首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
低分子有机酸对土壤中重金属的解吸及影响因素   总被引:9,自引:1,他引:9  
研究了柠檬酸、草酸、酒石酸和苹果酸对矿区土壤中重金属Pb、Cd、Cu和Zn的解吸行为,并探讨了介质pH值对其解吸土中重金属的影响。振荡解吸试验结果表明四种低分子有机酸对供试污染土壤中Pb、Cd、Cu和Zn都具有一定的解吸能力。由于土壤中重金属有效态含量较低,各重金属的解吸率都不高。在对Pb和Cd的解吸中,各低分子有机酸能力大小顺序为柠檬酸>酒石酸≈苹果酸>草酸;Cu的解吸顺序为柠檬酸>草酸>酒石酸≈苹果酸;Zn的解吸顺序为酒石酸>柠檬酸≈苹果酸>草酸。低分子有机酸随浓度的增加,其解吸能力提高。低分子有机酸对重金属的解吸量随pH值的降低而增加。  相似文献   

2.
Red lead (Pb3O4) has been used extensively in the past as an anti-corrosion paint for the protection of steel constructions. Prominent examples being some of the 200,000 high-voltage pylons in Germany which have been treated with red lead anti-corrosion paints until about 1970. Through weathering and maintenance work, paint compounds and particles are deposited on the soils beneath these constructions. In the present study, six such “pylon soils” were investigated in order to characterize the plant availability and plant uptake of Pb, Cd, and Zn. For comparison, three urban soils with similar levels of heavy metal contamination were included. One phase extractions with 1 M NH4NO3, sequential extractions (seven steps), and extractions at different soil pH were used to evaluate the heavy metal binding forms in the soil and availability to plants. Greenhouse experiments were conducted to determine heavy metal uptake by Lolium multiflorum and Lactuca sativa var. crispa in untreated and limed red lead paint contaminated soils. Concentrations of Pb and Zn in the pylon soils were elevated with maximum values of 783 mg Pb kg−1 and 635 Zn mg kg−1 while the soil Cd content was similar to nearby reference soils. The pylon soils were characterized by exceptionally high proportions of NH4NO3-extractable Pb reaching up to 17% of total Pb. Even if the relatively low pH of the soils is considered (pH 4.3–4.9), this appears to be a specific feature of the red lead contamination since similarly contaminated urban soils have to be acidified to pH 2.5 to achieve a similarly high Pb extractability. The Pb content in L. multiflorum shoots reached maximum values of 73 mg kg−1 after a cultivation time of 4 weeks in pylon soil. Lime amendment reduced the plant uptake of Pb and Zn significantly by up to 91%. But L. sativa var. crispa cultivated on soils limed to neutral pH still contained critical Pb concentrations (up to 0.6 mg kg−1 fresh weight). Possible mechanisms for the exceptionally high plant availability of soil Pb derived from red lead paint are discussed.  相似文献   

3.
Investigations were made on living strains of fungi in a bioremediation process of three metal (lead) contaminated soils. Three saprotrophic fungi (Aspergillus niger, Penicillium bilaiae, and a Penicillium sp.) were exposed to poor and rich nutrient conditions (no carbon availability or 0.11 M d-glucose, respectively) and metal stress (25 µM lead or contaminated soils) for 5 days. Exudation of low molecular weight organic acids was investigated as a response to the metal and nutrient conditions. Main organic acids identified were oxalic acid (A. niger) and citric acid (P. bilaiae). Exudation rates of oxalate decreased in response to lead exposure, while exudation rates of citrate were less affected. Total production under poor nutrient conditions was low, except for A. niger, for which no significant difference was found between the poor and rich control. Maximum exudation rates were 20 µmol oxalic acid g?1 biomass h?1 (A. niger) and 20 µmol citric acid g?1 biomass h?1 (P. bilaiae), in the presence of the contaminated soil, but only 5 µmol organic acids g?1 biomass h?1, in total, for the Penicillium sp. There was a significant mobilization of metals from the soils in the carbon rich treatments and maximum release of Pb was 12% from the soils after 5 days. This was not sufficient to bring down the remaining concentration to the target level 300 mg kg?1 from initial levels of 3,800, 1,600, and 370 mg kg?1in the three soils. Target levels for Ni, Zn, and Cu, were 120, 500, and 200 mg kg?1, respectively, and were prior to the bioremediation already below these concentrations (except for Cu Soil 1). However, maximum release of Ni, Zn, and Cu was 28%, 35%, and 90%, respectively. The release of metals was related to the production of chelating acids, but also to the pH-decrease. This illustrates the potential to use fungi exudates in bioremediation of contaminated soil. Nonetheless, the extent of the generation of organic acids is depending on several processes and mechanisms that need to be further investigated.  相似文献   

4.
ABSTRACT

Cadmium (Cd) and lead (Pb) are toxic trace elements which are not essential for plants but can be easily taken up by roots and accumulated in various organs, and cause irreversible damages to plants. A pot experiment was carried out to investigate the individual and combined effects of Cd (0, 10, 20 mg kg?1) and Pb (0, 500, 1000 mg kg?1) level in a calcareous soil on the status of mineral nutrients, including K, P, Ca, Mg, S, Fe, Mn, Cu, and Zn, in alfalfa (Medicago sativa L.) plants. Soil Pb level considerably (P ≤ 0.05) affected the concentrations of more elements in plants than soil Cd level did, and there were combined effects of soil Cd level and Pb level on the concentrations of some nutrients (Ca, Mg, and Cu) in plants. The effects of soil Cd level and Pb level on plant nutrient concentrations varied among plant parts. Cd and Pb contamination did not considerably affect the exudation of carboxylates in the rhizosphere. An increase in rhizosphere pH and exudation of significant amounts of carboxylates (especially oxalate) in the rhizosphere might contribute to the exclusion and detoxification of Cd and Pb. Neither shoot dry mass nor root dry mass was significantly influenced by soil Cd level, but both of them were considerably reduced (by up to 25% and 45% on average for shoot dry mass and root dry mass, respectively) by increasing soil Pb level. The interaction between soil Cd level and Pb level was significant for root dry mass, but not significant for shoot dry mass. The results indicate that alfalfa is tolerant to Cd and Pb stress, and it is promising to grow alfalfa for phytostabilization of Cd and Pb on calcareous soils contaminated with Cd and Pb.  相似文献   

5.
As, Cd, Cu, Pb, Sb and Zn concentrations were determined in two earthworm species (Allolobophora rosea and Nicodrilus caliginosus) from a mining and industrial area in northern Kosovo and compared with their contents in the bulk soil and the main soil fractions. Earthworm specimens were collected at fifteen sites located at different distances from a Pb–Zn smelter along a gradient of decreasing contamination. Individuals of A. rosea and N. caliginosus showed similar tissue levels of As, Cd, Cu, Pb, Sb and Zn, suggesting that earthworm species belonging to the same eco-physiological group have a similar propensity to uptake and bioaccumulate heavy elements. Cd, Pb, Sb and Zn concentrations in both earthworm species were positively correlated with the respective total soil contents and generally decreased with distance from the smelter. The bioaccumulation factor (BAF) revealed that Cd and Zn were the only elements bioaccumulated by earthworms. The rank order of BAF values for both species was as follows: Cd > > Zn > > Cu > As = Pb = Sb. The absorption of Cd, Pb, Sb and Zn by earthworms mostly depended on the extractable, reducible and oxidable soil fractions, suggesting that the intestine is likely the most important uptake route. The extractable soil fraction constantly influenced the uptake of these heavy elements, whereas the reducible fraction was important mainly for Pb and Zn. The water soluble fraction had an important role especially for the most mobile heavy elements such as Cd and Zn, suggesting that dermal uptake is not negligible. As a whole, the analytical data indicate that soil fractionation patterns influence the uptake of heavy elements by earthworms, and the extractable fraction is a good predictor of heavy element bioavailability to these invertebrates in soil.  相似文献   

6.
The effects of increasing levels of metals (10 and 20 mg of Cr kg-1 and 25 and 50 mg of Cd, Pb, and Ni kg-1 soil) and arbuscular mycorrhizal (AM) fungi Glomus intraradices on the yield, chemical composition of volatile oil, and metal accumulation in sweet basil (Ocimum basilicum L.) were investigated in a pot experiment. The shoot yield, content of essential oil, and root yield of sweet basil were increased by the application of low dose of Cd, Pb, and Ni as compared to control. The application of high level of metals had deleterious effect on the yield. In soil with low dose of metal applied, AM fungi inoculation significantly enhanced the metal concentration in shoots and had adverse effect on the yield, whereas in soil with high dose of metal applied, AM fungal inoculation reduced the metal concentration in shoot and had beneficial effect on the yield. The content of linalool in basil oil was decreased and that of methyl chavicol was increased by the application of Cr, Cd, and Pb in soil as compared to control. Similarly, the level of linalool and methyl chavicol was decreased and that of methyl eugenol was increased by the application of Ni as compared to control. However, AM fungal inoculation led to maintain the content of linalool, methyl chavicol, and methyl eugenol in volatile oil, which were either increased or decreased by the application of metals. We conclude that the AM–sweet basil symbiosis could be used as a novel approach to enhance the yield and maintain the quality of volatile oil of sweet basil under metal-contaminated soils.  相似文献   

7.
Glomalin is a metal-sorbing glycoprotein excreted by arbuscular mycorrhizal fungi (AMF). One method of estimating glomalin in soils is as glomalin-related soil protein (GRSP). In this study the role of GRSP in sequestering Pb and Cd was investigated in an in situ field experiment. The effect of metal sequestration on the subsequent decomposition of GRSP was also investigated. GRSP was determined using the Bradford method as total glomalin-related soil protein (T-GRSP) and as easily extractable glomalin-related soil protein (EE-GRSP). After 140 days, GRSP bound Pb accounted for 0.21–1.78% of the total Pb, and GRSP bound Cd accounted for 0.38–0.98% of the total Cd content in the soil. However when compared on a soil organic matter (SOM) basis, only 4% of the Pb or Cd was bound to the GRSP fraction of the SOM compared with 40–54% of the Pb or Cd bound to the humin and fulvic acids in the SOM fraction. In soils contaminated with the highest levels of Pb and Cd, the T-GRSP (EE-GRSP) decomposition after 140 days was reduced by 8.0 (6.6)% and 7.0 (7.5)%, respectively, when compared with the controls. In the high Pb or Cd treatment groups we found that the fraction of metal bound to GRSP increased even though the total GRSP content declined over time. The mass ratio between Pb and GRSP-carbon changed from 2.3 to 271.4 mg (100 g)−1 in all Pb levels soil, while with the high-Cd treatment group the mass ratio between Cd and GRSP-carbon (0.36 mg (100 g)−1) was higher than the mass ratio seen with Cd-bound humic acid fractions. Our in situ field study shows that while GRSP does bind Pb and Cd, in the soils we investigated, the levels are insignificant compared to soil organic matter such as humic and fulvic acids.  相似文献   

8.
土法炼锌区大气沉降Pb、Zn、Cd及其对土壤质量的影响   总被引:6,自引:0,他引:6  
Dust emissions from smelters, as a major contributor to heavy metal contamination in soils, could severely influence soil quality. Downwind surface soils within 1.5 km of a zinc smelter, which was active for 10 years but ceased in 2000, in Magu Town, Guizhou Province, China were selected to examine Pb, Zn, and Cd concentrations and their fractionation along a distance gradient from a zinc smelter, and to study the possible effects of Pb, Zn, and Cd accumulation on soil microorganisms by comparing with a reference soil located at a downwind distance of 10 km from the zinc smelter. Soils within 1.5 km of the zinc smelter accumulated high levels of heavy metals Zn (508 mg kg-1), Pb (95.6 mg kg-1), and Cd (5.98 mg kg-1) with low ratios of Zn/Cd (59.1--115) and Pb/Cd (12.4--23.4). Composite pollution indices (CPIs) of surface soils (2.52--15.2) were 3 to 13 times higher than the reference soils. In metal accumulated soils, exchangeable plus carbonate-bound fractions accounted for more than 10% of the total Zn, Pb, and Cd. The saturation degree of metals (SDM) in soils within 1.5 km of the smelter (averaging 1.25) was six times higher than that of the reference soils (0.209). A smaller soil microbial biomass was found more frequently in metal accumulated soils (85.1--438 μg C g-1) than in reference soils (497 μg C g-1), and a negative correlation (P < 0.01) of soil microbial biomass carbon to organic carbon ratio (Cmic/Corg) with SDM was observed. Microbial consumption of carbon sources was more rapid in contaminated soils than in reference soils, and a shift in the substrate utilization pattern was apparent and was negatively correlated with SDM (R = -0.773, P < 0.01). Consequently, dust deposited Pb, Zn, and Cd in soils from zinc smelting were readily mobilized, and weredetrimental to soil quality mainly in respect of microbial biomass.  相似文献   

9.
Despite its potential impact on soil carbon flow, few studies have attempted to quantify the effects of elevated carbon dioxide (CO2) on production of exudates by mycorrhizal plants. In this study we quantified low molecular weight (LMW) organic compounds exuded by non-mycorrhizal (NM) and ectomycorrhizal (ECM) plants in relation to exposure to elevated CO2. Scots pine seedlings, either colonized by one of eight different ECM fungi or non-mycorrhizal (NM), were exposed to either ambient (350 ppm) or elevated (700 ppm) concentrations of CO2. Exudation of LMW organic acids (LMWOAs), amino acids, dissolved monosaccharides and total dissolved organic carbon (DOC) was determined and exudation rates were calculated per g root and fungal dry mass. CO2 had a significant impact on exudation. Under elevated CO2, exudation of total LMWOAs increased by 120-160%, amino acids by 250%, dissolved monosaccharides by 130-270% and DOC by 180-220% compared to ambient CO2 treatment. Net CO2 assimilation rates increased significantly by 41-47% for seedlings exposed to elevated CO2. Exuded C calculated as a percentage of assimilated CO2 increased by 41-88% in the elevated CO2 treatment compared to ambient CO2 treatment.  相似文献   

10.
Background. Earthworm heavy metal concentrations (critical body residues, CBRs) may be the most relevant measures of heavy metal bioavailability in soils and may be linkable to toxic effects in order to better assess soil ecotoxicity. However, as earthworms possess physiological mechanisms to secrete and/or sequester absorbed metals as toxicologically inactive forms, total earthworm metal concentrations may not relate well with toxicity. Objective  The objectives of this research were to: i) develop LD50s (total earthworm metal concentration associated with 50% mortality) for Cd, Pb, and Zn; ii) evaluate the LD50 for Zn in a lethal Zn-smelter soil; iii) evaluate the lethal mixture toxicity of Cd, Pb, and Zn using earthworm metal concentrations and the toxic unit (TU) approach; and iv) evaluate total and fractionated earthworm concentrations as indicators of sublethal exposure. Methods  Earthworms (Eisenia fetida (Savigny)) were exposed to artificial soils spiked with Cd, Pb, Zn, and a Cd-Pb-Zn equitoxic mixture to estimate lethal CBRs and mixture toxicity. To evaluate the CBR developed for Zn, earthworms were also exposed to Zn-contaminated field soils receiving three different remediation treatments. Earthworm metal concentrations were measured using a procedure devised to isolate toxicologically active metal burdens via separation into cytosolic and pellet fractions. Results and Discussion  Lethal CBRs inducing 50% mortality (LD50, 95% CI) were calculated to be 5.72 (3.54-7.31), 3.33 (2.97-3.69), and 8.19 (4.78-11.6) mmol/kg for Cd, Pb, and Zn, respectively. Zn concentrations of dead earthworms exposed to a lethal remediated Zn-smelter soil were 3-fold above the LD50 for Zn and comparable to earthworm concentrations in lethal Zn-spiked artificial soils, despite a 14-fold difference in total soil Zn concentration between lethal field and artificial soils. An evaluation of the acute mixture toxicity of Cd, Pb, and Zn in artificial soils using the Toxic Unit (TU) approach revealed an LD50 (95% CI) of 0.99 (0.57-1.41) TU, indicating additive toxicity. Conclusions  Total Cd, Pb, and Zn concentrations in earthworms were good indicators of lethal metal exposure, and enabled the calculation at LD50s for lethality. The Zn-LD50 developed in artificial soil was applicable to earthworms exposed to remediated Zn-smelter soil, despite a 14-fold difference in total soil Zn concentrations. Mixture toxicity evaluated using LD50s from each single metal test indicated additive mixture toxicity among Cd, Pb, and Zn. Fractionation of earth worm tissues into cytosolic and pellet digests yielded mixed results for detecting differences in exposure at the sublethal level Recommendation and Outlook  CBRs are useful in describing acute Cd, Pb, and Zn toxicity in earthworms, but linking sublethal exposure to total and/or fractionated residues may be more difficult. More research on detoxification, regulation, and tissue and subcellular partitioning of heavy metals in earthworms and other invertebrates is needed to establish the link between body residue and sublethal exposure and toxicity. Keywords: Bioavailability; Cd; critical body residues; earthworms; metals; Pb; soil; Zn An erratum to this article is available at .  相似文献   

11.
肥料重金属含量状况及施肥对土壤和作物重金属富集的影响   总被引:56,自引:5,他引:56  
本文对肥料中重金属的含量状况以及施肥对土壤和农作物重金属累积影响的研究进展进行了系统分析和总结。过磷酸钙中锌(Zn)、 铜(Cu)、 镉(Cd)、 铅(Pb)含量高于氮肥、 钾肥和三元复合肥,有机-无机复混肥料中的Pb含量高于其他化肥。有机肥如畜禽粪便、 污泥及其堆肥中的重金属含量高于化肥,猪粪中的Cu、 Zn、 砷(As)、 Cd含量明显高于其他有机废弃物,鸡粪中铬(Cr)含量高;污泥和垃圾堆肥中Pb或汞(Hg)含量高。商品有机肥Zn、 Pb和镍(Ni)含量高于堆肥,Hg含量高于畜禽粪便。多数研究表明,氮磷钾配施与不施肥相比土壤Cd和Pb含量增加,施用有机肥比不施肥提高土壤Cu、 Zn、 Pb、 Cd含量。施用化肥对农作物重金属富集的影响不明确,而施用有机肥可提高作物可食部位Cu、 Zn、 Cd、 Pb 的含量,影响大小与有机肥种类、 用量、 土壤类型和pH以及作物种类等有很大关系。在今后的研究中应着重以下几个方面, 1)典型种植体系下土壤重金属的投入/产出平衡; 2)不同种植体系下长期不同施肥措施对土壤重金属含量、 有效性影响的动态趋势; 3)典型种植体系和施肥措施下土壤对重金属的最高承载年限; 4)现有施肥措施下肥料中重金属的最高限量标准。  相似文献   

12.
Luo  Youfa  Wu  Yonggui  Qiu  Jing  Wang  Hu  Yang  Lian 《Journal of Soils and Sediments》2019,19(2):702-715
Purpose

Zinc smelting activity generates large volumes of highly toxic waste slags and poses a potential extreme environmental risk for the surrounding areas. The establishment of a vegetation cap for the phytostabilization of abandoned mine tailing heaps using plants is usually considered a beneficial approach. This study aimed to evaluate the suitability of phytostabilization of zinc smelting slag using four woody plants combined with organic amendments, to investigate the distribution of heavy metals in the slag–plant system, and to better understand how the direct revegetation of a zinc smelting slag site can influence the mobility and geochemical fraction of heavy metals.

Materials and methods

Slags were collected from the areas planted with vegetation (Arundo donax, Broussonetia papyrifera, Robinia pseudoacacia, and Cryptomeria fortunei) and a bare area in a zinc smelting waste slag site using an indigenous method. Physicochemical properties were determined with the usual procedures. The geochemical fraction and bioavailability of heavy metals was determined using the three-step modified European Community Bureau of Reference (BCR) sequential extraction and diethylene triamine pentaacetic acid (DTPA) sequential extraction schemes. Heavy metal concentrations (Cu, Pb, Zn, and Cd) in the slag and plant samples were also measured.

Results and discussion

Vegetation planted directly in the zinc smelting waste slag significantly enhanced the nutrient accumulation and reduced the bioavailability of heavy metals (Cu, Zn, and Cd) with the exception of A. donax for Zn and Cd. The presence of four woody plants increased the bioavailability of Pb. Sequential extraction revealed that revegetation reduced the acid-soluble extractable fraction and increased the fraction of heavy metals associated with the Fe/Mn oxy(hydr)oxides or organic matter. This is attributed to the establishment of plant-enhanced weathering of minerals in the waste slag that resulted in the formation of an amount of dissolved metals, and the amount of dissolved metals was partly redistributed into the soluble extractable fraction of the zinc smelting waste slag. The final concentration of metals (Cu, Pb, Zn, and Cd) in the soluble extractable fraction is dependent on the dynamics of metals induced by root activity in the rhizosphere. Much lower levels of heavy metals with lower translocation factors accumulated in the four woody plants than in the associated slags.

Conclusions

We conclude that the studied four woody plants showed a beneficial vegetation cover and phytostabilization potential within 5 years of revegetation. These woody plants have the potential for high heavy metal tolerance and low heavy metal accumulation. Therefore, these woody plants could be used for revegetation and phytostabilization of zinc smelting slag sites under field conditions.

  相似文献   

13.
Abstract

The influence of Fe-deficiency on the root exudation of low molecular weight organic acids (LMWOAs), pH alteration and cadmium (Cd) accumulation and translocation were investigated in morel (Solanum nigrum L.) in hydroponic culture experiments. Tartaric, citric, malic and acetic acids were monitored because these acids were abundant and often detected as root exudates. Results showed that Fe-deficient plants excreted large amounts of LMWOAs in comparison with Fe-sufficient plants across all Cd treatments (p <0.05). In both cases the concentrations of the four organic acids were tartaric > citric > malic > acetic. The results showed that the Fe-deficient plants with higher concentrations of LMWOAs accumulated more Cd (p <0.05) and induced a decrease in solution pH compared with the Fe-sufficient plants. Cadmium accumulation in the Fe-deficient and Fe-sufficient plants had significant positive correlations with the exudation of malic and acetic acids (p <0.05 and p<0.01). Cadmium accumulation in the Fe-sufficient plants had a significant (p<0.01) positive correlation with the exudation of tartaric acid, whereas there was a negative correlation (p<0.01) between Cd accumulation and the exudation of tartaric acid in the Fe-deficient plants. No significant correlation between the exudation of citric acid and Cd accumulation was obtained. Our results indicate that Fe-deficiency could induce Cd accumulation and translocation through an increase of LMWOAs exudation and pH alteration, both of which enhance Cd bioavailability.  相似文献   

14.
Abstract

Laboratory experiments were carried out to evaluate lead (Pb), copper (Cu), zinc (Zn), and cadmium (Cd) sorption‐desorption by three soils of contrasting characteristics. Talamanca (silt loam, montmorillonite, Calcic Haploxeralfs), Mazowe (clay, kaolinite, Rhodic Kandiustalf), and Realejos (sandy silt loam, allophane, Typic Hapludands). A second objective was to study the effect of nitriloacetic acid (NTA) on the sorption process. The Talamanca soil, which had a native pH of 6.4 and presented the highest effective cation exchange capacity (ECEC), sorbed more of each of the metal tested than did the other two soils. When the other two soils were compared metal sorption was also related to pH and ECEC. The very low sorption capacity showed by Realejos may be attributed to the low net surface negative charge density of this soil, arising from its allophanic nature. A common feature of the three soils was the relative strong sorption of both Pb and Cu relative to Cd and Zn with Pb showing the highest sorption levels. The selectivity sequences of metals retention were Pb>Cu>Zn>Cd for Talamanca soil, Pb>Cu>Zn≈Cd for Mazowe, and Pb>Cu>Cd>Zn for Realejos. Metal desorption values were low. The order of metal desorption (Cd≈Zn>Cu>Pb) was the same for the three soils studied. Quantitative differences observed in the extractability of the sorbed metals between the soils (Realejos>Mazowe>Talamanca) indicated that soil properties which enhanced metal sorption contributed at the same time to slow down the backward reaction. The addition of NTA to the soil suspension significantly depressed metal sorption by the three soils investigated. Compared with the free ligand system Pb, Cu, Zn, and Cd sorption in the presence of NTA decreased roughly 50%.  相似文献   

15.
Purpose

The aim of this work was to study the level and degree of mobility of heavy metals in the soil–plant system and to perform bioindication observations in the Don River estuarine region and the Russian sector of the Taganrog Bay coast.

Materials and methods

The objects of the study included samples of zonal soils (chernozem) and intrazonal soils (alluvial meadow and alluvial-stratified soils, Solonchak, sandy primitive soil) from monitoring stations of the Don river estuarine region and the Taganrog Bay coast, as well as their higher plants: Phragmites australis Cav., Typha angustifolia L., Carex riparia Curtis, Cichorium intybus L., Bolboschoenus maritimus L. Palla, and Rumex confertus Willd. The total concentrations of Mn, Ni, Cd, Cu, Zn, Pb, and Cr in the soils were determined by X-ray fluorescent scanning spectrometer. The concentration of heavy metal mobile forms exchangeable, complex compounds, and acid-soluble metal were extracted using the following reagents: 1 N NH4Ac, pH 4.8; 1 % EDTA in NH4Ac, pH 4.8; 1 N HCl, respectively. Heavy metals in plants were prepared for analysis by dry combustion at 450 °C. The heavy metal concentration in extracts from plants and soils was determined by AAS.

Results and discussion

The total contents of heavy metals in the soil may be described with a successively decreasing series: Mn?>?Cr?>?Zn?>?Ni?>?Cu?>?Pb?>?As?>?Cd. The total concentrations of As, Cd, and Zn in the soil exceed the maximum permissible concentrations levels. Contamination of alluvial soils in the estuarine zone with mobile Сu, Zn, Pb, and Cd has been revealed, which is confirmed by the high bioavailability of Cu and Zn and, to a lesser degree, Cd and Pb accumulating in the tissues of macrophytic plants. Data on the translocation of elements to plant organs have showed their predominant accumulation in the roots. Bioindication by the morphofunctional parameters of macrophytic plants (with a Typha L. species as an example) can be used for revealing the existence of impact zones with elevated contents of metals in aquatic ecosystems.

Conclusions

The results revealed that increased content of Zn, Pb, Cu, Ni, and As in soil have anthropogenic sources. The high content of Cr in the soils is related to the lithogenic factor and, hence, has a natural source.

  相似文献   

16.
Anthropogenic and geogenic activities release potentially toxic trace elements (PTEs) that impact human health and the environment.Increasing environmental pollution stresses the need for environmentally friendly remediation technologies.Physico-chemical treatments are effective,but are costly and generate secondary pollution on-or off-site.Phytoremediation is a biological treatment that provides positive results for PTE eradication with few limitations.Mycoremediation,a type of bioremediation to use macrofungi (mushrooms) for PTE extraction from polluted sites,is the best option for soil cleanup.This review highlights the scope,mechanisms,and potentials of mycoremediation.Mushrooms produce a variety of extracellular enzymes that degrade polycyclic aromatic hydrocarbons (PAHs),polychlorinated biphenyls (PCBs),pesticides,dyes,and petroleum hydrocarbons into simpler compounds.Cadmium (Cd),lead (Pb),mercury (Hg),chromium (Cr),copper (Cu),zinc (Zn),and iron (Fe) have been effectively extracted by Phellinus badius,Amanita spissa,Lactarius piperatus,Suillus grevillei,Agaricus bisporous,Tricholoma terreum,and Fomes fomentarius,respectively.Mycoremediation is affected by environmental and genetic factors,such as pH,substrate,mycelium age,enzyme type,and ecology.The bioaccumulation factor (BAF) can make clear the effectiveness of a mushroom for the extraction of PTEs from the substrate.Higher BAF values of Cd (4.34),Pb (2.75),Cu (9),and Hg (95) have been reported for Amanita muscaria,Hypholoma fasciculare,Russula foetens,and Boletus pinophilus,respectively,demonstrating their effectiveness and suitability for mycoremediation of PTEs.  相似文献   

17.
Heavy metal(HM) contamination in soils is an environmental issue worldwide that threatens the quality and safety of crops and human health. A greenhouse experiment was carried out to investigate the growth, mycorrhizal colonization, and Pb and Cd accumulation of pakchoi(Brassica chinensis L. cv. Suzhou) in response to inoculation with three arbuscular mycorrhizal(AM) fungi(AMF), Funneliformis mosseae, Glomus versiforme, and Rhizophagus intraradices, aimed at exploring how AMF inoculation affected safe crop production by altering plant-soil interaction. The symbiotic relationship was well established between pakchoi and three AMF inocula even under Pb or Cd stress, where the colonization rates in the roots ranged from 24.5% to 38.5%. Compared with the non-inoculated plants, the shoot biomass of the inoculated plants increased by 8.7%–22.1% and 9.2%–24.3% in Pb and Cd addition treatments, respectively. Both glomalin-related soil protein(GRSP) and polyphosphate concentrations reduced as Pb or Cd concentration increased. Arbuscular mycorrhizal fungi inoculation significantly enhanced total absorbed Pb and Cd(except for a few samples) and increased the distribution ratio(root/shoot) in pakchoi at each Pb or Cd addition level. However, the three inocula significantly decreased Pb concentration in pakchoi shoots by 20.6%–67.5% in Pb addition treatments, and significantly reduced Cd concentration in the shoots of pakchoi in the Cd addition treatments(14.3%–54.1%), compared to the non-inoculated plants.Concentrations of Pb and Cd in the shoots of inoculated pakchois were all below the allowable limits of Chinese Food Safety Standard.The translocation factor of Pb or Cd increased significantly with increasing Pb or Cd addition levels, while there was no significant difference among the three AMF inocula at each metal addition level. Meanwhile, compared with the non-inoculated plants, AMF inocula significantly increased soil p H, electrical conductivity, and Pb or Cd concentrations in soil organic matter in the soils at the highest Pb or Cd dose after harvest of pakchoi, whereas the proportion of bioavailable Pb or Cd fraction declined in the AMF inoculated soil. Our study provided the first evidence that AM fungi colonized the roots of pakchoi and indicated the potential application of AMF in the safe production of vegetables in Pb or Cd contaminated soils.  相似文献   

18.
利用土壤改良剂固定污染土壤中铅、镉的研究进展   总被引:21,自引:0,他引:21  
Since the inception of industrial revolution, metal refining plants using pyrometallurgical processes have generated the prodigious emissions of lead (Pb) and cadmium (Cd). As the core target of such pollutants, a large number of soils are nowadays contaminated over widespread areas, posing a great threat to public health worldwide. Unlike organic pollutants, Pb and Cd do not undergo chemical or microbial breakdown and stay likely in site for longer duration after their release. Immobilization is an in-situ remediation technique that uses cost-effective soil amendments to reduce Pb and Cd availability in the contaminated soils. The Pb and Cd contamination in the soil environment is reviewed with focus on source enrichment, speciation and associated health risks, and immobilization options using various soil amendments. Commonly applied and emerging cost-effective soil amendments for Pb and Cd immobilization include phosphate compounds, liming, animal manure, biosolids, metal oxides, and biochar. These immobilizing agents could reduce the transfer of metal pollutants or residues to food web (plant uptake and leaching to subsurface water) and their long-term sustainability in heavy metal fixation needs further assessment.  相似文献   

19.
Trace metals and metalloids (TMM) in forest soils and invasive earthworms were studied at 9 sites in northern New England, USA. Essential (Cu, Mo, Ni, Zn, Se) and toxic (As, Cd, Pb, Hg, U) TMM concentrations (mg kg−1) and pools (mg m−2) were quantified for organic horizons (forest floor), mineral soils and earthworm tissues. Essential TMM tissue concentrations were greatest for mineral soil-feeding earthworm Octolasion cyaneum. Toxic TMM tissue concentrations were highest for organic horizon-feeding earthworms Dendobaena octaedra, Aporrectodea rosea and Amynthas agrestis. Most earthworm species had attained tissue concentrations of Pb, Hg and Se potentially hazardous to predators. Bioaccumulation factors were Cd > Se > Hg > Zn > Pb > U > 1.0 > Cu > As > Mo > Ni. Only Cd, Se, Hg and Zn were considered strongly bioaccumulated by earthworms because their average bioaccumulation factors were significantly greater than 1.0. Differences in bioaccumulation did not appear to be caused by soil concentrations as earthworm TMM tissue concentrations were poorly correlated with TMM soil concentrations. Instead, TMM bioaccumulation appears to be species and site dependent. The invasive A. agrestis had the greatest tissue TMM pools, due to its large body mass and high abundance at our stands. We observed that TMM tissue pools in earthworms were comparable or exceeded organic horizon TMM pools; earthworm tissue pools of Cd were up 12 times greater than in the organic horizon. Thus, exotic earthworms may represent an unaccounted portion and flux of TMM in forests of the northeastern US. Our results highlight the importance of earthworms in TMM cycling in northern forests and warrant more research into their impact across the region.  相似文献   

20.
Background, Aims, and Scope  There is an increasing demand for controlled toxicity tests to predict biological effects related to sediment metal contamination. In this context, questions of metal-specific factors, sensitivity of toxicity endpoints, and variability in exposure duration arise. In addition, the choice of the dose metrics for responses is equally important and is related to the applicability of the concept of critical body residue (CBR) in exposure assessments, as well as being the main focus of this study. Methods  Experiments were conducted to assess toxicity of Cd, Cr, Cu and Pb to the oligochaete worm Lumbriculus variegatus with the aim of determining CBRs for two response metrics. Mortality and feeding activity of worms exposed to sediment-spiked metals were used as end-points in connection with residue analyses from both the organisms and the surrounding media. Results  LC50 values were 0.3, 1.4, 5.2, and 6.7 mg/L (from 4.7 μmol/L to 128.0 μmol/L), and the order of toxicity, from most toxic to least toxic, was Cu > Cd > Pb>Cr. By relating toxicity to body residue, variability in toxicity among the metals decreased and the order of toxicity was altered. The highest lethal residue value was obtained for Cu (10.8 mmol/kg) and the lowest was obtained for Cd (2.3 mmol/kg). In the 10-d sublethal test, both time and metal exposure were an important source of variation in the feeding activity of worms. The significant treatment effects were observed from worms exposed to Cd or Pb, with the controls yielding the highest feeding rate. However, quantitative changes in the measured endpoint did not correlate with the exposure concentrations or body residues, which remained an order of magnitude lower than in the acute exposures. Discussion  Both response metrics were able to detect a toxic effect of the metals. However, the ranking of metal toxicity was dependant on the choice of the dose metric used. An attempt to form a causal mortality-mediated link between tissue residues and metal toxicity was successful in water-only exposures. The results also indicated that egestion rate was a sensitive toxicity end point for predicting the effects of sediment contamination. Conclusions  By relating the biological response with the tissue metal residues, toxicity data was comparable to both environmental media as well as different response metrics and time scales. The results also revealed the importance of metal toxicity ranking on a molar basis and, furthermore, a direct link to the CBR concept was established. Recommendations and Perspectives  There is a growing demand for methods to assess the effects of contaminated sediments to benthic fauna and whole aquatic ecosystems. Such information is needed for sediment quality guidelines that are currently being developed in many countries and remediation processes. The use of body residues as a dose metric in metal toxicity studies may help to overcome difficulties related to bioavailability issues commonly faced in sediment toxicity studies. ESS-Submission Editor: Prof. Dr. Henner Hollert (henner.hollert@bio5.rwth-aachen.de)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号