首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The continuous use of heavy machinery and vehicular traffic on agricultural land led to an increase in soil compaction, which reduces crop yield and deteriorates the physical conditions of the soil. A pot experiment was conducted under greenhouse conditions to study the effects of induced soil compaction on growth and yield of two wheat (Triticum aestivum) varieties grown under two different soil textures, sandy loam and sandy clay loam. Three compaction levels [C0, C1, and C2 (0, 10 and 20 beatings)], two textural classes (sandy loam and sandy clay loam), and two genotypes of wheat were selected for the experiment. Results indicated that induced soil compaction adversely affected the bulk density (BD) and total porosity of soil in both sandy loam and sandy clay loam soils. Compaction progressively increased soil BD from 1.19 Mg m?3 in the control to 1.27 Mg m?3 in C1 and 1.40 Mg m?3 in C2 in sandy loam soil while the corresponding increase in BD in sandy clay loam was 1.56 Mg m?3 in C1 and 1.73 Mg m?3 in C2 compared to 1.24 Mg m?3 in the control. On the other hand, compaction tended to decrease total porosity of soil. In case of sandy loam, porosity declined by 5% and 17% in C1 and C2, respectively, and declined in sandy clay loam by 29% and 54%, respectively. Averaged over genotypes and textures, shoot length decreased by 15% and 26% at C1 and C2, respectively, and straw yield decreased by 21% and 61%, respectively. The compaction levels C1 and C2 significantly decreased grain yield by 12% and 41%, respectively, over the control. The deleterious effect of compaction was more pronounced on root elongation and root mass, and compaction levels C1 and C2 decreased root length by 47% and 95% and root mass by 41% and 114%, respectively, over the control. Response of soil texture to compaction was significant for almost all the parameters, and the detrimental effects of soil compaction were greater in sandy clay loam compared to sandy loam soil. The results from the experiment revealed that soil compaction adversely affected soil physical conditions, thereby restricting the root growth, which in turn may affect the whole plant growth and grain yield. Therefore, appropriate measures to avoid damaging effects of compaction on soil physical conditions should be practiced. These measures may include soil management by periodic chiseling, controlled traffic, conservation tillage, addition of organic manures, and incorporating crops with deep tap root systems in a rotation cycle.  相似文献   

2.
土壤导热率测定及其计算模型的对比分析   总被引:10,自引:6,他引:4  
土壤导热率是重要的热参数之一,为了获得预测导热率的准确方法,该文对比分析了确定土壤导热率的热脉冲直接测定法和模型间接推求法。根据热脉冲原理在相同体积质量下,测定了不同质地和含水率土壤的导热率值。结果表明在相同含水率条件下,砂粒含量越高,土壤的导热率越大,土壤导热能力越强。利用Horton经验公式对实测值进行了拟合,结果显示Horton经验模型基本可以反映土壤导热率变化特征,并得到了Horton公式经验系数。利用实测值与Campbell模型计算值进行了比较,结果显示Campbell模型计算结果偏差较大,并对其进行了修正。并且用实测值与Johansen模型及其2种改进模型(Coté-Konrad模型和Lu-Ren模型)的计算值进行了对比分析,结果表明Johansen模型计算结果与实测值偏差较大,2种改进型模型的计算结果与实测值更接近。该研究表明土壤导热率可以利用土壤质地、含水率、孔隙度和体积质量进行计算,3种理论模型的计算值与实测值的相关系数均值分别为:0.643、0.937、0.943,推荐使用Coté-Konrad模型和Lu-Ren模型计算土壤导热率,Lu-Ren模型比Coté-Konrad模型的适用范围更广。  相似文献   

3.
Research was conducted to develop a knowledge-based decision support system to assess the degree of compaction in agricultural soils. The experiments were conducted in a laboratory soil bin at the Asian Institute of Technology in three soils, namely, clay, silty clay loam, and silty loam. The research was likewise aimed to quantify the effect of tire variables (section width, diameter, inflation pressure); soil variables (soil moisture content, initial cone index, initial bulk density); and external variables (travel speed, axle load, number of tire passes) on soil compaction and to develop compaction models for soil compaction assessment. Dimensional analysis technique was used in the development of the compaction models.

The soil compaction models were found to provide good predictions of the bulk density and cone index. Using the compaction models and other secondary data, the decision support system was developed to assess the compaction status of the soil in relation to crop yield. The predictions by the decision support system were validated with actual field data from earlier studies and high correlation was observed. Thus, the output of the decision support system may be able to provide useful recommendations for appropriate soil management practices and solutions to site-specific soil compaction problems.  相似文献   


4.
Abstract

Soil thermal conductivity is a key factor governing its thermal regime. In the present study, we measured the thermal conductivity of Toyoura sand and glass beads using a heat probe method to clarify the effects of gravimetric water content (w) and NaCl concentration (C) and to evaluate the estimation effectiveness of four models (Mochizuki, de Vries, Noborio and Kasubuchi). The de Vries and Kasubuchi models predict the effect of w on soil thermal conductivity, whereas the Noborio model describes the effects of solute concentration and the Mochizuki model describes both parameters. With or without NaCl, the thermal conductivity of both samples increased with increasing w, and the increase could be grouped into three ranges based on w. The upper and lower limits of each water content range were constant, even at varying NaCl concentrations, but the width of the range differed among the three ranges and between the sand and glass bead samples. Although soil thermal conductivity has previously been reported to generally decrease with increasing C, the thermal conductivities of some glass beads increased in the present study, particularly at moisture contents close to field capacity. The change in thermal conductivity as a function of C was linear in all cases. This trend was similar to that of a non-swelling clay in a previous study. The Mochizuki model, which regressed measured thermal conductivity on C and w, predicted the thermal conductivity of sand as well as previous models, but the calculations were easier and the method offers more flexibility for soils with different textures.  相似文献   

5.
《Geoderma》1986,37(1):29-43
The effect of antecedent moisture on rainfall erosion was evaluated in a series of field experiments by applying artificial rainfall at 50 mm h−1 (0.189 J m−2 s−1), to two Gray-Brown Luvisols on plots of 7.8 m2. The measured soil loss is significantly related to antecedent moisture. Extrapolations from the data indicate that soil loss may differ by as much as 800 times if the full range of antecedent soil moisture is considered. For the Guelph silt loam, the maximum soil moisture effect was observed at 20 min after the beginning of simulated rainfall.Torsional shear strength of remoulded samples at field bulk density was determined by using a mechanized torvane. Field shear strength was then estimated on the basis of the shear strength-soil moisture relationship established in the laboratory. Because sharp changes in both soil shear strength and soil loss were observed around the ‘vane shear’ liquid limit, we suggest that the influence of soil moisture is at least in part expressed via soil strength.  相似文献   

6.
Direct measurement of soil moisture has been often expensive and time-consuming. The aim of this study was determining the best method to estimate the soil moisture using the pedotransfer functions in the soil par2 model. Soil samples selected from the database UNSODA in three textures include sandy loam, silty loam and clay. In clay soil, the Campbell model indicated better results at field capacity (FC) and wilting point (WP) with RMSE = (0.06, 0.09) and d = (0.65, 0.55) respectively. In silty loam soil, the Epic model had accurate estimation with MBE = 0.00 at FC and Campbell model had the acceptable result of WP with RMSE = 0.03 and d = 0.77. In sandy loam, Hutson and Campbell models had a better result to estimation the FC and WP than others. Also Hutson model had an acceptable result to estimation the TAW (Total Available Water) with RMSE = (0.03, 0.04, 0.04) and MBE = (0.02, 0.01, 0.01) for clay, sandy loam and silty loam, respectively. These models demonstrate the moisture points had the internal linkage with the soil textures. Results indicated that the PTFs models simulate the agreement results with the experimental observations.  相似文献   

7.
A general approach to estimate soil water content from thermal inertia   总被引:1,自引:0,他引:1  
Remote sensing is a promising technique for obtaining information of the earth's surface. Remotely sensed thermal inertia has been suggested for mapping soil water content. However, a general relationship between soil thermal inertia and water content is required to estimate soil water content from remotely sensed thermal inertia. In this study, we propose a new model that relates soil thermal inertia as a function of water content. The model requires readily available soil characteristics such as soil texture and bulk density. Heat pulse measurements of thermal inertia as a function of water content on nine soils of different textures were made to generate a universal Kerstan function. Model validation was performed independently in both laboratory and field, and the retrieved soil water contents from the new model were compared with previous models. Laboratory evaluation on an Iowa silt loam showed that the RMSE of the new model was 0.029 m3 m−3, significantly less than [Murray, T., Verhoef, A., 2007. Moving towards a more mechanistic approach in the determination of soil heat flux from remote measurements. I. A universal approach to calculate thermal inertia. Agric. For. Meteorol. 147, 80–87] model (0.109 m3 m−3) and [Ma, A.N., Xue, Y., 1990. A study of remote sensing information model of soil moisture. In: Proceedings of the 11th Asian Conference on Remote Sensing. I. November 15-21. International Academic Publishers, Beijing, pp. P-11-1P-11-5.] model (0.105 m3 m−3). Similar results were obtained in a field test on a Chinese silt loam: the RMSE of the new model, [Murray, T., Verhoef, A., 2007. Moving towards a more mechanistic approach in the determination of soil heat flux from remote measurements. I. A universal approach to calculate thermal inertia. Agric. For. Meteorol. 147, 80–87] model, and [Ma, A.N., Xue, Y., 1990. A study of remote sensing information model of soil moisture. In: Proceedings of the 11th Asian Conference on Remote Sensing. I. November 15-21. International Academic Publishers, Beijing, pp. P-11-1P-11-5.] model were 0.018, 0.071, and 0.159 m3 m−3, respectively. Additionally the model was validated using literature data in which soil thermal properties were estimated from in situ temperature measurements. The mean errors of estimated water content were generally less than 0.02 m3 m−3. We concluded that the new model was able to provide accurate water content predictions from soil thermal inertia.  相似文献   

8.
A range of soils from Pleistocene deposits with sandy to sandy loam textures, and a group of loess-derived soils with predominantly silty textures were subjected to 60 mm of simulated rainfall to form structural seals. After drying, samples of the surface crusts were collected to determine their bulk: densities at a high resolution of depth (0–15 mm) using an immersion method. The bulk density data obtained for each soil sample were plotted as a function of depth beneath the soil surface. Two models were fitted to these plots. The first was an exponential decay type function as proposed by Mualem et al. (1990), and the second was a sigmoidal type of function assuming that maximum compaction had already progressed to some depth below the soil crust surface.All of the results indicated a gradual decrease in the bulk density with depth below the surface, until convergence with the initial bulk density of the undisturbed soil was attained. The maximum bulk densities recorded for crust segments representing the uppermost 2 mm of the crusts ranged from 1.713 to 1.91 g cm−3 for soils with silty sand, loamy sand or sandy loam textures. Crusts of loess-derived soils showed lower values, ranging from 1.44 to 1.65 g cm−3. The maximum surface bulk density was shown to be highly significantly correlated with the log of geometric mean diameter of the primary grain size distribution. In most cases, both models showed good to very good fits to the measured data; the exponential decay function appeared to better represent the initial stages of surface compaction, and the sigmoidal function the later stages of structural crust formation.  相似文献   

9.
由于尾矿砂的不良结构和严重压实,水土流失严重,水分已成为其生态恢复的重要限制因素。因此以水分运移为主线,通过室内土柱模拟,研究铁尾矿砂和土壤在自然状态到最大压实状态间5个压实水平(铁尾矿砂1.50~1.70 g/cm^3,土壤1.30~1.50 g/cm^3)的水力学特征差异,为尾矿砂的合理改良提供依据。结果表明:铁尾矿砂自然容重1.50 g/cm^3的水分入渗能力低于土壤自然容重1.30 g/cm^3的水分入渗能力。随容重的增大,尾矿砂和土壤的水分运移特征均呈幂函数减小的趋势,但分别在1.60,1.40 g/cm^3处入渗能力明显降低。从水分参数入渗率、湿润锋距离、累计入渗量、饱和导水率、剖面水分分布整体来看,在较低容重范围内,土壤水分运移能力高于铁尾矿砂,但由于容重对土壤水分运移的影响大于铁尾矿砂,在较高容重范围内,土壤的水分运移能力则不如铁尾矿砂。铁尾矿砂和土壤的水分特征曲线形状也完全不同,铁尾矿砂呈现"上凸"形,表现为高吸力段缓低吸力段陡,土壤水分特征曲线均为"下凹"形,表现为高吸力段陡低吸力段缓。因此,尾矿砂中可以添加土壤或者类似土壤结构的基质来增强其不良的持水性和导水性,促进生态恢复。  相似文献   

10.
 We studied the influence of soil compaction in a loamy sand soil on C and N mineralization and nitrification of soil organic matter and added crop residues. Samples of unamended soil, and soil amended with leek residues, at six bulk densities ranging from 1.2 to 1.6 Mg m–3 and 75% field capacity, were incubated. In the unamended soil, bulk density within the range studied did not influence any measure of microbial activity significantly. A small (but insignificant) decrease in nitrification rate at the highest bulk density was the only evidence for possible effects of compaction on microbial activity. In the amended soil the amounts of mineralized N at the end of the incubation were equal at all bulk densities, but first-order N mineralization rates tended to increase with increasing compaction, although the increase was not significant. Nitrification in the amended soils was more affected by compaction, and NO3 -N contents after 3 weeks of incubation at bulk densities of 1.5 and 1.6 Mg m–3 were significantly lower (by about 8% and 16% of total added N, respectively), than those of the less compacted treatments. The C mineralization rate was strongly depressed at a bulk density of 1.6 Mg m–3, compared with the other treatments. The depression of C mineralization in compacted soils can lead to higher organic matter accumulation. Since N mineralization was not affected by compaction (within the range used here) the accumulated organic matter would have had higher C : N ratios than in the uncompacted soils, and hence would have been of a lower quality. In general, increasing soil compaction in this soil, starting at a bulk density of 1.5 Mg m–3, will affect some microbially driven processes. Received: 10 June 1999  相似文献   

11.
A greenhouse study was conducted to evaluate the performance of maize (Zea mays L.) on Iwo Soil in relation to different levels of soil moisture, soil compaction and K fertilization. Reductions in dry matter yields of maize were closely associated with soil moisture stress and compaction. There was significant interaction between soil moisture and bulk density, with highest yields occurring at 17% and 21% soil moisture levels for 1.6 and 1.2 g/cm3 bulk densities, respectively. Moisture stress and compaction resulted in greater reductions in the yield of roots than that of shoot. Yield and K uptake were more adversely affected by compaction compared to soil moisture stress. Addition of K increased yield and plant K content but the 60 ppm and 120 ppm rates were not significantly different in terms of improving crop performance. Implications of the results relative to long-term management of Iwo Soil are discussed.  相似文献   

12.
原状土与装填土热特性的比较   总被引:2,自引:2,他引:0  
土壤热特性是研究土壤—植物—大气系统中能量传输的必要参数。目前的研究集中在室内装填土柱上热特性与含水率、质地、温度和体积质量(容重)等因素的关系,田间条件下土壤结构对热特性影响的报道很少。该研究通过比较2种质地土壤田间原状土和室内装填土热特性的差异,初步探讨了不同含水率范围内结构形成对土壤热特性的影响。采集田间原状土,在室内利用热脉冲技术测定其热容量、热导率和热扩散率;然后将样品磨碎、过2mm土筛,填装后得到相同体积质量和含水率的装填土壤样品,并测定其热特性。结果表明,装填土和原状土的热容量基本一致;在中等含水率区域(砂壤土:0.07~0.24m3/m3;壤土:0.15~0.31m3/m3),重新装填后砂壤土和壤土的热导率分别降低了9.7%和9.8%。另外,结构形成增加了土壤热扩散率,在中等含水率区域尤其明显;在接近饱和区域,原状土与装填土的热扩散率趋于一致。因此,土壤结构形成对土壤热容量没有显著影响,但提高了中等含水率区域土壤的热导率和热扩散率。  相似文献   

13.
《Soil & Tillage Research》2007,92(1-2):109-119
Soil compaction may affect N mineralization and the subsequent fate of N in agroecosystems. Laboratory incubation and field experiments were conducted to determine the effects of surface soil compaction on soil N mineralization in a claypan soil amended with poultry litter (i.e., Turkey excrement mixed with pine shavings as bedding). In a laboratory study, soil from the surface horizon of a Mexico silt loam soil was compacted to four bulk density levels (1.2, 1.4, 1.6 and 1.8 Mg m−3) with and without poultry litter and incubated at 25 °C for 42 days. A field trial planted to corn (Zea mays L.) was also conducted in 2002 on a Mexico silt loam claypan soil in North Central Missouri. Soil was amended with litter (0 and 19 Mg ha−1) and left uncompacted or uniformly compacted. Soil compaction decreased soil inorganic N by a maximum of 1.8 times in the laboratory study; this effect was also observed at all depths of the field trial. Compacted soil with a litter amendment accumulated NH4+-N up to 7.2 times higher than the noncompacted, litter-amended soil until Day 28 of the laboratory incubation and in the beginning of the growing season of the field study. Ammonium accumulation may have been due to decreased soil aeration under compacted conditions. Application of litter increased soil N mineralization throughout the growing season. In the laboratory study, soil inorganic N in unamended soil was negatively correlated with soil bulk density and the proportion of soil micropores, but was positively related with soil total porosity and the proportion of soil macropores. These results indicate that soil compaction, litter application and climate are interrelated in their influences on soil N mineralization in agroecosystems.  相似文献   

14.
Abstract

Soil compaction is a significant production problem for agriculture because of its negative impact on plant growth, which in many cases has been attributed to changes in soil N transformations. A laboratory experiment was conducted to study the effect of soil compaction and water‐filled pore space on soil microbial activity and N losses. A hydraulic soil compaction device was used to evenly compress a Norfolk loamy sand (fine‐loamy, siliceous, thermic Typic Kandiudults) soil into 50 mm diameter by 127 mm long cores. A factorial arrangement of three bulk density levels (1.4, 1.6, and 1.8 Mg/m3) and four water‐filled pore space levels (60, 65, 70, 75%) was used. Fertilizer application of 168 kg N/ha was made as 1.0 atom % 15N as NH4NO3. Soil cores were incubated at 25°C for 21 d. Microbial activity decreased with both increasing water‐filled pore space and soil bulk density as measured by CO2‐C entrapment. Nitrogen loss increased with increasing bulk density from 92.8 to 334.4 g N/m3 soil at 60% water‐filled pore space, for 1.4 and 1.8 Mg/m3, respectively. These data indicate that N loss and soil microbial activity depends not only on the pore space occupied by water, but also on structure and size of soil pores which are altered by compaction.  相似文献   

15.
To clarify the role of the water bridges between soil particles on the transfer of heat we studied the dependence of thermal conductivity (λ) and electrical conductivity (E) on temperature between 278 and 338 K of sand and sand mixed with kaolin in the nearly dry state. The thermal conductivity decreased as temperature increased in the sand at volumetric water contents less than 0.07 m3 m?3, but it increased in the sand–kaolin mixture over the measured range of water content. In the sand, the ratio of E in the soil solution to the electrical conductivity of pure water increased gradually with increasing water content at the water contents less than 0.05 m3 m?3 and was almost constant at larger water contents. The ratio of E of the sand–kaolin mixture increased with increasing water content, particularly at the lower temperature. For both samples the ratio of E decreased as temperature increased, which suggested that the conduction of heat decreased through the decrease in the water bridges as temperature increased. Because the decrease in λwith increasing temperature could not be explained by the transfer of latent heat transfer, we considered that the temperature dependence of λwas due not only to the transfer of latent heat but also to the thermal bridge of water. We conclude that the condensation, conduction and evaporation in series involved in the latent heat transfer take place mainly through the water films. Our experimental results will help to understand the mechanism of the latent heat transfer in soil with the water films surrounding the soil particles.  相似文献   

16.
Moisture content and bulk density largely characterize physical and mechanical soil status and behaviour. A nondestructive determination of these soil properties is essential. Time domain reflectometry (TDR), although widely accepted for determination of volumetric water content, θ, has its limitations, and recently a frequency domain (FD) sensor has been developed and tested. An equation relating relative permittivity, ?′, to gravimetric water content, w, and bulk density, p, was established for three soil types (sand, sandy loam and clay). If ?′ and w are known, our model can be used to calculate bulk density and associated volumetric water content, θ, keeping in mind that θ= pw. Utilization is found in long-term monitoring of moisture fluctuations or short-term detection of traffic-induced soil compaction.  相似文献   

17.
小型拖拉机土壤压实的有限元预测   总被引:2,自引:5,他引:2  
农业土壤的基本特征是松软和经常处于非饱和状态,土壤体积密度与含水率既是主要参数又是影响压实的重要因素,且在不断地变化。为了进行有效田间土壤压实管理,根据具体土壤特性,采用一个二维的模型,用有限元方法进行土壤压实预测。模型考虑了应力路径、初始土壤体积密度和含水率等,将土壤体积密度视为平均主应力和最大自然剪切应变的非线性函数,可预测小型拖拉机在非饱和土壤上通过时引起土壤体积密度的变化及应力分布情况等。在华北轻壤土的试验证明,模型具有良好的拟合效果。  相似文献   

18.
A series of models has been proposed for estimating thermal diffusivity of soils at different water contents. Models have been trained on 49 soil samples with the texture range from sands to silty clays. The bulk density of the studied soils varied from 0.86 to 1.82 g/cm3; the organic carbon was between 0.05 and 6.49%; the physical clay ranged from 1 to 76%. The thermal diffusivity of undisturbed soil cores measured by the unsteady-state method varied from 0.78×10–7 m2/s for silty clay at the water content of 0.142 cm3/cm3 to 10.09 × 10–7 m2/s for sand at the water content of 0.138 cm3/cm3. Each experimental curve was described by the four-parameter function proposed earlier. Pedotransfer functions were then developed to estimate the parameters of the thermal diffusivity vs. water content function from data on soil texture, bulk density, and organic carbon. Models were tested on 32 samples not included in the training set. The root mean square errors of the best-performing models were 17–38%. The models using texture data performed better than the model using only data on soil bulk density and organic carbon.  相似文献   

19.
Drainage is often claimed to increase soil temperatures in early spring by decreasing the soil's heat capacity. Measurements of water table depth, soil water content and soil temperature were made during winter and spring on mole-pipe drained and undrained plots of a silt loam soil under pasture. Despite differences in water table depth and soil water content, drainage had no observable effect on soil temperature. Laboratory measurements of the thermal properties of soil cores at a matric potential of ?4kPa and then at saturation showed the volumetric heat capacity increased from 3.1 to 3.3 MJ m?3 K?1, with a proportional increase in the thermal conductivity from 1.1 to 1.2 W m?1 K?1. The thermal diffusivity remained unchanged. These values were used in a numerical simulation of the effects of drainage on the seasonal and diurnal oscillations in soil temperature. It is argued that the soil heat flux under pasture in spring is unaffected by drainage. The predicted temperature differences due to drainage are of the order of 0.2°C. As differences of this magnitude were observed between replicate thermometers in the field, it follows from the calculations above that any differences in soil temperature due to drainage would be too small to detect.  相似文献   

20.
The dynamic water conductivity characteristics of two alluvial sandy loam profiles (Typic Ustochrepts) were determined following the ?instantaneous profile method”? by monitoring the temporal variation in soil moisture content and potential at different depths in the profile, as the downward movement of water in the nearly saturated profile continued with evaporation prevented. The experimental sites differed in bulk density, moisture retention functions as well as dynamic water conductivity characteristics K(O). The unsaturated hydraulic conductivities were also calculated from moisture retention functions following the methods suggested by Campbell(1974) and Ghosh (1977). The calculated conductivity values agreed fairly well with the field data for the light-textured soils studied and the calculated values can be used for all practical purposes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号