首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 250 毫秒
1.
【目的】探明热带桉树蒸腾耗水时间变化规律及其与环境因子的关系。【方法】通过热扩散探针法(TDP)于2016年1—12月对海南省儋州林场桉树树干液流进行实时监测,并同步监测气象、土壤水分等相关环境因子。【结果】①雨季桉树液流瞬时变化特征多为"双峰"型曲线,旱季为"单峰"型,雨季液流到达峰值时间在11:00—11:30之间,峰值平均为8.68 mL/(cm2·h),并在15:00—15:30出现第2个液流峰值,平均峰值为8.16 mL/(cm2·h),旱季液流达到峰值时间在13:00—13:30之间,峰值平均为7.45 mL/(cm2·h);②旱季和雨季桉树液流瞬时速率对相对湿度和大气温度的时滞均为30 min,对光合有效辐射的时滞均为-30 min;③日尺度上桉树平均液流速率为2.06 mL/(cm2·h),最大值出现在7月15日,为4.25 mL/(cm2·h);最小值出现在11月25日,为0.14 mL/(cm2·h),太阳有效辐射(PAR)、大气温度(Ta)、饱和水气压差(VPD)是影响桉树日均液流的主要环境因子,树木胸径大小与日均液流速率正相关;④桉树月均液流速率的变化特征为"单峰型"曲线,雨季液流速率均值为2.53 mL/(cm2·h),旱季为1.80 mL/(cm2·h),最大值出现于7月,为3.42 mL/(cm2·h),最小值在2月,为1.40 mL/(cm2·h),其中PAR、Ta、VPD是主要影响因子。【结论】热带桉树人工林液流存在明显昼夜与季节节律,不同观测尺度下影响桉树液流速率的主要环境因子均为PAR、Ta、VPD。  相似文献   

2.
【目的】探究潮河山区人工林树干液流与气象因子间的响应关系。【方法】通过热扩散探针法(TDP)对河北省丰宁县达袋沟控制站内生长季(5—10月)人工林(落叶松、油松和沙棘)树干液流速率进行了监测,并同步监测气象因子,研究人工林液流速率变化特征及其与气象因子的关系。【结果】(1)典型晴天落叶松、油松和沙棘各月份树干液流呈“昼高夜低”的单峰型曲线。各树种雨天树干液流较同期晴天明显降低,沙棘液流速率较其他树种更快且更易受降水影响。(2)小时尺度上落叶松、油松、沙棘液流速率与大气温度(Ta)、饱和水汽压差(VPD)、太阳净辐射(Rn)和风速(W)正相关,而与降水量(P)和空气相对湿度(Rh)负相关。Rn是影响树干液流的最重要因素,VPD、Ta、Rh对其影响次之。(3)日尺度上落叶松、油松、沙棘液流速率日均值分别为2.78、1.44、5.27mL/(cm2·h),其中Rn、VPD、Ta为主要影响因子。(4...  相似文献   

3.
不同种植密度下制种玉米液流变化及其影响因子分析   总被引:4,自引:2,他引:2  
【目的】探究不同种植密度下制种玉米液流的变化规律和影响因子。【方法】于2015年3—9月进行了制种玉米的大田试验,共设置4个种植密度,分别为9.75万、11.25万、12.75万和14.25万株/hm2,观测了不同种植密度下制种玉米的液流。【结果】不同种植密度下液流速率的变化趋势一致,并且随种植密度的增加而减小;通过相关分析与通径分析表明,小时尺度液流速率(Qh)与气象因子相关性排序为:太阳辐射(Rs)水汽压差(VPD)大气温度(Ta)相对湿度(RH)风速(Ws);日尺度液流速率(Qd)与气象因子相关性排序为:VPDTaRsRHWs;相比于茎粗(D),Qd与叶面积指数(LAI)的相关性更高,而与株高(H)无明显关系;全生育期内蒸腾量(T)随种植密度的增加而增加,蒸腾比(T/(E+T))为88%~89%;微型蒸渗仪法(E)加液流法(T)测得的耗水量较水量平衡法低估作物耗水量9%。【结论】Rs是Qh的主要驱动因子,VPD是Qd的主要驱动因子;制种玉米夜间茎流不可忽略。  相似文献   

4.
为分析城市绿地净生态系统碳交换(Net ecosystem exchange,NEE)对环境因子的响应,利用涡度相关法测量了2013—2016年生长季白天的NEE数据,使用XGBoost以及ANN模型对NEE进行模拟和分析,并通过决定系数(R~2)、平均绝对误差(MAE)、均方根误差(RMSE)和一致性系数(IA) 4个指标评价模拟精度。结果表明,当输入因子为光合有效辐射(PAR)、饱和水汽压差(VPD)、空气温度(Ta)、相对湿度(RH)、土壤温度(Ts)、风速(WS)、10 cm处土壤含水率(VWC10)时,模拟效果达到最优。其训练集精度R~2为0. 712,RMSE为4. 394μmol/(m~2·s),MAE为3. 129μmol/(m~2·s),IA为0. 911;测试集精度R~2为0. 748,RMSE为4. 253μmol/(m~2·s),MAE为2. 971μmol/(m~2·s),IA为0. 920。在考虑因子间相互作用后,环境因子对NEE的重要性排序从大到小依次为PAR、VPD、Ta、RH、Ts、WS、VWC10;就单环境因子而言,对NEE的重要性由大到小依次为Ta、Ts、RH。通过计算生态系统净生产力(Net ecosystem productivity,NEP,即-NEE)对主要环境因子(PAR、VPD、Ta)的偏导数可知,生态系统光合作用表观量子效率最大值为0. 087,并且当PAR大于1 200μmol/(m~2·s)时,其不再是影响光合作用的主要因素; VPD偏导数的变化趋势表明,VPD对植物光合作用的影响以抑制性为主,当VPD过大时,偏导数趋近于0,此时植物叶片气孔闭合,抑制光合作用; Ta偏导数的变化趋势说明,随着温度的升高,光合作用速率逐渐大于呼吸作用的速率。研究表明,基于XGBoost与ANN模型能够更为精确地模拟NEE动态,在相关环境因子中,PAR、VPD、Ta是影响NEE变化的主导因子,NEE对主要影响因子的生态特征响应趋势可为理解碳循环关键过程提供参考。  相似文献   

5.
不同气象条件下陇中玉米农田生态系统水分利用效率研究   总被引:1,自引:0,他引:1  
【目的】探究陇中半干旱区玉米农田生态系统水分利用情况。【方法】利用陇中半干旱区玉米农田生态系统,涡度系统碳水通量数据,分别从生态系统水分利用效率(WUE)、固有水分利用效率(IWUE)探讨了不同气象条件对半干旱区玉米农田生态系统水分利用效率的影响。【结果】WUE和IWUE在生长季均值分别为4.71 g/kg和32.04(g·h Pa)/kg。IWUE考虑了饱和水汽压差(VPD)对蒸散量(ET)的非线性影响,GEP与ET在日尺度上存在滞后效应,而IWUE能有效地减弱滞后效应。阴晴天的光合有效辐射、饱和水汽压差、液流速率、蒸散量均为单峰曲线,晴天的值大于阴天的。阴晴天的碳通量变化不明显,水分利用效率为"U"型曲线,阴天的碳通量大于晴天的。阴天饱和水汽压差和液流速率与WUE的线性相关关系均较差,晴天的饱和水汽压差和液流速率与WUE的相关关系较阴天好,而IWUE的拟合效果好。【结论】与WUE相比,IWUE能更好地评价该地区碳水耦合情况。  相似文献   

6.
为揭示中国西南湿润区猕猴桃园不同尺度光利用效率(LUE)的变化规律,探明生理、环境和植被因子对猕猴桃园不同尺度LUE的影响机理,以四川省蒲江县猕猴桃果园为研究对象,于2018—2020年采用涡度相关系统(EC)开展了连续3 a的水热碳通量综合观测,研究了猕猴桃叶片尺度瞬时光利用效率(LUEi)、冠层尺度光利用效率(cLUE)和生态系统尺度光利用效率(eLUE)的变化规律,并采用通径分析方法量化了生理因子[净光合速率(Pn)、气孔导度(gs)]、气象因子[总辐射(Rg)、光合有效辐射(PAR)、空气温度(Ta)、H2O浓度(CH2O)、CO2浓度(CCO2)、2 m处风速(U2)、水汽压差(VPD)]、土壤水分因子(土壤体积含水率(SWC)]和植被因子[叶面积指数(LAI)]对猕猴桃园不同尺度LUE的总影响.结果表明:猕猴桃LUEi随PAR增大而降低,变化范围为0.006~0.026 μmol/μmol;猕猴桃cLUE和eLUE月平均日内变化均呈先减后增的“U”形,月累积cLUE与eLUE变化幅度分别为0.77~2.67和0.58~1.63 g/MJ, 两者变化趋势基本一致且未呈现明显的季节性变化.叶片尺度LUEi主要受气象因子(PAR)和生理因子(Pn)影响并具有统计学意义,PAR和Pn对LUEi分别具有显著的直接影响(量化值为-0.99)和间接影响(量化值为-0.81);冠层尺度cLUE和生态系统尺度eLUE均受气象因子(Rg,Ta和VPD)以及植被因子(LAI)影响并具有统计学意义,其中Rg和VPD主要通过影响光吸收过程以影响eLUE和cLUE,而Ta和LAI则通过碳同化过程以影响eLUE和cLUE.  相似文献   

7.
黄土塬区苹果树干液流特征   总被引:4,自引:0,他引:4  
王力  王艳萍 《农业机械学报》2013,44(10):152-158,151
应用热扩散式树干茎流计(TDP)于2012年7~10月对黄土塬区长武县苹果树干液流速率进行了连续测定,分析了气象因子、土壤含水率等多个环境要素对树干液流的影响。结果表明,在晴天和阴雨天苹果树干液流速率变化均呈明显的昼夜变化单峰曲线,晴天液流启动早,停止晚,液流速率大;阴雨天液流启动晚,停止早,液流速率小。苹果树干液流速率与太阳辐射、水气压差、大气温度和相对湿度呈显著正相关,与空气相对湿度呈显著负相关,晴天条件下液流速率与各气象因子的相关关系比阴雨天条件下显著,且均可用线性表达式来估算。在不同的土壤水分环境条件下,苹果树干液流速率变化差异很大。水分胁迫条件下,全天液流速率水平较低,反映其蒸腾水平低;而水分充足条件下,液流速率的变化过程为一宽峰曲线,维持较高液流速率的时间较长,全天蒸腾水平高。  相似文献   

8.
为应用深度学习理论及技术对高寒地区草原生态系统净碳交换(NEE)进行模型模拟,基于全球通量观测网络(FLUXNET)中内蒙古自治区锡林郭勒盟多伦县草原2007—2008年间的CO2通量数据,采用深度学习中基于注意力机制的编码器-解码器框架对NEE进行模拟,使用随机森林模型计算光量子通量密度(PPFD)、土壤温度(Ts)、空气温度(Ta)、降水量(P)、土壤含水率(SWC)和饱和水汽压差(VPD)与NEE关系的重要性得分,并分析该关系的季节性差异。结果表明,深度学习模型的均方根误差为0. 28μmol/(m2·s),决定系数为0. 93,相比传统的人工神经网络与支持向量机模型,分别减小0. 14、0. 08μmol/(m2·s)和增加0. 29、0. 34,说明深度学习模型具有更高预测准确度;在深度学习模型中引入注意力机制后,10次训练预测的标准差为0. 002μmol/(m2·s),相比普通深度学习编码器-解码器网络模型和长短期记忆网络分别减小0. 005μmol/(m2·s)和0. 036μmol/(m2·s),验证了注意力机制在预测稳定性上的优势。由随机森林模型计算的环境因子重要性得分显示,由非生长季向生长季过渡的3—4月间,PPFD(33. 5)与VPD(30. 0)对NEE的变化起主导作用;进入生长季后的5—6月间,SWC(50. 5)是NEE变化的主要影响因素; 7月P(3. 8)较少,PPFD(26. 8)与SWC(60. 1)协同作用NEE的变化; 8月PPFD(2. 8)与SWC(6. 9)相对充足,VPD(41. 5)与P(42. 7)成为影响NEE的主要因素; 9月后PPFD与P均急剧减小,并维持稳定,温度系数Q10较生长季略增大,并在1月达到最大值5. 96,因此,在非生长季1—3月Ts(44. 6)与10—12月Ts(54. 2)通过影响植物呼吸成为影响NEE的决定性因子。高寒地区草地生态系统生长季的NEE变化主要受辐射、温度和水分的影响,非生长季主要受温度影响,且辐射、温度、水分的影响程度存在明显季节性差异。与支持向量机等传统机器学习算法相比,深度学习理论及技术在生态模型模拟领域具有更好的应用前景。  相似文献   

9.
【目的】明确滨海盐碱地水面蒸发(E)的盐度效应及其主要影响因子。【方法】于2018年5—10月设置了盐分梯度为1、3、5、10 g/L和20 g/L的水面蒸发试验。通过自制的20 cm蒸发皿获取不同质量浓度咸水的水面蒸发量,利用灰度关联分析确定了气象因子与不同质量浓度咸水蒸发量的关联程度,分别于晴天和阴天,选取关联度前三的气象因子和质量浓度(S)对水面蒸发量进行通径分析。【结果】(1)咸水质量浓度的升高会增加液面的表面张力,导致水面蒸发量降低,观测期内1 g/L咸水的累积蒸发量相比于20 g/L增加了97.66 mm;(2)水面蒸发与辐射强度(R)、风速(Ws)、饱和水汽压差(VPD)和空气温度(Ta)呈正相关关系,与相对湿度(RH)、大气压力(Pr)和质量浓度(S)呈负相关关系;(3)辐射强度是滨海盐碱地水面蒸发的主要影响因子,Ws和VPD分别于晴天和阴天对水面蒸发起到间接作用。【结论】咸水质量浓度的升高增加了水面的表面张力,造成了质量浓度高的咸水蒸发量的降低;相比于质量浓度对水面蒸发的影响,气象...  相似文献   

10.
温室内黄瓜叶温变化特性的试验研究   总被引:1,自引:0,他引:1  
考察了充分供水和水分亏缺条件下温室内黄瓜叶温变化的差异及其与相关作物生理信息的关系。结果表明.叶温与叶面蒸腾的Pearson相关系数R^2达到了0.7以上.叶面蒸腾是影响叶温变化的内在因素.供水条件的不同影响了作物蒸腾的变化。从而导致作物叶温变化的差异。采用通径分析的方法。分析了气温、饱和水汽压差(VPD)和光量子通量(PAR)等主要气象因子对叶温的影响。结果表明,叶温与各环境因子的相关系数R^2≥0.86.气温的变化直接作用于叶温.饱和水汽压差(VPD)和光量子通量(PAR)都通过气温的间接作用影响着叶温的变化.3个环境因子对叶温影响程度依次为气温〉VPD〉PAR。  相似文献   

11.
为探明滴灌条件下温室番茄植株茎流速率变化规律及其影响因素,本文采用Dynamax公司开发的包裹式茎流计观测日光温室番茄植株的茎流变化,研究茎流速率的变化规律及茎流速率监测结果的标准化处理技术,探索植株茎流与气象因子的相互关系,分析水分胁迫对番茄植株茎流速率的影响。研究表明,采用单位叶面积上的茎流速率表征茎流变化规律可在一定程度上降低因探头安装位置不同对监测结果的影响;在充分供水条件下,影响番茄植株茎流速率的主要因子是太阳辐射和饱和水气压差,番茄植株的日茎流速率与太阳辐射呈线性关系,与饱和差呈对数关系(R2>0.90,P<0.01);土壤水分状况会明显影响番茄植株茎流状况,茎流速率随水分胁迫加剧而骤减。研究结果证明番茄植株茎流速率经标准化处理后可以真实的反映植株蒸腾规律。  相似文献   

12.
苹果树液流变化规律研究   总被引:11,自引:0,他引:11  
利用液流传感器(sapflowsensor)监测苹果树液流,并用自动气象站和土壤水分测定仪(TRIME-FM)对气象因素和土壤水分进行同步监测。分析了苹果树液流日变化和日际变化与太阳辐射强度的关系、苹果树液流Tr与参考作物蒸发蒸腾量ET0的相关性,以及Tr/ET0和100cm深的平均土壤相对含水率AW的关系。运用回归分析方法建立了液流通量与气象因子间的经验公式,并比较了预测值与实测值。其结果表明:液流变化曲线与太阳辐射的变化曲线较一致,太阳辐射是果树液流的首要影响因子;Tr和ET0变化曲线相似;相对含水率越大,Tr/ET0的值越大;反之越小;用经验公式预测的液流值与实测值相比较,二者最大相差10.13%,最小相差3.45%。  相似文献   

13.
【目的】精准模拟温室梨枣树液流量。【方法】基于粒子群算法(PSO)优化的极限学习机(ELM)模型,选取了西北旱区的温室梨枣树逐日气象资料和梨枣树生理指标作为输入参数,构建了16种不同参数组合的PSO-ELM模型对梨枣树各生育期的液流量进行模拟,并与实测液流值进行对比。【结果】PSO-ELM模型能通过较少的输入参数实现梨枣树液流量的高精度模拟:全生育期液流量模拟中M_2模型(输入参数为叶面积指数、平均气温、实际水汽压、平均相对湿度、净辐射和风速)、M_4模型(输入参数为叶面积指数、平均气温、实际水汽压、平均相对湿度、风速和土壤含水率)及M_(12)模型(输入参数为叶面积指数、实际水汽压和平均相对湿度)的MAE、MBE、R~2、MRE及RRMSE范围分别为1.467 6~1.598 6 mm/d、-0.000 9~0 mm/d、0.370 6~0.435 4、0.177 2~0.185 5及0.202 6~0.214 0,GPI排名分别1、2和5,其中M_(12)的输入参数较少且模拟精度较高,其MAE、MBE、R~2、MRE、RRMSE分别为1.598 6 mm/d、0、0.370 6、0.185 5、0.214 0;萌芽展叶期、开花坐果期、果实膨大期和果实成熟期液流量模拟结果分别以M_(Ⅰ-11)模型(输入参数为净辐射、叶面积指数和实际水汽压)、M_(Ⅱ-15)模型(输入参数为实际水汽压和平均气温)、M_(Ⅲ-11)模型(输入参数为平均相对湿度、叶面积指数和土壤含水率)和M_(Ⅳ-12)模型(输入参数为叶面积指数、净辐射和平均气温)模拟精度较高,GPI排名分别为8、2、4和5。【结论】PSO-ELM模型模拟温室梨枣树不同生育期液流量均具有较高的精度,可作为温室梨枣树液流量估算的新方法。  相似文献   

14.
【目的】了解2种典型干旱区土壤(砂土、砂黏土)中直插式地下滴灌的灌水效果。【方法】以实测的土壤湿润锋在垂直向上、向下和水平3个方向的运移距离为基础,建立了土壤湿润锋运移距离与直插式地下滴灌滴头流速和灌水时间之间的函数关系,依据此量化关系结合土壤含水率求得了直插式地下滴灌的微灌技术参数,并评价了直插式地下滴灌在干旱区砂土、砂黏土中的灌水效果。【结果】在2种土质条件下,湿润锋不同方向上的运移距离与滴头流速和灌水时间之间的量化关系式R2>0.95,验证方程R2>0.95,表明模型可行;在砂土中,灌溉水储存系数、灌水均匀系数及土壤湿润比均小于0.6,而在砂黏土中均高于0.8,表明直插式地下滴灌在砂土中灌水效果比砂黏土差。【结论】幂函数可准确描述砂土、砂黏土中直插式地下滴灌湿润峰运移距离、滴头出流速度和灌水时间之间的关系;垂直向上湿润距离与滴头流速负相关,与灌水时间正相关,水平与向下湿润距离与流速、灌水时间均正相关;在本试验条件下,流速为1.25 L/h灌水效果最好。  相似文献   

15.
The oft-touted reason for the efficiency of drip irrigation is that roots can preferentially take up water from localised zones of water availability. Here we provide definitive evidence of this phenomenon. The heat-pulse technique was used to monitor rates of sap flow in the stem and in two large surface roots of a 14 year old apple tree (Malus domestica Borkh. cv. Braeburn). The aim was to determine the ability of an apple tree to modify its pattern of root water uptake in response to local changes in soil water content. We monitored the water status of the soil close to the instrumented roots by using time domain reflectometry (TDR) to measure the soil's volumetric water content, θ, and by using ceramic-tipped tensiometers to measure the soil's matric pressure head, h. A variation in soil water content surrounding the two roots was achieved by supplying a single localised irrigation to just one root, while the other root remained unwatered. Sap flow in the wetted root increased straight away by 50% following this drip irrigation which wetted the soil over a zone of approximately 0.6 m in diameter and 0.25 m in depth. Sap flow in the wetted root remained elevated for a period of about 10 days, that is until most of the irrigation water had been consumed. A comparative study of localised and uniform irrigation was then made. Following irrigation over the full root zone no further change in sap flow in the previously wetted root was observed when referenced to the corresponding sap flow measured in the stem of the apple tree. However sap flow in the previously dry root responded to subsequent irrigations by increasing its flow rate by almost 50%. These results show that apple roots have the capacity to transfer water from local wet areas at much higher rates than normally occurs when the entire root zone is supplied with water. They are also able to shift rapidly their pattern of uptake and begin to extract water preferentially from those regions where it is more freely available. Such an ability supports the use of drip irrigation for the efficient use of scarce water resources. We conclude that the soil-to-root pathway represents a major resistance to water uptake by apple, even at the relatively high soil water pressure heads developed during parts of this experiment, during which the tree was not even under any stress.  相似文献   

16.
辽西低山丘陵区不同密度荆条实地放水冲刷试验研究   总被引:1,自引:0,他引:1  
【目的】揭示辽西低山丘陵区植被密度对土壤抗冲性的影响。【方法】采用野外实地放水冲刷的方法,以荒草地为对照,对不同密度荆条(Vitex negundo var. heterophylla)的土壤抗冲性进行了研究。【结果】1)荆条对土壤的改良作用随密度的增加而增加;2)各样地地表径流量随着冲刷时间的延长呈波浪式增长的趋势,其中低密度荆条样地土壤抗冲系数在23.46~26.07(L·min)/g之间,中等密度荆条样地土壤抗冲系数在26.87~29.84(L·min)/g之间,而高密度荆条样地和荒草地在设计流量为4 L/min时,土壤抗冲系数大于8(L·min)/g和12(L·min)/g;3)各样地土壤抗冲系数随着冲刷量的增大逐渐减小,在上方来水量较小时荒草地的土壤抗冲系数最大,荆条的土壤抗冲系数在26.07~46.55(L·min)/g之间,在上方来水量逐渐增大时荆条的土壤抗冲性强于荒草地,在23.46~36.75(L·min)/g之间,且随荆条株密度的增大呈增大趋势。【结论】植被密度是影响土壤抗冲性的主要关键因子,该研究可以为辽西北地区水土保持林建设提供参考依据。  相似文献   

17.
【目的】探究耦合气象、土壤水分和氮素状态对青稞生长的影响机理,构建西藏地区青稞生长动力学模型。【方法】于2016─2017年在拉萨市墨达灌区开展了试验研究,测定了青稞生育期气象参数、土壤水分和氮素质量浓度变化过程。基于日光合作用和呼吸作用模拟日干物质增长量,提出了开关因子计算青稞由发育生长到生殖生长的临界时间,根据叶面积指数变化和干物质质量平衡,以及青稞生育期干物质分配和转化关系发展了干物质日增长量分配关系,基于动态平衡原理,提出了气象条件、土壤含水率和氮素影响下的干物质胁迫关系。基于2016年观测值率定模型参数,模拟2017年青稞生长。【结果】模型在本地参数下,模拟结果与实测结果符合良好,Nash-Sutcliffe系数和相对均方根误差分别为0.84和0.05;变化条件下,能够达到较好的模拟精度,Nash-Sutcliffe系数和相对均方根误差分别为0.67和0.11。【结论】所提出的模型能够描述多因子胁迫条件下的青稞生长动力学机制,具有完备的物理机制。  相似文献   

18.
植物茎干液流量可表征其蒸腾耗水量,反映植被水分传输状况,可用于计算植被生态需水量。以玛纳斯河流域古尔班通古特沙漠南缘典型荒漠植被梭梭、柽柳为研究对象,通过数据监测,研究植被茎干液流及光合蒸腾特性,分析气象因子及土壤含水率对茎干液流的影响。结果表明:(1)梭梭、柽柳茎干液流速率呈明显的昼夜变化规律,白天液流速率远高于夜间。(2)梭梭的净光合速率日变化模式为双峰型;柽柳为单峰型。(3)梭梭蒸腾速率的日变化有明显上升和下降过程,柽柳趋势不明显,呈小幅震荡。(4)液流速率变化与相对空气湿度呈负相关,空气湿度高时液流速率低;气温、总辐射与液流速率的变化趋势基本一致,液流速率随着气温或总辐射的增强而增大。(5)随着土壤含水率降低,液流速率降低。  相似文献   

19.
【目的】研究农田作物生长过程中,覆膜和降雨特征等因素对玉米耗水过程和土壤入渗产生影响。【方法】根据北京地区典型年降雨量设计和模拟春玉米生育期降雨过程,利用群集式测坑和挡雨棚及附设人工降雨装置,开展了不同地表覆盖条件下降雨强度对玉米耗水及水分利用效率的影响研究。降雨强度包括小雨强0.5 mm/min和大雨强1.5 mm/min,覆盖和种植条件包括膜下滴灌(MDI)、地面滴灌(SDI)和对照无作物种植(NP)。【结果】①MDI处理水分利用效率较SDI处理高13.5%。与SDI处理相比,MDI处理作物耗水量减小了40.6 mm,覆膜主要提高20~60 cm土层储水量。②大雨强条件下土壤深层渗漏量增多了3.4%~15.6%;降雨和灌溉对土壤水分影响深度主要为0~150 cm土层,相对于SDI处理,MDI和NP处理土壤储水量大大增加。③小雨强时表层0~20cm土壤入渗NP处理最快,大雨强时MDI处理入渗最快。作物根区40 cm深度处,小雨强时MDI处理的土壤水分最快达到峰值,而大雨强时NP处理最快达到峰值。60 cm深度处不同覆盖条件下在2种雨强时土壤水分变化速率一致,达到峰值速率表现为NP处理>MDI处理>SDI处理。【结论】覆膜具有较好的节水增产效应;降雨强度越大,土壤水分下渗越快;相同降雨量时小雨强降雨更有利于土壤水存储。不同的降雨强度对土壤水分入渗和再分布影响不同。研究结果可为雨水资源的合理利用从而提高农田水分利用效率提供理论依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号