首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Data on clayey swelling soils with gilgai microtopography are systematized. Classifications of gilgai microtopography representing regularly alternating microhighs and microlows are discussed, and its geometric parameters under different landscape conditions are considered. Gilgai microtopography is developed within flat or slightly inclined elements of the mesorelief composed of swelling clays of different geneses. These materials are characterized by the high swelling–shrinking capacity upon wetting–drying cycles owing to the predominance of clay minerals of smectitic group. These processes are especially pronounced under conditions of the impeded surface drainage and contrasting of the wet seasons with strong soil moistening by atmospheric precipitation or surface water and the seasons with deep soil drying under the impact of physical evaporation and transpiration. The areas with gilgai microtopography have complex soil cover patterns composed of Vertisols and vertic soils. Their formation is related to lateral movements of solid material in the soil profiles and along the curved soil surface. The morphological types of soil complexes in such area are systematized.  相似文献   

2.
Different hypotheses about the genesis of gilgai microtopography and corresponding soil complexes with clayey swelling soils are considered in this review. Their diversity is stipulated by specificities of the objects themselves and by the history of studies of the composition, properties, regimes, and landscape conditions of the areas with Vertisols in different countries. Most of the hypotheses about the genesis of Vertisols with the gilgai microtopography suggest that strong swelling–shrinking processes take place in these soils in the course of moistening–drying cycles; the origin of shear stress in the soils, its spatial patterns, and the particular ways of translocation of the soil material are discussed. At the early stage of Vertisol studies, a hypothesis about the leading role of the process of “self-swallowing” of the soils as a result of filling of open cracks with the material from the upper soil horizons was popular. However, numerous facts suggest that the intensity of this process is relatively low, so that it cannot play the major role in the gilgai formation and cyclic changes in the thickness and properties of the soil horizons in Vertisols. Another important mechanism is the uneven moistening and drying of the whole soil volume resulting in the irregular distribution of inner tensions in the soil with the development of shear stress and plastic deformation of the soil mass. The hypotheses suggested in the recent decades are based on the models of soil mechanics. A number of hypotheses consider possible alternation and duration of evolutionary stages of the development of Vertisols with the gilgai microtopography.  相似文献   

3.
Carbonate nodules and soft masses were studied in a gilgai soil complex in the North Caucasus, South Russia. Microrelief with an amplitude about 30 cm resulted in a wetter environment with stronger leaching in the microlow and a drier pedoenvironment with carbonate accumulation in the microhigh. Various macroforms of carbonate nodules and soft masses were identified in soil pits and sampled for micromorphology, scanning electron microscopy (SEM), and microprobe analyses to better characterize them and elucidate their pedogenesis. Common and unique attributes were described for carbonate pedofeatures depending on loci in gilgai soil complex. The most probable hypothesis for their formation is as follows. Nodules represent early pedogenic products that were initiated before gilgai formation. Modern hydrology resulted in variability of dissolution/recrystallization of the nodules along the gilgai microtopography. The variability in degree of impregnation, aggregation into pellets, and presence of hard nodular cores reflects several generations of soft masses.  相似文献   

4.
Data on the morphology and radiocarbon ages of humus of dark vertic quasigley nonsaline clayey soils with alternating bowl-shaped (Pellic Vertisols (Humic, Stagnic)) and diapiric (Haplic Vertisols (Stagnic, Protocalcic)) structures are discussed, and the genetic concept for these soils is suggested. The studied soils develop on loesslike medium clay in the bottom of a large closed depression on the Eisk Peninsula in the lowest western part of the Kuban–Azov Lowland. The lateral and vertical distribution of humus in the studied gilgai catena displays a lateral transition of a relatively short humus profile of the accumulative type with a maximum near the surface and with a sharp increase in 14C dates of humus in the deeper layers within the diapiric structure to the extremely deep humus profile with a maximum at the depth of 40–80 cm, with similar mean residence time of carbon within this maximum, and with a three times slower increase in 14C dates of humus down the profile within the bowl-shaped structure. The development of the gilgai soil combination is specified by the joint action of the lateral–upward squeezing of the material of the lower horizons from the nodes with an increased horizontal stress toward the zones a decreased horizontal stress, local erosional loss of soil material from the microhighs and its accumulation in the adjacent microlows, leaching of carbonates from the humus horizons in the microlows, and the vertical and lateral ascending capillary migration of the soil solutions with precipitation of calcium carbonates in the soils of microhighs.  相似文献   

5.
The high degree of base saturation and high cation exchange capacity with an appreciable dominance of calcium are related to the high carbonate content in parent rocks, high content of humus in chernozems, and abundant fine material in their profiles. These are characteristic features of prevalent soils in the Kamennaya Steppe. Almost all soils of monitoring and experimental plots have an appreciable spatial variation in exchangeable bases. The obtained data indicate that the content of adsorbed calcium in the exchangeable complex of the soil decreases with increasing shares of adsorbed magnesium and partially sodium.  相似文献   

6.
A pedogenetic stratification of the physicochemical and biological properties has been studied in the profiles of chernozemic soils on different elements of the paleocryogenic microtopography under a shelterbelt within the Kamennaya Steppe Reserve. The biological activity of soil samples was determined in laboratory from the amount of CO2 produced by the soil upon its incubation. It is shown that the soil properties vary considerably both in the vertical (along the soil profile) and horizontal (along the elements of the microtopography) directions. The methods of correlation and factor analyses have been applied to group the soil properties according to the three major factors and to study the relationships between these groups. A quantitative assessment of the particular factors of soil formation under given pedoclimatic conditions is suggested. The dominant role belongs to the biological factor (50% of the total factor load). This factor is reflected in the soil properties with the maximum degree of differentiation in the soil profile. The paleocryogenic microtopography (17% of the total factor load) specifies the differentiation of soil acidity and the content of carbonates.  相似文献   

7.
The microrelief affects the distribution of soluble salts in the upper horizons of salt-affected soils. This has been shown for semidesert soils—meadow solonchak, solonchakous meadow, and meadow soils—within the Sulak Lowland in the Republic of Dagestan. The total content of salts and the concentrations of sodium, magnesium, chlorine, and sulfate ions are higher in the soils of microelevations. However, no significant effect of the microrelief on the distribution of calcium in the soil water extracts has been found. The properties of the solid soil phase (the humus content and the content of adsorbed bases, including calcium, magnesium, and sodium) and the soil pH are not reliably differentiated by the elements of the local microtopography.  相似文献   

8.
The surface properties of soil carbonate were related to its distribution in thirteen profiles of a catenary sequence of calcareous soils from Azerbaijan. When carbonate surfaces were contaminated by Mg2+, 45Ca was used as a tracer for Mg2+ as well as Ca2+, thus enabling the carbonate surface areas to be estimated. These were shown to be inversely and curvilinearly related to soil carbonate contents, but with some abnormality for the three extremely saline/alkaline soils. Na+ does not appear to be specifically adsorbed on carbonate surfaces in the latter. The specific and the total surface areas of carbonate in the surface soils are very sensitive indices of profile development, and are combined with the content and particle-size distribution of carbonate in the profiles to show the variation in soil development along the catenary sequence.  相似文献   

9.
The initial stage of the development of the complex soil cover pattern in the Caspian Lowland was studied. The obtained data made it possible to reveal the specific features of the morphological and chemical properties of the soils on terraces of the Khaki playa and the role of burrowing animals in the formation of the microtopography and complex soil cover patterns on the youngest surfaces. The soil cover of the studied area consists of three-component complexes: light-humus quasi-gley solonetzes on relatively flat background surfaces, zooturbated solonetzes on microhighs, and humus quasi-gley soils in microlows. The layered deposits of the Khaki playa terraces and the shallow depth of the saline groundwater are responsible for the specificity of the modern salinization of the studied solonetzes. The distribution of the salts in their profiles has a sawshaped patter, which is related to the nonuniform texture of the deposits. On the microhighs composed of the earth extracted from 5- to 7-year-old suslik burrows, specific zooturbated solonetzes are formed. The known age of these formations makes it possible to determine the rate of the desalinization of the gypsum- and salt-bearing material extracted onto the soil surface and the rate of the salt accumulation in the lower part of the solonetzic horizon and in the subsolonetzic horizons in comparison with the data on the solonetzes of the background flat surfaces. The specific features of the soils in the closed microlows suggest that these soils have a polygenetic origin. The features of the recent hydromorphism predetermine the specificity of their morphology.  相似文献   

10.
Detailed characterization of soils and their variation along different topography positions has not been investigated in depth for Mediterranean arid regions. There is a need to accurately understand the variation and the spatial distribution of soil properties within dry region of the Levant. Such understanding is required to optimize the use and management of scarce land and water resources. The objective of this study was to examine the effect of hillslope characteristics on the variation of selected soil chemical properties in an arid Mediterranean climate. At each of five selected transects four sites were chosen to represent four different topographic positions: summit, shoulder, backslope and toeslope. A soil profile was examined at each site and a representative sample from each horizon was withdrawn for chemical analyses. The analyses indicated that generally, the carbonate contents of the surface horizons decreased from higher to lower positions of the toposequence, the carbonate content increased with depth for profiles occupying the lower positions. This suggests more intense leaching within soil at lower positions. The effect of steepness and curvature on controlling the variation of soil properties was obvious at the summit and shoulder positions. Leaching process seems to hinder the effect of steepness and curvature for soils at lower positions. Lower positions receive runoff water and organic matter from upper positions, which complicate the relationship between landform shape and organic matter content. Continuous tillage resulted in lower organic matter contents for soils at lower positions. Higher pH values were reported for soils down along the transect due to the movement of soil material from upper hillslope positions. Electrical conductivity, exchangeable calcium and potassium contents decreased downslope due to higher moisture accumulation. However, no obvious relationship was found between the variation of pH or EC in one hand and the variation of steepness and curvature on the other. Potassium content was variable due to its greater mobility. The analyses indicated that variation in the soil CEC is governed by two factors: the leaching pattern, which is controlled by hillslope position, and the accumulation of Eolian carbonates at the soil surface. The distribution of iron oxides and types of clay minerals indicated more weathering in a descending direction and with soil depth, which is attributed to higher availability of soil moisture along the same direction. These relationships suggested systematic variation of chemical properties along toposequences in this arid environment.  相似文献   

11.
南宁市土壤硒分布特征及其影响因素探讨   总被引:18,自引:0,他引:18  
以南宁市土壤为对象,系统采集了2 767个表层土壤(0~20 cm)和711个母质样(150~200 cm)。用AFS原子荧光光谱法进行了样品全硒含量质量分数分析;研究了南宁市土壤全硒含量的分布特征及其与成土母质、土壤类型和土壤理化性质的关系。结果表明,南宁市土壤全硒含量变幅为0.09~1.34 mg kg-1,算术平均值为0.57 mg kg-1。土壤类型中,新积土全硒含量最高,平均为0.89 mg kg-1;紫色土全硒含量最低,平均为0.37 mg kg-1。成土母质中,全硒含量以二叠系碳酸盐岩母质发育土壤为最高,平均为0.79 mg kg-1;以下白垩系紫红色碎屑岩母质发育土壤为最低,平均为0.39 mg kg-1。影响南宁市土壤硒含量的主要因素是成土母质,土壤pH、有机碳及铁和铝的含量对土壤全硒含量的富集与分布也有一定影响。  相似文献   

12.
Mineralogical composition of silt and clay fractions (<1.1–5 and 5–10 µm) in heavy loamy agrogrey soils (Luvic Retic Phaeozems) considerably changes both in the vertical (along the soil profile) and horizontal (along soil microcatenas) directions. The eluvial–illuvial distribution pattern of the clay fraction in the podzolized agrogrey soils with the second humus horizon is replaced by the homogeneous distribution in the agrogrey soils with residual carbonates. The distribution of silt fractions in the soil profiles is relatively homogeneous. The clay (<1 µm) fraction of the parent material is represented by the poorly ordered micasmectite interstratifications minerals, the proportion between which changes in the soil profiles in dependence on the particular pedogenetic processes. Hydromicas represent the second important component of the clay fraction. They consist of di- and trioctahedral varieties, the proportion between which changes in the soil profiles. Kaolinite and iron–magnesium chlorite are present in smaller amounts. The second humus horizon is characterized by the lowest content of mica-smectite interstratifications minerals with the high content of smectitic layers and by the lowest content of the clay fraction. Silt fractions are composed of quartz, micas, potassium feldspars, and plagioclases.  相似文献   

13.
Soil chemical parameters related to soil acidity were determined for 1450 soil samples taken from individual mineral soil horizons in 257 forest soils in Switzerland, 196 developed from carbonate‐containing and 61 from carbonate‐free parent material. The distribution of pH values and exchangeable base cations in corresponding pH ranges were related to the capacity and rate of buffer reactions in the soil. Based on this, five acidity classes for individual soil samples were defined. To describe and classify the status of soil acidity and base saturation (BS) of an entire soil body, the pH and the BS of the total fine earth in the soil were calculated from the pH and BS, respectively, of the individual soil horizons and the estimated volumetric content of fine earth. The status of soil acidification of soil profiles was assessed primarily using the total amount of exchangeable acidic cations in percent of the CEC of the fine earth in the entire soil profile. As a second factor, the gradient between the acidity class of the most acidic soil horizon and the estimated acidity class at the beginning of soil formation was used. The application of these classification schemes to our collection of soil profiles revealed the great influence played by the type of parent material. The acidification status of most soils on carbonate‐containing parent material was classified as very weak to weak, whereas soils on carbonate‐free parent material were found to be strongly to very strongly acidified. In terms of parent rock material, microclimate, and natural vegetation, the results of this study and the proposed classification schemes can be considered appropriate for large parts of Europe.  相似文献   

14.
This paper considers regularities governing the formation of automorphic tundra soils on glacial loamy deposits containing relict organic matter mainly represented by very fine plant detritus. Drainage, microtopography, and cryoturbation activity are the major controls of the development of these soils. With an increase in drainage, the following pedogenetic trend is observed on the surface of yedoma (Ice Сomplex) areas: gleyzem–cryozem–cryometamorphic soil. The climate change in the Holocene induced quick transformation of topography and general landscape situation and promoted formation and development of cryogenic soil complexes in the considered territory. Upon the low intensity of pedogenesis, the features and properties of previous soil formation stages are often preserved in the soil profiles; these are: gleyzation, peat accumulation, and cryoturbation.  相似文献   

15.
Uneven moisture patterns in water repellent soils   总被引:2,自引:0,他引:2  
In the Netherlands, water repellent soils are widespread and they often show irregular moisture patterns, which lead to accelerated transport of water and solutes to the groundwater and surface water. Under grasscover, spatial variability in soil moisture content is high due to fingered flow, in arable land vegetation and microtopography play a dominant role. Examples are given of uneven soil moisture patterns in water repellent sand, loam, clay and peat soils with grasscover, and in cropped water repellent sandy soils. In addition, the influence of fungi on inducing soil moisture patterns is illustrated as well.  相似文献   

16.
In agrolandscapes of the Vladimir opolie region, the ancient paleocryogenic microtopography is completely buried. However, the pattern of the paleocryogenic soil complex can be deduced from data on the humus content in the plow layer. Under conditions of a leveled surface microtopography, regular differences in the temperature and moisture of soils with different morphologies of their profile are observed; they are explained by the differences in the properties of particular genetic horizons. It is supposed that differences in the regimes of functioning of modern soils of the complex favor the preservation of the relict soilscape.  相似文献   

17.
Secondary calcification processes have been studied in three paddy soils (Anthrosols or Aquazems) of southern China. It is shown that the soils’ amendment with lime powder and the periodic ponding of rice paddies with carbonate-rich water lead to the considerable transformation of the initial soils. The general properties of these soils and their morphological, micromorphological, and mineralogical features have been analyzed, and isotopic studies of the carbonate concentrations have been performed. The studied soils differ in the degree of their secondary calcification. The presence of lithogenic and pedogenic carbonates in the soils has been proved. Among the pedogenic carbonates, younger and older concentrations can be distinguished. The major feature of the carbonate concentrations in the studied soils is the coprecipitation of calcium and iron in the clay soil matrix. In general, the studied soil profiles display the initial stages of calcification. At the same time, there are certain analogies between the process of calcification in the paddy soils and the formation of thick accumulative calcareous crusts in some soils of northeastern China.  相似文献   

18.
Knowledge of spatial variation of soil is important in site-specific farming and environmental modeling. Soil particles size and water distribution are most important soil physical properties that governing nearly all of the other attributes of soils. The objectives of this study were to determine the degree of spatial variability of sand, silt and clay contents, and water content at field capacity (FC), permanent wilting point (PWP), and available water content (AWC) of alluvial floodplain soils. Data were analyzed both statistically and geostatistically to describe the spatial distribution of soil physical properties. Soil physical properties showed large variability with greatest variation was observed in sand content (68%). Exponential and spherical models were fit well for the soil physical properties. The nugget/sill ratio indicates except clay all other soil physical properties were moderate spatially dependent (37–70%). Cross-validation of the kriged map shows that prediction of the soil physical properties using semivariogram parameters is better than assuming mean of observed value for any unsampled location. The spatial distribution of water retention properties closely followed the distribution pattern of sand and clay contents. These maps will help to planner to develop the variable rate of irrigation (VRI) for the study area.  相似文献   

19.
The concentrations of Mn, Zn, B, and I; the humus content, and the pH values have been determined in the main soil types of mountainous Dagestan. The total content of microelements and their distribution in the soil profiles depend on many factors, including the absolute height of the territory and the character of soil-forming rocks. In general, the studied soils are well provided with Zn and B and poorly provided with Mn and I. The concentrations of these microelements in all the soils are highly variable in the upper horizons; down the soil profile, the degree of the spatial variability decreases. The variability in the contents of Mn and I does not fit the normal law in the case of soddy meadow, eroded meadow, meadow-forest, and meadow-steppe mountainous soils. No correlative relationships have been established between the contents of Zn, B, and humus, as well as between the contents of Mn and Zn and the soil pH. A weak correlation exists between the content of B and I.  相似文献   

20.
为了探讨不同微地形下坡面土壤水分的时空分布及其变异规律,以北京土石山区人工林坡面为研究对象,在40 m×50 m坡面共布设30个土壤水分观测点,分10 cm间隔观测,观测深度为50~70 cm。2015年4—10月使用Diviner 2000共监测土壤水分20次。结果表明:(1)坡地土壤水分含量时间变化趋势一致,大体随着降雨波动的变化而变化。(2)土壤水分随坡位变化而变化,水平阶上坡位<中坡位,缓坡中坡位<下坡位。(3)坡面土壤水分整体随深度的增加而增加,水土保持工程措施可有效改善土壤水分状况,微地形主要影响>30 cm的土层,不同微地形土壤水分含量表现为水平阶>缓坡>陡坡>陡坎,水平阶土壤水分显著高于其他微地形(P<0.05)。(4)冗余分析结果显示,微地形是影响坡面土壤水分异质性的主控因素,相对贡献率达81.2%,微地形因素减弱了海拔和坡位对土壤水分含量的影响。该研究可为土石山区生态恢复对水文水资源影响评估提供科学依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号