首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
针对坡地喷灌水量分布实测困难问题,以坡地喷头射程计算公式为基础,依据喷头射流方向总水量守恒原理,构建了喷灌水量分布由平地转换到坡地的计算模型,并通过试验验证了模型的正确性。利用该模型,分析了喷头布置方式、间距、工作压力和坡度等对坡面喷灌水量分布的影响,结果表明,三角形布置有利于坡地单喷头水量分布的叠加,且其组合喷灌均匀度略高于方形布置;随着喷头间距的增大,组合喷灌均匀度呈下降趋势;喷头低压运行时,组合喷灌均匀度相对较低,不能满足喷灌均匀性的要求,随着喷头工作压力的增大,组合喷灌均匀度逐渐增大;在一定坡度范围内,不同坡度对水量分布和组合喷灌均匀度的影响较小。因此,在坡地喷灌系统设计时,若选用雨鸟LF1200型喷头,建议采用三角形布置,喷头间距宜为1.0~1.2倍平地喷头射程,喷头工作压力宜选用300k Pa。  相似文献   

2.
针对坡地喷灌水量分布实测困难问题,以坡地喷头射程计算公式为基础,依据喷头射流方向总水量守恒原理,构建了喷灌水量分布由平地转换到坡地的计算模型,并通过试验验证了模型的正确性。利用该模型,分析了喷头布置方式、喷头间距、工作压力和坡度等对坡面喷灌水量分布的影响,结果表明,三角形布置有利于坡地单喷头水量分布的叠加,且其组合喷灌均匀度略高于方形布置;随着喷头间距的增大,组合喷灌均匀度呈下降趋势;喷头低压运行时,组合喷灌均匀度相对较低,不能满足喷灌均匀性的要求,随着喷头工作压力的增大,组合喷灌均匀度逐渐增大;在一定坡度范围内,不同坡度对水量分布和组合喷灌均匀度的影响较小。因此,在坡地喷灌系统设计时,若选用雨鸟LF1200型喷头,建议采用三角形布置,喷头间距宜为1.0~1.2倍平地喷头射程,喷头工作压力宜选用300 k Pa。  相似文献   

3.
为了降低喷灌工程投资,实现喷头仰角可调,减小风对喷头水量分布的影响,设计了2种规格的喷头仰角调节装置。喷头仰角调节装置安装在ZY喷头与竖管之间,在不关闭水泵的情况下喷头仰角在8°~27°范围内连续可调。对2种喷头仰角调节装置进行了结构设计、单喷头喷洒水量和转动均匀性试验。通过对试验数据分析计算得到:随着喷头仰角的减小,喷头末端喷洒水量增大,抗风性增强,漂移损失减小。喷头初始仰角降低10°时,其水力性能较好,喷头射程减少1~2 m,单喷头喷灌强度值增加了0.1~1.5 mm/h,喷头转动偏差在±7%以内,单喷头喷灌强度与转动性能均符合标准规定。  相似文献   

4.
动态水压坡地喷灌水量分布特性与均匀度研究   总被引:1,自引:0,他引:1  
针对坡地喷灌水量分布不均匀、灌溉质量较低的问题,将动态水压供水技术引入坡地喷灌,以雨鸟LF1200型喷头为研究对象,分析了动态水压喷灌对喷头流量、射程、喷洒湿润面积、单喷头水量分布和组合喷头水量分布及均匀度的影响。结果表明:对于单喷头而言,采用动态水压喷灌的上下坡射程差在2.3 m左右,动压参数中动压振幅对射程影响较显著,动压喷灌时,振幅建议采用喷头正常工作压力范围内的较大值;单喷头水量分布均匀度在56%左右,动态水压参数对单喷头水量分布和喷灌均匀度影响不显著。在组合喷头的情况下,采用正三角形和矩形布置的均匀度高于正方形布置,其中采用矩形布置喷灌质量最佳。综合考虑工程投资、水量分布以及均匀度,动态水压喷灌时,当喷头采用三角形布置方式时,建议喷头间距为1.0~1.2R(R是喷头平地射程),当喷头采用矩形布置方式时,坡向间距宜采用0.6~0.8R,垂直坡向间距宜采用1.0~1.2R。  相似文献   

5.
基于弹道理论有风条件下折射式喷头喷灌均匀度研究   总被引:3,自引:0,他引:3  
为计算有风条件下折射式喷头水量分布及喷灌均匀度,以弹道轨迹理论为基础,依据风速分布模型,建立有风条件下折射式单喷头水量分布计算方法,采用该方法模拟出有风条件下Nelson D3000型喷头倒挂安装方式下水量分布特性,通过与实测资料进行对比,验证了模拟具有较高的准确度,可应用于有风条件下折射式喷头水量分布计算。在此基础上,选用4.76 mm(24号)喷嘴直径,模拟出不工况下单喷头水量分布,计算出组合情况下喷灌均匀度,分析了风速、风向、喷头间距、工作压力和安装高度5种因素对喷灌均匀度的影响,并对蒸发漂移损失进行了分析。结果表明:95%的置信区间下,喷头布置间距对喷灌均匀度的影响最显著,其次是安装高度和喷头工作压力,风速和风向对喷灌均匀度影响不显著。风速、喷头工作压力和安装高度都会对蒸发漂移损失产生影响,其中工作压力影响最大。当选用Nelson D3000型喷头在风速小于6 m/s的环境下喷灌时,应将喷头安装间距固定在2.13~3.04 m范围内。另外,该安装间距范围内,喷头安装高度和喷灌压力增大后,喷灌均匀度增大的效果不明显,因此应采用低压喷灌以降低喷灌系统运行成本;考虑到较高的喷头安装高度会产生较大的蒸发漂移损失,喷灌时还应适当降低喷头安装高度,以提高喷灌水分利用率。  相似文献   

6.
坡地喷灌水滴直径与动能强度分布规律研究   总被引:2,自引:0,他引:2  
在室内无风条件下应用视频雨滴谱仪实时监测了不同坡度下喷洒水滴直径和速度等信息,研究了不同坡度下水滴平均直径及直径频率沿射程方向的变化规律,分别建立了水滴平均直径、速度与坡度等之间的数学关系。以此为基础,结合坡地喷灌水量分布计算方法,提出了无风条件下坡地喷洒水滴动能强度计算模型,并通过试验验证了该模型的正确性。以雨鸟LF1200型喷头为研究对象,应用该模型重点分析了不同喷头布置方式、间距和坡度对组合喷头打击动能强度分布的影响。结果表明:随着喷头间距的增大,动能强度分布越来越不均匀,且动能强度高值区所占比例不断减小;坡度变化对坡面动能强度分布影响并不明显;三角形布置方式对减小坡地喷灌打击动能强度具有一定作用。同时考虑打击动能强度和水量分布,在坡地喷灌系统设计时,若选用雨鸟LF1200型喷头,建议优先采用三角形布置,且间距为0.8倍的平地喷头射程。  相似文献   

7.
本文应用计算机模拟模型研究了有风条年下不同喷射仰角的中型喷头的喷灌效果。该模型经过无风和有风条件下的验证表明:射程最远的喷射仰角是风速的函数。该角度无风时为29°,当风速太于8m/s时则小于5°。无风条件下当喷射仰角太子25°时的优势很快就会被微风时的水滴漂移和射程减小所抵销,在选择喷射仰角时,应当考虑到水滴大小分布和风速大小,因为随风漂移和射程都与水滴大小和喷射仰角有关。  相似文献   

8.
球形接头调角度应用于坡地喷灌   总被引:1,自引:0,他引:1  
坡地喷灌中,由于喷洒图形的改变影响了喷洒均匀性,改变立管倾角和改变喷头仰角成为必要,利用球形接头可方便地实现角度调节.通过对10PXH喷头转动均匀性分析,坡地上射程分析以及坡地上径向水量分布试验,给出球形接头的调节范围,以及在不同地形坡度情况下,球形接头合适的调节角度,用于改善坡地喷灌的质量.  相似文献   

9.
本文应用计算机模拟模型研究了有风条件下运行的中型喷头不同喷射仰角时的喷灌效果。该模型经过在无风和有风条件下进行验证表明:使射程最远的喷射仰角是风速的函数。该角度无风时为29°,当风速大于8m/s时则小于5°。无风条件下当喷射仰角大于25°时的优点很快就会被微风时的水滴漂移和射程减小所抵消。在选择合适的喷射仰角时,应当考虑到水滴大小分布和风速大小,因为随风漂移和射程都与水滴大小和喷射仰角有关。  相似文献   

10.
不同竖管布置方式下的坡地喷灌水滴直径分布   总被引:1,自引:0,他引:1  
以雨鸟LF1200型喷头为研究对象,在室内无风条件下,应用视频雨滴谱仪分别监测了竖管铅直和垂直于坡面2种布置方式在不同坡度下的水滴直径和速度等信息,对比分析了不同竖管布置方式下水滴平均直径及水滴频率沿射程的分布差异,探讨了水滴速度和水滴直径之间的关系,结果表明:竖管垂直于坡面布置下水滴平均直径沿射程的增大趋势更为稳定,相同测点在不同坡度下的水滴平均直径沿射程的差异变化不明显;竖管垂直于坡面布置时,各坡度下的水滴速度随直径的增大趋势更为接近,且水滴速度与直径的对数相关性更好;竖管垂直于坡面布置不仅能降低喷头附近的水滴蒸发损失,还能在一定程度上改善喷灌质量。研究结果可为坡地喷灌系统设计提供参考。  相似文献   

11.
一、喷灌均匀系数能否代表土壤湿润的均匀度喷灌设计中一般要求均匀系数在80%以上,对于果树类的喷灌如柑桔园中这一系数.仅表现在树冠以上的均匀度,水滴落到树冠下的地面上,水量分布却是十分不均匀的。作者曾于1987年2月13日在浠水县白莲河二级电站柑桔园喷灌点,利用天然降雨做过如下试验,任选两株桔树,将6只和12只  相似文献   

12.
平移式喷灌机行走速度及喷灌均匀度试验研究   总被引:1,自引:0,他引:1  
为研究低压喷灌下喷灌机行走速度合理取值以及喷灌均匀度对土壤含水率均匀度的影响,以自行研制的轻小型平移式喷灌机为研究对象,通过室内单喷头试验和田间喷灌试验,探究了特定灌水定额下喷灌机的工作压力与行走速度关系,并对其水量分布、喷灌均匀度以及土壤含水率均匀度随时间变化进行了分析.结果表明:通过确定灌水定额能够计算出平移式喷灌机的行走速度和工作压力:当灌水定额分别为10,15,20 mm时,40~120 kPa喷灌压力下喷灌机行走速度最小为17.27 m/h,最大为58.65 m/h;增大喷灌压力能小范围提高均匀度,40 kPa工作压力均匀度为0.696,60~120 kPa喷灌压力下均匀度变化范围为0.731~0.788,喷灌水在土壤中的二次分布均匀度明显高于地表喷灌均匀度,40 kPa喷灌压力下喷后6 h土壤含水率均匀度达到0.906,24 h后达到0.953,可相应降低喷灌均匀度设计值以降低运行成本,节约能耗.  相似文献   

13.
为测定微喷头插杆角度变化对喷洒均匀度的影响,选取性能稳定的G型双向出水全圆喷洒旋转式微喷头(WPX60-200),测定其压力-流量关系并绘制出在3个安装高度(30、60、90cm)4个不同插杆角度(75°、80°、85°、90°)下的水量分布图。根据微喷头的水量分布图计算出微喷头的喷灌均匀系数,并进行组合分析。结果表明,单个微喷头的插杆角度对微喷头的水量分布有影响,微喷头水量分布中心向着插杆倾斜方向偏移;个别微喷头的插杆角度在75°、80°和85°时,整体的组合喷洒均匀度和喷洒强度与插杆垂直于地面时组合喷洒均匀度和喷洒强度没有明显变化。  相似文献   

14.
异形喷嘴对变量喷头水力性能的影响   总被引:3,自引:0,他引:3  
陈超  袁寿其  李红  王超 《农业机械学报》2011,42(12):111-115
研究了异形喷嘴对变量喷头水量分布的影响.依据面积相同原则设计多种形状的异形喷嘴,测量了异形喷嘴的流量系数、射程和末端水滴直径,得出星形喷嘴射程降低较少,不同压力时水量分布规律相近,可改善低压力下均匀度.对比了星形喷嘴变量喷头和圆形喷嘴变量喷头的水力性能,星形喷嘴变量喷头远射程处平均喷灌强度为近射程处的85%,圆形喷嘴变量喷头远射程处平均喷灌强度为近射程处的79%,星形喷嘴变量喷头水量分布优于圆形喷嘴变量喷头.分析比较了变量喷头水量分布等值线图,结果表明,星形喷嘴变量喷头的水量分布均匀度好于圆形喷嘴变量喷头,方形喷洒域的均匀度好于三角形喷洒域.  相似文献   

15.
由于地面坡度影响,双向布置滴灌管道在坡地出水量差异较大,合理的灌水均匀度难以保证,限制了其在丘陵漫岗地带的应用。通过试验分析单根毛管在不同坡度情形下出水量及均匀度变化规律,结论表明:双向布置比全顺坡布置更有利于提高灌水均匀度;存在使得毛管出水均匀度最高的最优逆坡毛管长度,不同地形坡度下该最优长度随坡度增加而减少。试验结论对确定坡地滴灌管道布置最优方案提供了参考。  相似文献   

16.
为了使水力驱动带状喷灌机喷洒均匀度高、受风影响小,能够在作物行间进行喷洒作业,本研究选取不同参数的喷头对其喷头流量、射程、条带宽度及喷灌强度进行试验对比分析,试验结果表明,喷头的喷灌效果与工作压力、喷孔大小、喷射仰角及叶轮之间均存在紧密联系。该结果能够为水力驱动带状喷灌系统的喷头选型及参数设计提供参考。  相似文献   

17.
为了探究不同工况对射流式喷头喷灌水量的影响,通过对射流式喷头在不同组合间距和工作压力下的水量分布数据进行分析,拟合出了喷头在不同工作压力及组合间距下的降水强度,采用克里斯琴森均匀系数和分布均匀性系数计算了相应的喷灌均匀度.结果发现喷头组合间距在1.0R~1.4R变化时正方形组合喷灌的CU值随喷头间距的增大呈下降趋势,C...  相似文献   

18.
本文根据国外机组引进课题以及几次喷灌机设计计算的总结与研究,说明并推求出时针式喷灌机和平移式喷灌机喷灌强度和均匀度的计算公式,且提出了喷头水量分布的模拟计算方法。文章主要解决了行喷式喷灌机的喷灌强度和均匀度的计算问题。  相似文献   

19.
轻小型喷灌机组的水力性能试验与喷灌均匀度的研究   总被引:1,自引:0,他引:1  
为研究轻小型喷灌机组的水力性能及喷灌均匀度是否满足规范要求,以自行研制的轻小型喷灌机组为研究对象,通过室内试验,分析了轻小型喷灌机组的水量分布、喷灌均匀度和运行速度。结果表明,当进口压力为0.20、0.25、0.30、0.35、0.40、0.45 MPa时,轻小型喷灌机组的最小运行速度为10.25m/h,最大运行速度为68.40m/h,压力越大,速度越低,机组的喷灌均匀度越高,喷灌均匀度的范围在87.60%~91.40%之间,满足规范要求。  相似文献   

20.
<正> 一、引言 固定式喷灌装置的效率、增产以及经济性主要取决于水量分布的均匀度,而水量分布的均匀度主要受气象条件(尤其是受风向和风力)以及射程的影响。迄今为止,固定式喷灌系统的设计主要依据的是无风条件下(风速≤0.5m/s)检测的喷头的各种参数。在德国东部地区,风速≤0.5m/s是较为罕见的。据估计,日平均风速一般为4m/s左右。 国际上通常采用两种方法来减少风对喷灌均匀度的影响。其一是推荐喷头组合间距的设计尺寸,该设计尺寸考虑到了单喷头湿润面积的减小问题,另一是设计出水量分布不受风影响的喷头。本文以8000/8002型单喷嘴中射程旋转式喷头为例阐述了风向和风力对喷头参数的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号