首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
传统耕作和免耕的红壤生态系统土壤动物种群的分异   总被引:2,自引:0,他引:2  
In a field experiment ,the popultions of major soil fauna groups including earthworms,enchytraeids,arthropods and nematodes were examined in conventional tillage(CT) and no-tillage(NT) red soil ecosystems to evaluate their responses to tillage disturbance.Earthworms,macro- and micro-arthropods were stimulated under NT with earthworms showing the highest population increase by four times ,while enchytraeids and nematodes favored CT system predicting certain adaptability of these animals to plow-disturbed soil envi-ronment ,On the basis of relative response index it was found that soil fauna was more sensitive to tillage than soil resource base(C and N pools) and microflora.The population structure of soil fauna was also affected by tillage treatments.Analysis on nematode trophic groups showed that bacteria-feeding and plant parasitic nematodes were more abundant in CT soil whereas the proportions of fungivores and onmivore-predators increased in NT soil.Possible reasons for the differentiaion in both size and structure of the fauna populaion were discussed and the ecological significance involved in these changes was emphasized.  相似文献   

2.
In traditional environmental risk assessment for soils, interactions between biota, contaminants and soil functioning are seldom taken into account. Also, single species toxicity tests are conducted with a fixed number of test animals. The objective of this study was to investigate effects of zinc (0–620 mg Zn kg?1 dry soil) on soil ecosystem processes at different densities of the earthworm Lumbricus rubellus. Experiments were conducted using 1-liter microcosms equipped with respirometers. The presence of L. rubellus stimulated relevant soil processes and parameters: litter fragmentation, leaf litter mass loss from the soil surface, soil organic matter (SOM) content and soil respiration. Zinc was not lethal to L. rubellus, but negatively impacted soil respiration at the highest concentrations. Litter mass loss from the soil surface was also decreased by zinc and there was a significant interaction with worm density. The results of the study demonstrate that the impact of zinc on soil processes depends on the presence and densities of key soil organisms such as earthworms that influence decomposition and SOM content. The outcome of this research can be used to make existing models for site-specific risk assessment more ecologically relevant, linking effects of contaminants on soil fauna populations with effects on ecosystem functioning.  相似文献   

3.
The influence of earthworms on nematodes and protozoan communities was determined during the wheat phase of a six year rice-wheat rotation agro-ecosystem. Experimental plots in the rotation had five treatments, i.e. incorporation or mulching of maize residues with or without added earthworms and a control. The addition of maize residues to soil strongly affected the abundance and community structure of nematodes and protozoa in the absence of earthworms. The presence of earthworms gave significantly lower total nematode numbers at all soil depths following maize residue incorporation than the same treatment without earthworms, and also gave lower (although not significantly) total nematode numbers in the upper soil layer following maize residue mulching than the same treatment without earthworms. This was mainly due to a significant decrease in bacterial-feeding nematode numbers. Earthworms also strongly affected the distribution of the number of total nematodes and two trophic groups (bacterial and plant feeders) with soil depth. In the presence of earthworms, total protozoan and flagellate numbers significantly increased at all soil depths following both incorporation and mulching of maize residues, while numbers of amoebae increased only when maize residues were mulched. Additionally, in earthworm casts total nematode numbers (mainly bacterial and fungal feeders) were significantly higher, whereas total protozoa numbers (mainly flagellates and amoebae) were significantly lower than that in soil from 0 to 5 cm layer.These results indicated that earthworm activity could affect the abundance and community structure of microfauna, and change their distribution between soil layers and cast material, depending on the mode of application of organic residues.  相似文献   

4.
于2008年夏天选择三个典型样点对"绿色南京"林业建设新增林的土壤生物多样性的群落特征进行研究。结果表明:在三个样点中,共捕获地表凋落物节肢动物1305只,隶属12纲21目,其中真螨目为优势种群,占总节肢动物的70%,常见种群或稀有种群分别为11目和14目。由于机场高速杨树防护林秣陵镇西段(样点III)真螨目的高度集中,其优势度最高,而多样性指数、均匀度指数和丰富度指数均最低;土壤线虫优势种群为植食线虫和食细菌线虫,而食真菌、捕食、杂食线虫均为常见种群;土壤原生动物中,鞭毛虫为优势种群,占原生动物总个体数的70~90%,其次为变形虫,而纤毛虫比例最小,在1~5%左右;新增林地在一定程度上改变了土壤微生物的群落结构。  相似文献   

5.
《Applied soil ecology》2000,14(2):111-124
We determined the impact of the presence of lupin and wheat residues on decomposer fauna and measured the decomposition rate of these residues during summer and autumn in paddocks previously cropped with either wheat or lupin at East Beverley in Western Australia. Populations of various groups of decomposer soil biota and nitrogen dynamics (immobilization and mineralization) were measured using litterbags. In December 1996, litterbags with lupin residues were placed on soil after a lupin crop while litterbags with wheat residues were placed on soil that had grown wheat in the previous growing season.From January until the end of June 1997, substrate-induced respiration, protozoa, nematodes and microarthropods and mass loss and carbon and nitrogen contents of the remaining residues were measured at regular intervals. During the 6 months of incubation, 15–20% of mass loss occurred for both wheat and lupin residues. Decomposition rates for lupin and wheat were 0.0013 and 0.0011 day−1, respectively. The largest decrease in residue mass occurred after the first major rainfall, probably due to the loss of water-soluble compounds. Between days 60 and 130 (March to the beginning of May) the loss in mass of both residue types was gradual, coinciding with large numbers of microfauna. Mass loss of residues was minimal during the period between 126 and 188 days when large numbers of mesofauna were observed. A significant loss in nitrogen was only observed for the lupin residues, whereas net immobilization of nitrogen occurred with the wheat residues during this 6-month study. At the beginning of the study, substrate-induced respiration was higher for the lupin residues suggesting that microorganisms colonized the lupin more extensively than the wheat residues. In June, microbial biomass on lupin and wheat residues was similar. Higher nematode, amoebae and ciliate abundances on the lupin residues might have prevented a further increase in the microbial biomass. Measurable populations of protozoa and nematodes were observed in the first sampling date in March, whereas quantifiable numbers of microarthropods only appeared in May, 4 months after placement of the litterbags in the field. Prostigmatic mites were abundant on the wheat residues, while Collembola were the most abundant microarthropods on the lupin residues. Food quality and predatory pressures may have affected the succession of different soil biota communities on the lupin and wheat residue.  相似文献   

6.
《Applied soil ecology》2010,46(3):123-130
Earthworms affect plant performance and can influence plant–herbivore interactions. Both primary and secondary metabolites and the expression of stress-responsive genes of plants can be affected by earthworms. Plant-mediated effects of earthworms on aboveground herbivore performance range between positive and negative. These indirect, plant-mediated effects likely depend on the altered resource uptake of plants or changes in the soil microbial community composition in presence of earthworms. Studies on belowground interactions between earthworms and root herbivores focussed almost exclusively on root-feeding nematodes. These interactions can be either direct (e.g. ingesting of nematodes) or indirect, mediated by changes in host plant performance or biotic and abiotic soil characteristics. Earthworms were documented to counteract the negative effects of root-feeding nematodes on plants. Consistently, earthworm-worked soils (vermicompost) have been reported to reduce numbers of root-feeding nematodes and plant damage by aboveground herbivores. The results suggest context dependent impacts of earthworms on herbivore performance and an alleviation of herbivore damage of plants by earthworms, besides their well-known effects on plant growth. This knowledge is crucial for understanding the impact of earthworms on plants in natural environments, and may be applied as alternative plant protection in sustainable agriculture.  相似文献   

7.
The effect of earthworm coprolites on the soil water retention curve   总被引:1,自引:0,他引:1  
The effect of earthworm coprolites on the water retention curves in soils of different geneses and textures was investigated by the method of equilibrium centrifuging. Coprolites sampled in the field were compared with the surrounding soil. The effect of earthworms on a soddy-podzolic light loamy soil (from Moscow oblast) was comprehensively analyzed in the course of a special model experiment in a laboratory. This experiment was necessary because it was difficult to separate the coprolites from the soil, in which additional coprolites could appear under natural conditions. In all the variants of the experiment, the differences between the water retention curves of the coprolites and the surrounding soil (or control substrates unaffected by earthworms) were statistically significant. The development of coprolites favored a considerable increase (up to 20 wt.% and more) of the soil water retention capacity upon equivalent water potentials within the range from 0 to ?1000 kPa. In most cases, the soil water retention capacity increased within the entire range of the soil moisture contents. This could be explained by the fact that strongly swelling hygroscopic plant remains (detritus) were included into the coprolites and by the formation of a specific highly porous aggregate structure.  相似文献   

8.
Bacteria and protozoa in soil microhabitats as affected by earthworms   总被引:8,自引:0,他引:8  
The effects of incorporation of elm leaves (Ulmus glabra) into an agricultural sandy loam soil by earthworms (Lumbricus festivus) on the bacterial and protozoan populations were investigated. Three model systems consisting of soil, soil with leaves, and soil with leaves and earthworms, respectively, were compared. The total, viable, and culturable number of bacteria, the metabolic potentials of bacterial populations, and the number of protozoa and nematodes were determined in soil size fractions. Significant differences between soil fractions were shown by all assays. The highest number of microorganisms was found in microaggregates of 2–53 μm and the lowest in the <0.2μm fraction. A major part of the bacteria in the latter fraction was viable, but non-culturable, while a relatively higher number of culturable bacteria was found in the macroaggregates. The number of colony-forming units and 5-cyano-2,3-ditolyl tetrazolim chloride (CTC)-reducing bacteria explained a major part of the variation in the number of protozoa. High protozoan activity and predation thus coincided with high bacterial activity. In soil with elm leaves, fungal growth is assumed to inhibit bacterial and protozoan activity. In soil with elm leaves and earthworms, earthworm activity led to increased culturability of bacteria, activity of protozoa, number of nematodes, changed metabolic potentials of the bacteria, and decreased differences in metabolic potentials between bacterial populations in the soil fractions. The effects of earthworms can be mediated by mechanical mixing of the soil constituents and incorporation of organic matter into the soil, but as the earthworms have only consumed a minor part of the soil, priming effects are believed partly to explain the increased microbial activity. Received: 7 January 1996  相似文献   

9.
In northern boreal forests the occurrence of endogeic and anecic earthworms is determined by soil pH. Increasing evidence suggests that large detritivorous soil animals such as earthworms can influence the other components of the decomposer community. To study the effects of earthworms and pH on soil nematode and enchytraeid communities, a factorially designed experiment was conducted with Lumbricus rubellus and/or Aporrectodea caliginosa. Earthworms were added to "mesocosms" containing unlimed (pH 4.8) or limed (pH 6.1) coniferous mor humus with their natural biota of micro-organisms. In the absence of earthworms, nematodes were significantly more abundant in limed than in unlimed humus. Earthworms markedly decreased the numbers of nematodes both in unlimed and limed soils. Earthworm activities eliminated enchytraeids in unlimed soil, but liming improved the survival of some species. It was concluded that liming of soil, either alone or mediated by the earthworm populations, is likely to affect soil nematode and enchytraeid community and mineralisation.  相似文献   

10.
The long-term effect of fertilizers on plant diversity and productivity is well known, but long-term effects on soil biota communities have received relatively little attention. Here, we used an exceptional long-lasting (>40 years) grassland fertilization experiment to investigate the long-term effect of Ca, N, PK, and NPK addition on the productivity and diversity of both vegetation and soil biota. Whereas plant diversity increased by liming and decreased by N and NPK, the diversity of nematodes, collembolans, mites, and enchytraeids increased by N, PK, or NPK. Fertilization with NPK and PK increased plant biomass and biomass of enchytraeids and collembolans. Biomass of nematodes and earthworms increased by liming. Our results suggest that soil diversity might be driven by plant productivity rather than by plant diversity. This may imply that the selection of measures for restoring or conserving plant diversity may decrease soil biota diversity. This needs to be tested in future experiments.  相似文献   

11.
Due to the dependence of soil organisms on plant derived carbon, disturbances in plant cover are thought to be detrimental for the persistence of soil biota. In this work, we studied the disturbance effects of plant removal and soil mixing and the mitigation effects of replanting on soil biota in a low-arctic meadow ecosystem. We set up altogether six replicate blocks, each including three randomized treatment plots, at two distinct fells at Kilpisjärvi, northern Finland. Vegetation was removed in two thirds of the plots: one third was then kept barren (the plant-removal treatment), while the other third was replanted with a local herb Solidago virgaurea. The remaining plots of intact vegetation were used as treatment comparisons. The responses of soil microbes and fauna were examined six years later in the early and late growing season. The biomass of bacteria, non-mycorrhizal fungi and mycorrhizal fungi (estimated using PLFA markers) were on average 74%, 89% and 84% lower in the plant-removal and 64%, 74% and 71% lower in the Solidago replant plots than in the intact meadow. The positive effect of replanting was statistically significant for fungi, but not for bacteria. The PCA of relative PLFA concentrations further showed that the structure of the microbial community differed significantly among all three treatments. The abundance of nematodes and collembolans was on average 82 and 95% lower, but the total number of nematode genera and collembolan taxa only 27 and 7% lower in the plant-removal plots than in the intact meadow soil. Few disturbance effects on soil fauna were significantly mitigated by the Solidago replant (the plant parasitic nematodes being a notable exception) and in the case of the collembolans, the Solidago replant plots had even fewer animals than the plant-removal plots. The response of soil biota also varied with locality: the effects on fungivorous nematodes were found at one site only and the replant effects on the number and diversity of collembolan taxa varied with site. Our results suggest that despite drastic reductions in the abundance of soil biota, the majority of animal taxa can persist for years in disturbed arctic soils in the absence of vegetation. In contrast, the alleviating replant effects on the abundance of soil biota appear weak and may only partially reverse the negative effects of vegetation removal and soil disturbance.  相似文献   

12.
The increase in protozoan and nematode populations following addition of glucose or barley leaf material to five different mixtures of a sandy loam and a silty clay loam was investigated in 2 experiments. Prescribed soil textures (varying in clay content from 15.6% to 28.6%) were incubated at a matric potential of —10 kPa at 15 °C, and the number of protozoa and nematodes and the amount of inorganic nitrogen were estimated after 0, 2 and 5 weeks. In the first experiment, the effect of amendment with glucose was compared with amendment with barley leaves. Numbers of protozoa increased in soil mixtures amended with both glucose and barley leaves, but nematodes only increased in the treatment with barley leaves. There was a large positive effect of the amount of fine-textured soil on the number of protozoa, whereas the nematodes were not affected by soil texture. In the second experiment, the effect of nematodes on protozoa and nitrogen mineralization was examined. Soil mixtures prepared with sterilised soil were amended with barley leaves and either (1) a soil suspension filtered through a 5 μm mesh to remove nematodes, or (2) a filtered soil suspension and a mixture of nematodes extracted from soil. The nematodes that multiplied in the soil mixtures were almost exclusively bacterial-feeding rhabditids. The nematodes had a significantly positive effect on the number of protozoa but an insignificant effect on N-mineralization. Both protozoa and nematodes were affected positively by the proportion of the fine-textured soil in the soil mixtures, but the positive effect on protozoa was larger than the effect on nematodes.  相似文献   

13.
The activities of many soil animals make a positive contribution to soil processes and they should be considered for inclusion in indices of ‘soil quality'. To assess the potential use of nematodes and earthworms as indicators, the relationships between populations of earthworms (Lumbricidae), total number of nematodes and predacious nematodes (Mononchoidea) and six soil physical factors, soil carbon and pH were investigated in four New Zealand soils. In each, soil treatments ranged from 5–90 year pastures to cropping with maize or barley for 11–29 years. With increasing cultivation, trends in bulk density, total porosity, aggregate stability and concentration of total carbon were similar in all four soils. In Manawatu (Dystric Fluventic Eutrochrept) and Kairanga (Typic Endoaquept) soils earthworm populations were negligible under continuous cropping while Mononchoidea were abundant (11 600 and 34 100 m−2). In contrast, in Moutoa (Fluvaquentic Endoaquoll) and Wakanui (Aquic Ustochrept) soils earthworms persisted under cultivation, while Mononchoidea were less abundant (300 and 2500 m−2). At these two latter sites, aggregate stability was higher (1.14 and 0.92 mm mean weight diameter (MWD)) than in Manawatu and Kairanga soils (0.38 and 0.35 mm MWD). These relationships between aggregate stability, earthworm abundance and predacious nematodes show not only that some potential indicators may have a local rather than national application, but also that there are important interactions between soil physical properties and soil fauna which require further investigation.  相似文献   

14.
Formalin, phorate, and sodium chlorate were used in field enclosures to create artificial habitats in a fescue meadow containing (1) reduced number of earthworms, (2) reduced numbers of earthworms and soil arthropods, and (3) reduction of total soil fauna and rate of microbial decomposition. Under these conditions, confined fescue litter initially decomposed more rapidly where arthropods or earthworms were suppressed than in controls with full complements of soil animals. After one year, reduction in numbers of soil animals had no net effect on litter decomposition, with faunal activity apparently having been compensated for by increased microbial activity. Where animals and microbial activity were reduced, rate of litter loss was depressed initially but recovered after 10 months as the effects of chemical suppression of microbial populations subsided. Contrary to the effects on annual loss of litter, elimination of all or portions of the soil fauna depressed rates of loss of confined and buried roots, reflecting the role of animals in fragmenting roots before their decomposition by microorganisms.Habitat manipulations had pronounced effects on the mobility of 134Cs, and loss of the radionuclide from labelled litter was retarded despite an accelerated rate of decomposition. This effect apparently was associated with proliferation of microorganisms on litter and microbial immobilization of the radionuclide. Immobilization of 134Cs occurred following chemical perturbations, but only after an initial period of rapid loss resulting from increased microbial activity. Distribution of 134Cs in soil beneath tagged litter bags reflected the role of animals in element redistribution within soil. Restricted vertical mobility of the nuclide occurred except where chemical application killed vegetation within the experimental enclosures.  相似文献   

15.
The ability of terrestrial ecosystems to store carbon (C) under rising atmospheric CO2 will depend on how severely nitrogen (N) will limit plant growth. We tested whether increased C availability in the soil at elevated CO2 could affect N limitation by inducing N release from soil organic matter (SOM). We established microcosms composed of Holcus lanatus plants, field soil (containing “old” SOM) and 15?N-labeled plant litter (representing “new” SOM), simulated different levels of root C release by adding a single pulse of 0, 18, 44, or 175?μg glucose C?g?1 dry soil and recorded the effects on soil microbial biomass, microbial-feeding protozoa and nematodes and plant performance 1, 3, 9, and 32?days after C addition. The effects on H. lanatus growth and N uptake depended on the amount of added C and the time elapsed since addition. Shoot N concentration and N content were higher in pots amended with 44?μg?C g?1 soil than in other pots 1?day after C addition. Later, 9 and 32?days after C addition, the highest glucose addition reduced the dry mass, N concentration, and N content of H. lanatus shoots in comparison to other treatment levels. Microbial biomass was generally higher in soils subjected to 44?μg glucose C?g?1 soil than in control soils, and, at the last harvest, the numbers of protozoa were significantly higher in all soils with glucose amendments than in control soils. No effects on microbial-feeding nematodes were found, and plant N uptake from “old” and “new” SOM was equally affected by C addition. Our results seem to suggest that, while a low pulse of labile C can increase plant N uptake temporarily on an hour scale, higher amounts of C will intensify plant N limitation at timescales of days and weeks. Generalization of such dose and time dependent results requires great caution, but if verified in other plant–soil systems as well, they would suggest that plant N availability under elevated C availability may depend on the balance between positive and negative effects operating at different timescales and triggered by additional C pulses of varying size.  相似文献   

16.
Radopholus similis is a worldwide endoparasitic nematode that greatly hampers banana (Musa acuminata, Cavendish subgroup) productivity. Earthworms are known to closely interact with above-ground and under-ground soil biota and particularly with plants and microfaunal communities. This study was aimed at investigating, under greenhouse conditions, the effects of the earthworm Pontoscolex corethrurus on banana growth and nutrient uptake, and assessing the influences of this earthworm on the development of an inoculated population of R. similis. Six-week-old tissue culture banana plants were submitted to four treatments: with P. corethrurus, R. similis, P. corethrurus+R. similis, and a control with no earthworms or nematodes. At the end of the experiment, the P. corethrurus treatments showed significantly higher leaf surface areas, shoot dry root weights, and root fresh weights than those without earthworms. This root growth enhancement probably contributed to the evident but non-significant decrease in the density of nematodes in the roots, even though earthworms did not reduce the total number of nematodes per whole root system. Moreover, the presence of earthworms slightly alleviated the severity of root damage. N bioavailability in the soil, along with N, Ca, and Mg content of banana plants, were also significantly increased in the presence of earthworms. Our results demonstrated that banana plant growth and nutrition were positively influenced by earthworms. Cropping practices that boost the development of earthworm communities in soil should therefore be promoted to enhance sustainability and to naturally alleviate nematode impact.  相似文献   

17.
在黄淮海平原小麦-玉米一年两熟地区,试验设置了5个处理,分别为玉米小麦每年均翻耕(CTWT)、玉米免耕+小麦每年翻耕(CNTWT)、玉米免耕+小麦每2年翻耕(CNTW2T)、玉米免耕+小麦每4年翻耕(CNTW4T)、玉米小麦每年均免耕(CNTWNT),所有处理的农作物地上秸秆全部移出。调查结果显示,中小型土壤动物在数量上占总数的比例为83%~91%,土壤动物主要分布在表层,占有其总量的71.9%~73.2%。土壤动物存在显著的季节性动态,其丰富度在玉米季高于小麦季。土壤动物Shannon多样性指数在整体上表现为翻耕高于免耕处理,玉米季翻耕处理下有更高的均匀度指数,但小麦季均匀度指数差异不显著。多元典范冗余分析表明,耕作方式主要是对土壤动物的时间动态和垂直分布产生影响,从而间接地影响了土壤动物的数量和组成。  相似文献   

18.
The most important indicators of biological activity (respiration, methane genesis, nitrogen fixation, denitrification, and size and structure of the microbial population) were determined in coprolites of two types of earthworms (Lumbricus rubellus considered as the “litter” type and Aporrectodea rosea as the “soil” type) in the model experiment, in which the earthworms were kept separately and together, as in soddy-podzolic loamy soil. The biological activity of coprolites was significantly higher than in the soil and varied between worm species.  相似文献   

19.
One aim of conservation tillage is to preserve soil biological properties. This study was conducted to examine the effects of two contrasting tillage treatments on soil biota at different depths. We investigated the population dynamics and vertical distributions of microbes and several soil faunal groups for 2 years in field Andosols in northeastern Japan. The experimental plots were under no tillage (NT) or conventional tillage (CT, rotary tilled to 20 cm) management. In the 0–10-cm soil layer, bacterial and fungal substrate-induced respiration (SIR) and the population density of enchytraeids were higher under NT than under CT, but the population densities of protozoa, mites, and collembolans did not differ significantly. In contrast, at 10–20 cm, both SIR values were higher under CT, where larger populations of mites and collembolans were recorded. At both depths, nematodes were more abundant under CT. Thus, the effects of tillage on these soil organisms differed according to soil depth, and negative impacts of tillage were smaller in the deeper layer. Larger amounts of earthworm casts at the soil surface in NT plots showed a greater biomass of earthworms than in CT. To evaluate the activities of soil biota, we buried litterbags with three different mesh sizes at the two depths and examined the rate of decomposition. The daily decay constant of litter in the surface soil layer (1.5–8.5 cm) was greater under NT. We suppose that the activities of soil biota in this layer were stimulated under NT, and that especially microbes and enchytraeids, which were abundant at 0–10 cm, contributed greatly to the decomposition.  相似文献   

20.
Nematodes as soil indicators: functional and biodiversity aspects   总被引:23,自引:0,他引:23  
Since it has become appreciated that soil nematode assemblages are abundant, diverse and contribute to soil nutrient turnover, they have been increasingly used as indicators of soil condition. Use of nematodes as functional indicators relies on the allocation of nematodes to feeding groups and reproductive strategies; in both cases groupings are uncertain. Species within feeding groups vary in their food resources and response to environmental variables, as shown by the difficulties in managing plant-pathogenic nematodes. Therefore species-level discrimination is necessary to permit further advances in understanding the role of nematodes in soil processes and thus in ecosystem resilience. Analysis of published nematode lists shows that among the bacterial-feeding nematodes Cephalobidae are often the most abundant group in soils; Rhabditidae may increase following a resource pulse; in stressed, natural environments Plectidae may be important. To be comparable with other biota, nematode biodiversity assessment requires species-level identification. In many jurisdictions such identification will be difficult due to inadequate systematic knowledge of the nematode fauna.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号