产量构成因素中起着不同的作用,在小麦生产中应针对具体的限制因素确定不同微量元素肥料的施用技术。  相似文献   

16.
《Plant Production Science》2013,16(2):137-145
Abstract

Chloride (Cl) in saline soil increases the cadmium (Cd) concentration in crops. Here, we conducted a field experiment to investigate changes in Cd concentrations in wheat grain after the application of the Cl-containing fertilizer ammonium chloride (NH4Cl), with the aim of reducing its potential health risk. Effects of the application stage of NH4Cl fertilizer and leaching treatment (i.e., heavy rainfall) were also investigated in field and pot experiments. Both field and pot experiments showed that the Cd concentration of wheat grain was higher with NH4Cl fertilizer than with ammonium sulfate or urea fertilizers. Grain Cd concentration in wheat fertilized with NH4Cl at the tillering–jointing and flowering stages in the field experiment was 0.223 mg kg–1, which was about 1.5 times higher than that fertilized with urea. This finding is important because, in Japan, compound fertilizers containing NH4Cl are commonly used in fields for wheat cultivation. NH4Cl fertilizer application at the tillering–jointing and flowering stages had nearly equal effects on the Cd concentration in wheat grain. Basal dressing with NH4Cl fertilizer increased Cd concentrations in wheat grain to a greater extent than topdressing (at thetillering–jointing and flowering stage applications) in a pot experiment that was protected from rain. Leaching treatment (assuming two lots of 100 mm rainfall) negated the effect of NH4Cl fertilizer application on Cd concentration in wheat grain. We recommend the use of ammonium sulfate or urea preferentially as the nitrogen fertilizer because heavy rainfall rarely occurs during this period in Japan.  相似文献   

17.
Heat and/or drought stress during cultivation are likely to affect the processing quality of durum wheat (Triticum turgidum L. ssp. durum). This work examined the effects of drought and heat stress conditions on grain yield and quality parameters of nine durum wheat varieties, grown during two years (2008–09 and 2009–10). Generally, G and E showed main effects on all the parameters whereas the effects of G × E were relatively small. More precipitation in Y09–10 may account for the large differences in parameters observed between crop cycles (Y08–09 and Y09–10). Combined results of the two crop cycles showed that flour protein content (FP) and SDS sedimentation volume (SDSS) increased under both stress conditions, but not significantly. In contrast the gluten strength-related parameters lactic acid retention capacity (LARC) and mixograph peak time (MPT) increased and decreased significantly under drought and heat stress, respectively. Drought and heat stress drastically reduced grain yield (Y) but significantly enhanced flour yellowness (FY). LARC and the swelling index of glutenin (SIG) could be alternative tests to screen for gluten strength. Genotypes and qualtiy parameters performed differently to drought and heat stress, which justifies screening durum wheat for both yield and quality traits under these two abiotic stress conditions.  相似文献   

18.
Durum wheat is a crop of great economic relevance for Mediterranean regions, especially in developing countries. A decreasing trend in durum production is expected in the near future because of several factors, in particular environmental constraints due to climate change and variability. The aim of this work was to test the predictive performance of CERES-Wheat model, implemented in DSSAT software systems, under Mediterranean climate condition and soil types of Southern Sardinia, Italy. CERES-Wheat model was calibrated for three durum wheat Italian varieties (Creso, Duilio, and Simeto) using a 30-year data set (1974–2004) and a trial and error iterative procedure. Then, the model was validated and evaluated using several statistics. The model showed a quite good performance in predicting grain yield and anthesis date, with errors comparable with those reported by other studies conducted on bread and durum wheat. Predictions of grain weight and grain number did not match very well observations, confirming the difficulties of CERES-Wheat in estimating grain yield components. The results of this study suggest the need of specific field experiments and further model evaluations and improvements to better understand model simulation results of grain yield components of durum wheat.  相似文献   

19.
The intrinsic processing quality of wheat (Triticum aestivum L.) cultivars is modified significantly by cultural conditions and climate. In an attempt to understand the biochemical basis of such variation, environmental modification of flour protein content and composition was measured. Thirty hard red winter wheat cultivars and experimental lines were grown at 17 Nebraska environments during 1990 and 1991. Environmental conditions, including grain filling duration, temperature and relative humidity during grain filling, were monitored. Grain yield and test weight also were determined as environmental indicators. Significant linear correlations between flour protein content, as measured by near-infrared spectroscopy, were observed only with the duration of grain filling. Protein quality, as measured by SDS sedimentation volumes and size-exclusion high-performance liquid chromatography, was highly influenced by the frequency of high temperatures during grain filling and by the relative humidity. Observed ranges in genotypic responses (variance) at locations also were altered by environmental factors. Optimal protein quality, as determined by SDS sedimentation volumes, was observed with exposure to less than 90 h of temperature greater than 32°C during grain filling. Protein quality declined with exposure to a greater number of hours of elevated temperature.  相似文献   

20.
Since the production of durum wheat in the drier areas of the Mediterranean Basin is characterized by high variability in terms of yield and grain quality, there is also considerable interest in developing durum wheat in the northern regions, where the pedo-climatic conditions can offer the possibility of obtaining grain yields with higher technological quality and stability. However, the climatic conditions in the northern regions make durum wheat more prone to fungal foliar disease, particularly to Septoria Tritici Blotch (Septoria tritici Rob.) and to Fusarium Head Blight (Fusarium graminearum Petch and Fusarium culmorum Sacc.), with the consequent occurrence of DON in grains.Field experiments have been conducted over two growing seasons at four sites in North West Italy to evaluate the effect of fungicides and foliar nitrogen fertilizer application on durum wheat yield and grain quality. Five combinations of foliar application were compared at each site and each year (untreated control, azole fungicide application at heading, strobilurin fungicide at the stem elongation stage and/or at heading, the addition of a foliar N fertilizer to a fungicide programme). The following parameters were analysed: Septoria Tritici Blotch (STB) severity, flag leaf greenness using a chlorophyll meter, grain yield, test weight, grain protein content, ash content, vitreousness, Fusarium Head Blight (FHB) incidence and severity and deoxynivalenol (DON) contamination. The collected data underline that the cultivation of durum wheat at the climatic conditions of North Italy is actually risky and needs a direct control of fungal disease, which would be able to reduce the development of both foliar and head attacks. The double treatment, with a strobilurin application during the stem elongation stage and azole at heading, results to be an essential practice and showed advantages in terms of the delay of flag leaf senescence (+27%), STB control (+31), FHB control (+11%), yield (+32%) and DON contamination (−45%), compared to the untreated control. Other foliar treatments at heading, such as strobilurin or foliar N fertilizer applications, do not seem to provide any further advantage, for either grain yield or quality. No significant effect of fungicide or foliar N fertilizer application was recorded on the protein or ash concentration or vitreousness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号