首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Maize and berseem are among the most important crops in India and several other countries in the world. Irrigation is provided to these crops to get higher production; hence, determining the water requirements of these crops is important for irrigation planning. Improved water management of these crops requires accurate scheduling of irrigation, which in turn requires accurate measurement of crop evapotranspiration (ETc). Thus, the first objective of this study was to measure daily, weekly and seasonal ETc of maize and berseem directly from weighing type lysimeters. Experiments were conducted in a set of two electronic weighing-type lysimeters of 7.82 m3 to measure the hourly ETc of maize and berseem from June 1996 to April 1998 at Karnal, India. The average daily ETc of maize varied from <2.8 mm day-1 in the early growing period to >4 mm day-1 at development and reproductive stages. The peak daily ETc of maize was 7.7 mm day-1 and this occurred 9 weeks after sowing (WAS) at the silking stage of maize when leaf area index (LAI) was 5.5. The measured seasonal ETc of maize was 354 mm. In the case of berseem, the average daily ETc was 0.9 mm day-1 at the initial stage, achieved a peak value of 6.9 mm day-1 between 25 and 26 WAS during the fifth cut. The measured seasonal ETc of berseem was 480 mm. Precise information on the crop coefficient, which is required for regional-scale irrigation planning, is lacking for semi-arid climates such as those found in north India. Therefore, the second objective of this study was to develop crop coefficients (Kc) for maize and berseem from ETc measurements and weather data. The estimated values of Kc for maize by the Penman-Monteith method at the four crop growth stages; namely, initial, crop development, mid-season and maturity, were 0.55, 1.00, 1.23 and 0.64, respectively, and the corresponding values for berseem were 0.76, 0.82, 1.11 and 1.24, respectively. In the case of these two crops, actual Kc values determined from this study are different from those suggested by the FAO (Allen et al. 1998), indicating the need for generating these values at the local/ regional level.  相似文献   

2.
Water use of Thompson Seedless grapevines during the first 3 years of vineyard establishment was measured with a large weighing lysimeter near Fresno, California. Two grapevines were planted in a 2ǸǶ m deep lysimeter in 1987. The row and vine spacings in the 1.4-ha vineyard surrounding the lysimeter were approximately 3.51 and 2.15 m, respectively. Vines in the lysimeter were furrow-irrigated from planting until the first week of September in 1987. They were subsequently irrigated with subsurface drip-irrigation whenever they had used 2 mm of water, based upon the area of the lysimeter (equivalent to 8 liters per vine). The trellis system, installed the second year, consisted of a 2.13 m long stake, driven 0.45 m into the soil with a 0.6 m cross-arm placed at the top of the stake. Crop coefficients (Kc) were calculated using measured water losses from the lysimeter (ETc) and reference crop evapotranspiration (ETo) obtained from a CIMIS weather station located 2 km from the vineyard. Water use of the vines in 1987 from planting until September was approximately 300 mm, based on the area allotted per vine in the vineyard surrounding the lysimeter. Daily water use just subsequent to a furrow-irrigation event exceeded ETo (>6.8 mm dayу). Water use from budbreak until the end of October in 1988 and 1989 was 406 and 584 mm, respectively. The initiation of subsurface drip-irrigation on 23 May 1988 and 29 April 1989 doubled ETc measured prior to those dates. Estimates of a 'basal' Kc increased from 0.1 to 0.4 in 1987. The seasonal Kc in 1988 increased throughout the season and reached its peak (0.73) in October. The highest Kc value in 1989 occurred in July. It is suggested that the seasonal and year-to-year variation in the Kc was a result of the growth habit of the vines due to training during vineyard establishment. The results provide estimates of ETc and Kc for use in scheduling irrigations during vineyard establishment in the San Joaquin Valley of California and elsewhere with similar environmental conditions.  相似文献   

3.
Water use of Thompson Seedless grapevines was measured with a large weighing lysimeter from 4 to 7 years after planting (1990-1993). Above-ground drip-irrigation was used to water the vines. Vines growing within the lysimeter were pruned to four and six fruiting canes for the 1990 and 1991 growing seasons, respectively, and eight fruiting canes in the last 2 years. Maximum leaf area per vine at mid-season ranged from 23 to 27 m2 across all years. Reference crop evapotranspiration (ETo) averaged 1,173 mm between budbreak and the end of October each year, with a maximum daily amount of approximately 7 mm each year. Maximum daily vine water use (ETc) was 6.1, 6.4, 6.0, and 6.7 mm (based upon a land area per vine of 7.55 m2) for 1990, 1991, 1992, and 1993, respectively. Seasonal ETc was 718 mm in 1990 and ranged from 811 to 865 mm for the remaining 3 years of the study. The differences in water use among years were probably due to the development of the vine's canopy (leaf area), since they were pruned to differing numbers of fruiting canes. These differences were more pronounced early in the season. Soil water content (SWC) within the lysimeter decreased early in the growing season, prior to the initiation of the first irrigation. Once irrigations commenced, SWC increased and then leveled off for the remainder of the season. The maximum crop coefficient (Kc) calculated during the first year (1990) was 0.87. The maximum Kc in 1991, 1992, and 1993 was 1.08, 0.98, and1.08, respectively. The maximum Kc in 1991 and 1993 occurred during the month of September, while that in 1992 was recorded during the month of July. The seasonal Kc followed a pattern similar to that of grapevine leaf area development each year. The Kc was also a linear function of leaf area per vine using data from all four growing seasons. The decrease in Kc late in the 1991, 1992, and 1993 growing seasons, generally starting in September, varied considerably among the years. This may have been associated with the fact that leafhoppers (Erythroneura elegantula Osborn and E. variabilis Beamer) were not chemically controlled in the vineyard beginning in 1991.  相似文献   

4.
Drip irrigation of processing tomato is increasing in the San Joaquin Valley of California (USA), a major tomato production area. Efficient management of these irrigation systems requires reasonable estimates of crop evapotranspiration (ETc) between irrigations. A common approach for estimating ETc is to multiply a reference crop evapotranspiration (ETo) by a crop coefficient. However, a review of literature revealed mid-season crop coefficients for processing tomato to range from 1.05 to 1.25. Because of this variability, uncertainty exists in the crop coefficients appropriate for drip irrigation in the San Joaquin Valley. Thus, a study was initiated to determine the ETc of processing tomato for drip irrigation in commercial fields and then calculate crop coefficients from the ETc and ETo data for the west side of the San Joaquin Valley. Crop ETc was determined at five locations using the Bowen Ratio Energy Balance Method (BREB). Canopy coverage was also measured using a digital infrared camera. Average crop coefficients ranged from about 0.19 at 10% canopy coverage to 1.08 for canopy coverage exceeding about 90%. A second order regression equation reasonably described a relationship between crop coefficient and canopy coverage. Generic curves describing crop coefficient versus time of year were developed for various planting times.  相似文献   

5.
Soil evaporation from drip-irrigated olive orchards   总被引:1,自引:3,他引:1  
Evaporation from the soil (Es) in the areas wetted by emitters under drip irrigation was characterised in the semi-arid, Mediterranean climate of Córdoba (Spain). A sharp discontinuity in Es was observed at the boundary of the wet zone, with values decreasing sharply in the surrounding dry area. A single mean value of evaporation from the wet zone (Esw) was determined using microlysimeters. Evaporation from the wet zones of two drip-irrigated olive orchards was clearly higher than the corresponding values of Es calculated assuming complete and uniform soil wetting (Eso), demonstrating the occurrence of micro-scale advection in olive orchards under drip irrigation. Measurements over several days showed that the increase in evaporation due to microadvection was roughly constant regardless of location and of the fraction of incident radiation reaching the soil. Thus, daily evaporation from wet drip-irrigated soil areas (Esw) could be estimated as the sum of Eso and an additive microadvective term (TMA). To quantify the microadvective effects, we developed variable local advective conditions by locating a single emitter in the centre of a 1.5 ha bare plot which was subjected to drying cycles. Esw increased relative to Eso as the soil dried and advective heat transfer increased evaporation from the area wetted by the emitter. The microadvective effects on Es were quantified using a microadvective coefficient (Ksw), defined as the ratio between Esw and Eso. A model was then developed to calculate TMA for different environmental and orchard conditions. The model was validated by comparing measured Esw against simulated evaporation (Eso+TMA) for different soil positions and environmental conditions in two drip-irrigated olive orchards. The mean absolute error of the prediction was 0.53 mm day-1, which represents about a 7% error in evaporation. The model was used to evaluate the relative importance of seasonal Es losses during an irrigation season under Córdoba conditions. Evaporation from the emitter zones (Esw) represented a fraction of seasonal orchard evapotranspiration (ET), which ranged from 4% to 12% for a mature (36% ground cover) and from 18% to 43% of ET for a young orchard (5% ground cover), depending on the fraction of soil surface wetted by the emitters. Estimated potential water savings by shifting from surface to subsurface drip ranged from 18 to 58 mm in a mature orchard and from 28 to 93 mm in a young orchard, assuming daily drip applications and absence of rainfall during the irrigation season.  相似文献   

6.
Four different levels of drip fertigated irrigation equivalent to 100, 75, 50 and 25% of crop evapotranspiration (ETc), based on Penman–Monteith (PM) method, were tested for their effect on crop growth, crop yield, and water productivity. Tomato (Lycopersicon esculentum, Troy 489 variety) plants were grown in a poly-net greenhouse. Results were compared with the open cultivation system as a control. Two modes of irrigation application namely continuous and intermittent were used. The distribution uniformity, emitter flow rate and pressure head were used to evaluate the performance of drip irrigation system with emitters of 2, 4, 6, and 8 l/h discharge. The results revealed that the optimum water requirement for the Troy 489 variety of tomato is around 75% of the ETc. Based on this, the actual irrigation water for tomato crop in tropical greenhouse could be recommended between 4.1 and 5.6 mm day−1 or equivalent to 0.3–0.4 l plant−1 day−1. Statistically, the effect of depth of water application on the crop growth, yield and irrigation water productivity was significant, while the irrigation mode did not show any effect on the crop performance. Drip irrigation at 75% of ETc provided the maximum crop yields and irrigation water productivity. Based on the observed climatic data inside the greenhouse, the calculated ETc matched the 75–80% of the ETc computed with the climatic parameters observed in the open environment. The distribution uniformity dropped from 93.4 to 90.6%. The emitter flow rate was also dropped by about 5–10% over the experimental period. This is due to clogging caused by minerals of fertilizer and algae in the emitters. It was recommended that the cleaning of irrigation equipments (pipe and emitter) should be done at least once during the entire cultivation period.  相似文献   

7.
Field experiments were conducted during 1993/94 and 1994/95 in the sub-humid tropic environment of northern India to identify suitable irrigation schedule(s) for winter maize (December to May). Based on plant growth stages, viz. knee-high, tasselling, flowering, silking, grain-filling and dough, which occurred, respectively, at 55, 75, 95, 105, 125 and 145 days after planting, the crop was subjected to six irrigation treatments, which were: no irrigation (I0); irrigation given at all the growth stages (I1); irrigation missed at knee-high (I2); at knee-high and dough (I3); at knee-high, flowering and grain-filling (I4); and at knee-high, flowering, silking and dough stages (I5). The change in profile soil water content, (W (depletion) of the entire crop-growing season was found to be in the order I0 >I5 >I4 >I3 >I2 >I1. Of the total net water use (NWU), about 87% was evapotranspiration and 13% deep percolation losses. The NWU was highest (472 and 431 mm) under I1 and lowest (223 and 240 mm) under the I0 treatment during the two cropping seasons. Compared to I1, NWU in I3 decreased by 23% and 12.3% and in I4 by 33.8% and 24.2% in the two cropping seasons. However, there was no statistically significant difference (at LSD, P=0.05) between yields of the I1 to I4 treatments during either year. The NWU was found to be in the order I1 >I2 >I3 >I4 >I5 >I0, whereas the water-use efficiency (WUE) based on NWU was found to be in the reverse order: I5 >I4 >I3 >I0 >I2 >I1. Maximum yield (5.14 t ha-1) with WUE of 1.39 kg m-3 was obtained under the I3 treatment. However, optimum yield (4.91 t ha-1) with high WUE of 1.54 kg m-3 was under I4. Accordingly, irrigation applications greater than 240 mm did not provide additional yield of winter maize. Frequent irrigations (I1) proved detrimental to grain yield of winter maize in the northern Indian plains, especially under cool weather conditions, where minimum temperature (6°C) can be accompanied by occasional frost.  相似文献   

8.
Potato water use and yield under furrow irrigation   总被引:3,自引:0,他引:3  
Field experiments were conducted to study the effects of plant-furrow treatments and levels of irrigation on potato (Solanum tuberosum L.) water use, yield, and water-use efficiency. The experiments were carried out under deficit irrigation conditions in a sandy loam soil of eastern India in the winter seasons of 1991/92, 1992/93, and 1993/94. Two plant-furrow treatments and two levels of irrigation were considered. The two plant-furrow treatments were F1 - furrows with single row of planting in each ridge with 45 cm distance between adjacent ridges, and F2 - furrows with double rows of planting spaced 30 cm apart in each ridge with 60 cm distance between adjacent ridges. The two levels of irrigation (LOI) were I1 - 0.9 IW/CPE and I2 - 1.2 IW/CPE, where IW is irrigation water of 5 cm and CPE is cumulative pan evaporation. Treatment F2 produced highest tuber yield in all years with average value of 10,610 kg ha -1 and 12,780 kg ha -1 at LOI of I1 and I2, respectively. On average, six irrigations with a total of 25 cm, and seven irrigations with a total of 30 cm were required for both treatments F1 and F2 at LOI of I1 and I2, respectively. Treatment F2 resulted in a significantly higher number of branches and tubers per plant, foliage coverage and water-use efficiency for both irrigation levels than treatment F1. Average daily crop evapotranspiration was found to range from 1.1 to 3.4 mm and from 1.2 to 3.9 mm for treatment F1 and from 1.1 to 3.6 mm and from 1.2 to 4.0 mm for treatment F2 at LOI of I1 and I2, respectively.  相似文献   

9.
Irrigation scheduling based on the daily historical crop evapotranspiration (ETh) data was theoretically and experimentally assessed for the major soil-grown greenhouse horticultural crops on the Almería coast in order to improve irrigation efficiency. Overall, the simulated seasonal ETh values for different crop cycles from 41 greenhouses were not significantly different from the corresponding values of real-time crop evapotranspiration (ETc). Additionally, for the main greenhouse crops on the Almería coast, the simulated values of the maximum cumulative soil water deficit in each of the 15 consecutive growth cycles (1988–2002) were determined using simple soil-water balances comparing daily ETh and ETc values to schedule irrigation. In most cases, no soil-water deficits affecting greenhouse crop productivity were detected, but the few cases found led us to also assess experimentally the use of ETh for irrigation scheduling of greenhouse horticultural crops. The response of five greenhouse crops to water applications scheduled with daily estimates of ETh and ETc was evaluated in a typical enarenado soil. In tomato, fruit yield did not differ statistically between irrigation treatments, but the spring green bean irrigated using the ETh data presented lower yield than that irrigated using the ETc data. In the remaining experiments, the irrigation-management method based on ETh data was modified to consider the standard deviation of the inter-annual greenhouse reference ET. No differences between irrigation treatments were found for productivity of pepper, zucchini and melon crops.  相似文献   

10.
Subsurface drip system is the latest method of irrigation. The design of subsurface drip system involves consideration of structure and texture of soil, and crop’s root development pattern. A 3-year experiment was conducted on onion (Allium Cepa L., cv. Creole Red) in a sandy loam soil from October to May in 2002–2003, 2003–2004 and 2004–2005 to study the effect of depth of placement of drip lateral and different levels of irrigation on yield. Tests for uniformity of water application through the system were carried out in December of each year. Three different irrigation levels of 60, 80 and 100% of the crop evapotranspiration and six placement depths of the drip laterals (surface (0), 5, 10, 15, 20 and 30 cm) were maintained in the study. Onion yield was significantly affected by the placement depth of the drip lateral. Maximum yield (25.7 t ha−1) was obtained by applying the 60.7 cm of irrigation water and by placing the drip lateral at 10 cm soil depth. Maximum irrigation water use efficiency (IWUE) (0.55 t ha−1 cm−1) was obtained by placing the drip lateral at 10 cm depth. The greater vertical movement of water in the sandy-loam soil took place because of the predominant role of gravity rather than that of the capillary forces. Therefore, placement of drip lateral at shallow depths is recommended in onion crop to get higher yield.  相似文献   

11.
Improved water management through precise crop water requirement determination is needed to improve the efficiency of water use in agricultural production. As a result, appropriate irrigation scheduling which can lead to water saving, improvements in the yield and income can be designed. In this study, three non-weighing lysimeters having dimensions of 2 m × 1 m × 2 m were used to determine water requirement (ETc) and crop coefficient (Kc) of onion (Bombay Red cultivar). Reference crop evapotranspiration (ETo) was determined using weather data recorded at the site. The measured ETc values were 51.3 mm, 140.5 mm, 144.8 mm, and 53.9 mm during the initial, development, mid-season and late season growth stages respectively. Crop coefficient (Kc) values, calculated as ratio of ETc to ETo, were 0.47, 0.99, and 0.46 during the initial and mid-season stages and end of late season. Furthermore, third-order polynomials were fitted well to predict the crop coefficient values as functions of growing degree-days (GDD).  相似文献   

12.
Cotton (Gossypium hirsutum L.) is the most important industrial and summer cash crop in Syria and many other countries in the arid areas but there are concerns about future production levels, given the high water requirements and the decline in water availability. Most farmers in Syria aim to maximize yield per unit of land regardless of the quantity of water applied. Water losses can be reduced and water productivity (yield per unit of water consumed) improved by applying deficit irrigation, but this requires a better understanding of crop response to various levels of water stress. This paper presents results from a 3-year study (2004-2006) conducted in northern Syria to quantify cotton yield response to different levels of water and fertilizer. The experiment included four irrigation levels and three levels of nitrogen (N) fertilizer under drip irrigation. The overall mean cotton (lint plus seed, or lintseed) yield was 2502 kg ha−1, ranging from 1520 kg ha−1 under 40% irrigation to 3460 kg ha−1 under 100% irrigation. Mean water productivity (WPET) was 0.36 kg lintseed per m3 of crop actual evapotranspiration (ETc), ranging from 0.32 kg m−3 under 40% irrigation to 0.39 kg m−3 under the 100% treatment. Results suggest that deficit irrigation does not improve biological water productivity of drip-irrigated cotton. Water and fertilizer levels (especially the former) have significant effects on yield, crop growth and WPET. Water, but not N level, has a highly significant effect on crop ETc. The study provides production functions relating cotton yield to ETc as well as soil water content at planting. These functions are useful for irrigation optimization and for forecasting the impact of water rationing and drought on regional water budgets and agricultural economies. The WPET values obtained in this study compare well with those reported from the southwestern USA, Argentina and other developed cotton producing regions. Most importantly, these WPET values are double the current values in Syria, suggesting that improved irrigation water and system management can improve WPET, and thus enhance conservation and sustainability in this water-scarce region.  相似文献   

13.
The methods for estimating temporal and spatial variation of crop evapotranspiration are useful tools for irrigation scheduling and regional water allocation. The purpose of this study was to develop a method for mapping spatial distribution of crop evapotranspiration and analyze the temporal and spatial variation of spring wheat evapotranspiration in the Shiyang river basin in Northwest China in the last 50 years. DEM-based methods were employed to estimate the spatial distribution of spring wheat evapotranspiration (ETc). Reference crop evapotranspiration (ET0) was calculated with the Penman–Monteith equation using meteorological data measured from eight stations in the basin. Crop coefficient (Kc) was determined from measured evapotranspiration in spring wheat season in the region. The results showed that ETc gradually increased in the upper reaches of the basin in the last 50 years, while the middle reaches showed a significant decreasing trend, and in other regions, no significant trend was found. These changes can be attributed to expansion of irrigation areas and climate change. The multiple regression analysis between ETc and altitude, latitude, and aspect were carried out for eight weather stations and the relationships were used to map ETc for the basin. The spatial variations of ETc were analyzed for three typical growing seasons based their precipitation. Results showed that long-term average ETc over cultivated land was increasing from 270 mm in southwest mountainous area to 591 mm in northeast oasis of the basin, and the relative error between the estimated ETc in spring wheat growing season by reference evapotranspiration (ET0) and crop coefficient (Kc), and the interpolated ETc was within 11.1%.  相似文献   

14.
An accurate estimation of crop evapotranspiration (ET c) is very useful for appropriate water management; hence, an accurate and user-friendly model is needed to support related irrigation decisions. In this view, a study was developed aimed at estimating the ET c of winter wheat–summer maize crop sequence in the North China through eddy covariance measurements, to calibrate and validate the SIMDualKc model, to estimate the basal crop coefficients (K cb) for both crops and to partition ET c into soil evaporation and crop transpiration. Two years of field experimentation of that crop sequence were used to calibrate and validate the SIMDualKc model and to derive K cb using eddy covariance measurements. Various indicators have shown the goodness of fit of the model, with estimated values very close to the observed ones and estimate errors close to 0.5 mm d?1. The initial, mid-season and end basal crop coefficients for wheat were 0.25, 1.15 and 0.30, respectively, and those for maize were 0.15, 1.15 and 0.45, thus close to those proposed in FAO56 guidelines. The soil evaporation represented near 80 % of ET c for the initial stages of winter wheat and summer maize and decreased to only 5–6 % during the mid-season period. Evaporation during the full crop season averaged 28 % for winter wheat and 40 % for summer maize. The importance of wetting frequency and crop ground coverage in controlling soil evaporation was evidenced.  相似文献   

15.
Drip irrigation scheduling for tomatoes in unheated greenhouses   总被引:5,自引:0,他引:5  
During the last two decades, energy-saving solar greenhouses without heating systems, about 150-800 m2 (width: 5-10 m, length: 30-80 m) in size, have been widely used in the North of China for vegetable production during cold seasons. The greenhouse is also suitable for use in other countries located in the temperate or warm-temperate zones, especially in the developing countries, because it is inexpensive with a simple structure, and does not need any additional energy for heating in winter. Drip irrigation has been recognized as a sensible method of supplying water inside the greenhouses, and a simple method for drip irrigation scheduling at low cost is urgently required. Using the water-balance method, the authors studied the water consumption of tomato (Lycopersicon esculentum Mill.) and the relationship between evapotranspiration and water surface evaporation measured with 20 cm pan. Research results show that there is no significant water flux at 0.75 m depth when soil water potential is kept higher than -20 kPa at 15 cm depth, and around -20 kPa at 60 cm depth. The accumulative value of evapotranspiration is approximately equal to the accumulative value of water surface evaporation measured using 20 cm pan. Further analysis found that 20 cm pan can be used to determine the water requirement of tomato drip irrigation scheduling in this type of greenhouse.  相似文献   

16.
In cold, semi-arid areas, the options for crop diversification are limited by climate and by the water supply available. Growing irrigated crops outside the main season is not easy, because of climatic and market constraints. We carried out an experiment in Albacete, Central Spain, to measure the water use (evapotranspiration, ET) of broccoli (Brassica oleracea L. var. italica Plenck) planted in late summer and harvested at the end of fall. A weighing lysimeter was used to measure the seasonal ET under sprinkler irrigation. Consumptive use reached 359 mm for a period of 109 days after transplanting. The crop coefficient (Kc) for broccoli was obtained and compared to the standard recommendations for normal planting dates. Dual crop coefficient computations of the lysimeter ET data indicated that evaporation represented 31% of seasonal ET. An analysis of the variation in daily Kc values at a time of full cover suggested that the use of a grass lysimeter as a reference ET (ETo) was superior to using the ASCE Penman-Monteith (ASCE PM) equation at hourly time steps, which in turn caused less variability in Kc than when using the FAO-56 Penman-Monteith (FAO-56 PM) equation at daily time steps for the ETo calculation. An additional experiment aimed at evaluating the yield response to applied irrigation water by the drip method (seven treatments, from 59 to 108% of ETc) generated a production function that gave maximum yields of near 12 t ha−1 at an irrigation level of 345 mm, and a water use efficiency of 3.37 kg m−3. It is concluded that growing broccoli in the fall season is a viable alternative for crop diversification, as the lower yields obtained here may be more than compensated for by the higher produce prices in autumn, at a time of the year where irrigation water demand for other crops is very low.  相似文献   

17.
Bahiagrass (Paspalum notatum) is a warm-season grass used primarily in pastures and along highways and other low maintenance public areas in Florida. It is also used in landscapes to some extent because of its drought tolerance. Bahiagrass can survive under a range of moisture conditions from no irrigation to very wet conditions. Its well-watered consumptive use has not been reported previously. In this study, bahiagrass crop coefficients (K c) for an irrigated pasture were determined for July 2003 through December 2006 in central Florida. The eddy correlation method was used to estimate crop evapotranspiration (ETc) rates. The standardized reference evapotranspiration (ETo) equation (ASCE-EWRI standardization of reference evapotranspiration task committee report, 2005) was applied to calculate ETo values using on site weather data. Daily K c values were estimated from the ratio of the measured ETc and the calculated ETo. The recommended K c values for bahiagrass are 0.35 for January–February, 0.55 for March, 0.80 for April, 0.90 for May, 0.75 for June, 0.70 for July–August, 0.75 for September, 0.70 for October, 0.60 for November, and 0.45 for December in central Florida. The highest K c value of 0.9 in May corresponded with maximum vapor pressure deficit conditions as well as cloud free conditions and the highest incoming solar radiation as compared to the rest of the year. During the summer (June to August), frequent precipitation events increased the cloud cover and reduced grass water use. The K c annual trend was similar to estimated K c values from another well-watered warm-season grass study in Florida.  相似文献   

18.
Comparison of water status indicators for young peach trees   总被引:12,自引:1,他引:12  
We measured a series of physiological and physical indicators and compared them to xylem sap flow, to identify the most sensitive and reliable plant water status indicator. In the growing season of 1998, 4-year-old peach trees (Prunus persica Batsch cv. 'Suncrest', grafted on 'GF 677' rootstock) were studied under two irrigation treatments, 25 l dayу and no irrigation, and during recovery. Trials were conducted near Pisa (Italy) in a peach orchard situated on a medium clay loam soil and equipped with a drip-irrigation system (four 4 l hу drippers per tree). Measurements of leaf water potential (ƒW), stem water potential (ƒS), and leaf temperature (Tl) were taken over 5 days (from dawn to sunset) and analyzed in conjunction with climatic data, sap flow (SF), trunk diameter fluctuation (TDF) and soil water content (SWC). Physiological indicators showed substantial differences in sensitivity. The first indication of changes in water status was the decrease of stem radial growth. TDF and SF revealed significant differences between the two irrigation treatments even in the absence of differences in pre-dawn leaf water potential (pdƒW), up until now widely accepted as the benchmark of water status indicators. Irrigated trees showed a typical trend in SF rate during the day, while in non-irrigated plants the maximum peak of transpiration was anticipated. Measurements of water potential showed ƒS to be a better indicator of tree water status than ƒW. Tl was found to have poor sensitivity. In conclusion, we found the sensitivity of the indicators from the most to the least was: TDF >SF rate >SF cumulated = pdƒWS>mdƒW>Tl.  相似文献   

19.
Triantafilis  J.  Huckel  A.  Odeh  I. 《Irrigation Science》2003,21(4):183-192
Improving irrigation efficiency is of primary importance in arid and semi-arid regions of the world as a consequence of increasing incidences of soil and water salinisation. In the cotton-growing regions of Australia salinisation is generally a result of inefficient irrigation practices, which lead to excessive deep drainage (DD). There is therefore the need to apply a relatively inexpensive approach to assessing where inefficiencies occur and make prediction of suitability of existing and new water storage sites. However, physical methods of measuring DD, such as flux meters and lysimeters, are time-consuming and site-specific. In this paper we apply a rapid method for determining the spatial distribution of soil in an irrigated cotton field in the lower Gwydir valley. First, ECa data (using EM38 and EM31) were used to determine a soil-sampling scheme for determining soil information such as clay content and exchangeable cations to a depth of 1.2 m. The soil data and water quality information were input into the SaLF (salt and leaching fraction) model to estimate DD rate (mm/year). In developing the relationship between ECa and estimated DD, three exponential models (two-, three- and four-parameter) were compared and evaluated using the Aikakie information criteria (AIC). The three-parameter exponential model was found to be best and was used for further analysis. Using the geostatistical approach of multiple indicator kriging (MIK), maps of conditional probability of DD exceeding a critical cut-off value (i.e. 50, 75, 100 mm) were produced for various rates of irrigation (I=300, 600, 1,200 and 1,500 mm/year). The areas of highest risk were consistent with where water-use efficiency was problematic and thus leading to the creation of perched water tables. The advantage of this approach is that it is quick and is applicable to situations where efficient use of water is required. The results can be used for irrigation planning, particularly in the location of large irrigation infrastructure such as water reservoirs.  相似文献   

20.
Dynamics and modeling of soil water under subsurface drip irrigated onion   总被引:3,自引:0,他引:3  
Subsurface drip irrigation provides water to the plants around the root zone while maintaining a dry soil surface. A problem associated with the subsurface drip irrigation is the formation of cavity at the soil surface above the water emission points. This can be resolved through matching dripper flow rates to the soil hydraulic properties. Such a matching can be obtained either by the field experiments supplemented by modeling. Simulation model (Hydrus-2D) was used and tested in onion crop (Allium cepa L.) irrigated through subsurface drip system during 2002-2003, 2003-2004 and 2004-2005. Onion was transplanted at a plant to plant and row to row spacing of 10 cm × 15 cm with 3 irrigation levels and 6 depths of placement of drip lateral. The specific objective of this study was to assess the effect of depth of placement of drip laterals on crop yield and application of Hydrus-2D model for the simulation of soil water. In sandy loam soils, it was observed that operating pressures of up to 1.0 kg cm−2 did not lead to the formation of cavity above the subsurface dripper having drippers of 2.0 l h−1 discharge at depths up to 30 cm. Wetted soil area of 60 cm wide and up to a depth of 30 cm had more than 18% soil water content, which was conducive for good growth of crop resulting in higher onion yields when drip laterals were placed either on soil surface or placed up to depths of 15 cm. In deeper placement of drip lateral (20 and 30 cm below surface), adequate soil water was found at 30, 45 and 60 cm soil depth. Maximum drainage occurred when drip lateral was placed at 30 cm depth. Maximum onion yield was recorded at 10 cm depth of drip lateral (25.7 t ha−1). The application of Hydrus-2D confirmed the movement of soil water at 20 and 30 cm depth of placement of drip laterals. The model performance in simulating soil water was evaluated by comparing the measured and predicted values using three parameters namely, AE, RMSE and model efficiency. Distribution of soil water under field experiment and by model simulation at different growth stages agreed closely and the differences were statistically insignificant. The use of Hydrus-2D enabled corroborating the conclusions derived from the field experimentation made on soil water distribution at different depths of placement of drip laterals. This model helped in designing the subsurface drip system for efficient use of water with minimum drainage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号