首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The trapping-mediated dissociative chemisorption of ethane on the closest packed Ir(111) surface has been investigated, and the activation energy and preexponential factor of the surface reaction rate coefficient have been measured. These results are compared to those of ethane activation on Pt(111) and on the missing row reconstructed Ir(110)-(1x2) and Pt(110)-(1x2) surfaces, allowing a quantitative determination of the effect surface structure has on the catalytic activation of C-H bonds. In the order Pt(111), Pt(110)-(1x2), Ir(111), and Ir(110)-(1x2), the activation energies for the dissociative chemisorption of ethane are 16.6, 10.5, 10.3, and 5.5 kilocalories per mole, demonstrating that the electronic and geometric effects are of approximately equal importance for ethane activation on these catalysts.  相似文献   

2.
Alkanes, although plentiful enough to be considered for use as feedstocks in large-scale chemical processes, are so unreactive that relatively few chemical reagents have been developed to convert them to molecules having useful functional groups. However, a recently synthesized iridium (lr) complex successfully converts alkanes into hydridoalkylmetal complexes (M + R-H --> R-M-H). This is a dihydride having the formula Cp(*)(L)lrH(2), where Cp(*) and L are abbreviations for the ligands (CH(3))(5)C(5) and (CH(3))(3)P, respectively. Irradiation with ultraviolet light causes the dihydride to lose H(2), generating the reactive intermediate Cp(*)lrL. This intermediate reacts rapidly with C-H bonds in every molecule so far tested (including alkanes) and leads to hydridoalkyliridium complexes Cp(*)(L)lr(R)(H). Evidence has been obtained that this C-H insertion, or oxidative addition, reaction proceeds through a simple three-center transition state and does not involve organic free radicals as intermediates. Thus the intermediate Cp(*)lrL reacts most rapidly with C-H bonds having relatively high bond energies, such as those at primary carbon centers, in small organic rings, and in aromatic rings. This contrasts directly with the type of hydrogen-abstraction selectivity that is characteristic of organic radicals. The hydridoalkyliridium products of the insertion reactions can be converted into functionalized organic molecules-alkyl halides-by treatment with mercuric chloride followed by halogens. Expulsion (reductive elimination) of the hydrocarbon from the hydridoalkyliridium complexes can be induced by Lewis acids or heat, regenerating the reactive intermediate Cp(*)lrL. Oxidative addition of the corresponding rhodium complexes Cp(*)RhL to alkane C-H bonds has also been observed, although the products formed in this case are much less stable and undergo reductive elimination at -20 degrees C. These and other recent observations provide an incentive for reexamining the factors that have been assumed to control the rate of reaction of transition metal complexes with C-H bonds-notably the need for electron-rich metals and the proximity of reacting centers.  相似文献   

3.
In contrast to the many methods of selectively coupling olefins, few protocols catenate saturated hydrocarbons in a predictable manner. We report here the highly selective carbon-hydrogen (C-H) activation and subsequent dehydrogenative C-C coupling reaction of long-chain (>C(20)) linear alkanes on an anisotropic gold(110) surface, which undergoes an appropriate reconstruction by adsorption of the molecules and subsequent mild annealing, resulting in nanometer-sized channels (1.22 nanometers in width). Owing to the orientational constraint of the reactant molecules in these one-dimensional channels, the reaction takes place exclusively at specific sites (terminal CH(3) or penultimate CH(2) groups) in the chains at intermediate temperatures (420 to 470 kelvin) and selects for aliphatic over aromatic C-H activation.  相似文献   

4.
Energy redistribution, including the many phonon-assisted and electronically assisted energy-exchange processes at a gas-metal interface, can hamper vibrationally mediated selectivity in chemical reactions. We establish that these limitations do not prevent bond-selective control of a heterogeneously catalyzed reaction. State-resolved gas-surface scattering measurements show that the nu1 C-H stretch vibration in trideuteromethane (CHD3) selectively activates C-H bond cleavage on a Ni(111) surface. Isotope-resolved detection reveals a CD3:CHD2 product ratio > 30:1, which contrasts with the 1:3 ratio for an isoenergetic ensemble of CHD3 whose vibrations are statistically populated. Recent studies of vibrational energy redistribution in the gas and condensed phases suggest that other gas-surface reactions with similar vibrational energy flow dynamics might also be candidates for such bond-selective control.  相似文献   

5.
Low-temperature scanning tunneling microscopy was used to selectively break the N-H bond of a methylaminocarbyne (CNHCH3) molecule on a Pt(111) surface at 4.7 kelvin, leaving the C-H bonds intact, to form an adsorbed methylisocyanide molecule (CNCH3). The methylisocyanide product was identified through comparison of its vibrational spectrum with that of directly adsorbed methylisocyanide as measured with inelastic electron tunneling spectroscopy. The CNHCH3 could be regenerated in situ by exposure to hydrogen at room temperature. The combination of tip-induced dehydrogenation with thermodynamically driven hydrogenation allows a completely reversible chemical cycle to be established at the single-molecule level in this system. By tailoring the pulse conditions, irreversible dissociation entailing cleavage of both the C-H and N-H bonds can also be demonstrated.  相似文献   

6.
Cleavage of the relatively inert dinitrogen (N(2)) molecule, with its extremely strong N identical withN triple bond, has represented a major challenge to the development of N(2) chemistry. This report describes the reductive cleavage of N(2) to two nitrido (N(3-)) ligands in its reaction with Mo(NRAr)(3), where R is C(CD(3))(2)CH(3) and Ar is 3,5-C(6)H(3)(CH(3))(2'), a synthetic three-coordinate molybdenum(III) complex of known structure. The formation of an intermediate complex was observed spectroscopically, and its conversion (with N identical withN bond cleavage) to the nitrido molybdenum(VI) product N identical withMo(NRAr)(3) followed first-order kinetics at 30 degrees C. It is proposed that the cleavage reaction proceeds by way of an intermediate complex in which N(2) bridges two molybdenum centers.  相似文献   

7.
Amination of alkanes has generally required metal catalysts and/or high temperatures. Here we report that simple exposure of a broad range of alkanes to N-triflylimino-λ(3)-bromane 1 at ambient temperature results in C-H insertion of the nitrogen functionality to afford triflyl-substituted amines in moderate to high yields. Marked selectivity for tertiary over secondary C-H bonds was observed; primary (methyl) C-H bonds were inert. Addition of hexafluoroisopropanol to inhibit decomposition of 1 dramatically improved the C-H amination efficiencies. Second-order kinetics, activation parameters (negative activation entropy), deuterium isotope effects, and theoretical calculations suggest a concerted asynchronous bimolecular transition state for the metal-free C-H amination event.  相似文献   

8.
We used strong-field laser pulses that were tailored with closed-loop optimal control to govern specified chemical dissociation and reactivity channels in a series of organic molecules. Selective cleavage and rearrangement of chemical bonds having dissociation energies up to approximately 100 kilocalories per mole (about 4 electron volts) are reported for polyatomic molecules, including (CH3)2CO (acetone), CH3COCF3 (trifluoroacetone), and C6H5COCH3 (acetophenone). Control over the formation of CH(3)CO from (CH3)2CO, CF3 (or CH3) from CH3COCF3, and C6H5CH3 (toluene) from C6H5COCH3 was observed with high selectivity. Strong-field control appears to have generic applicability for manipulating molecular reactivity because the tailored intense laser fields (about 10(13) watts per square centimeter) can dynamically Stark shift many excited states into resonance, and consequently, the method is not confined by resonant spectral restrictions found in the perturbative (weak-field) regime.  相似文献   

9.
Lee DH  Kwon KH  Yi CS 《Science (New York, N.Y.)》2011,333(6049):1613-1616
Alkenes and alcohols are among the most abundant and commonly used organic feedstock in industrial processes. We report a selective catalytic alkylation reaction of alkenes with alcohols that forms a carbon-carbon bond between vinyl carbon-hydrogen (C-H) and carbon-hydroxy centers with the concomitant loss of water. The cationic ruthenium complex [(C(6)H(6))(PCy(3))(CO)RuH](+)BF(4)(-) (Cy, cyclohexyl) catalyzes the alkylation in solution within 2 to 8 hours at temperatures ranging from 75° to 110°C and tolerates a broad range of substrate functionality, including amines and carbonyls. Preliminary mechanistic studies are inconsistent with Friedel-Crafts-type electrophilic activation of the alcohols, suggesting instead a vinyl C-H activation pathway with opposite electronic polarization.  相似文献   

10.
Direct catalytic hydration of terminal alkenes to primary alcohols would be an inexpensive route to industrially useful alcohols and a convenient synthetic route for the synthesis of terminal alcohols in general. The reaction between trans- PtHCl(PMe(3))(2) (where Me = CH(3)) and sodium hydroxide in a one-to-one mixture of water and 1-hexene yields a species that, at 60 degrees C and in the presence of the phasetransfer catalyst benzyltriethylammonium chloride, catalyzes selective hydration of 1-hexene to n-hexanol at a rate of 6.9 +/- 0.2 turnovers per hour. Hydration of 1-dodecene to n-dodecanol occurs at a rate of 8.3 +/- 0.4 turnovers per hour at 100 degrees C. Deuterium labeling experiments with trans-PtDCl(PMe(3))(2) show that hydration involves reductive elimination of a C-H bond. At low hydroxide concentrations (<8 equivalents), hydration of the water-soluble olefin 3-butene-1-ol to 1,4-butanediol exhibited a first-order dependence on hydroxide concentration for loss of catalytic activity. This suggests that hydroxide attacks the coordinated alkene slowly. At high hydroxide concentrations, the rate of catalysis was hydroxide-independent and first order in alkene. Substitution of coordinated water (k(1) = 9.3 +/- 0.5 x 10(-3) liters per mol per second) appears to be limitng under these conditions.  相似文献   

11.
White ET  Tang J  Oka T 《Science (New York, N.Y.)》1999,284(5411):135-137
Protonated methane, CH5+, has unusual vibrational and rotational behavior because its three nonequivalent equilibrium structures have nearly identical energies and its five protons scramble freely. Although many theoretical papers have been published on the quantum mechanics of the system, a better understanding requires spectral data. A complex, high-resolution infrared spectrum of CH5+ corresponding to the C-H stretching band in the 3.4-micrometer region is reported. Although no detailed assignment of the individual lines was made, comparison with other carbocation spectra strongly suggests that the transitions are due to CH5+.  相似文献   

12.
The rate constant of the electron-transfer reaction between a gold electrode and an electroactive ferrocene group has been measured at a structurally well-defined metal-electrolyte interface at temperatures from 1 degrees to 47 degrees C and reaction free energies from -1.0 to +0.8 electron volts (eV). The ferrocene group was positioned a fixed distance from the gold surface by the self-assembly of a mixed thiol monolayer of (eta(5)C(5)H(5))Fe(eta(5)C(5)H(4))CO(2)(CH(2))(16)SH and CH(3)(CH(2))(15)SH. Rate constants from 1 per second (s(-1)) to 2 x 10(4) s(-1) in 1 molar HClO(4) are reasonably fit with a reorganization energy of 0.85 eV and a prefactor for electron tunneling of 7 x 10(4) s(-1) eV(-1). Such self-assembled monolayers can be used to systematically probe the dependence of electron-transfer rates on distance, medium, and spacer structure, and to provide an empirical basis for the construction of interfacial devices such as sensors and transducers that utilize macroscopically directional electron-transfer reactions.  相似文献   

13.
14.
BC Stipe  MA Rezaei  W Ho 《Science (New York, N.Y.)》1998,280(5370):1732-1735
Vibrational spectra for a single molecule adsorbed on a solid surface have been obtained with a scanning tunneling microscope (STM). Inelastic electron tunneling spectra for an isolated acetylene (C2H2) molecule adsorbed on the copper (100) surface showed an increase in the tunneling conductance at 358 millivolts, resulting from excitation of the C-H stretch mode. An isotopic shift to 266 millivolts was observed for deuterated acetylene (C2D2). Vibrational microscopy from spatial imaging of the inelastic tunneling channels yielded additional data to further distinguish and characterize the two isotopes. Single-molecule vibrational analysis should lead to better understanding and control of surface chemistry at the atomic level.  相似文献   

15.
Carbon-fluorine bonds are the strongest known single bonds to carbon and as a consequence can prove very hard to cleave. Alhough vinyl and aryl C-F bonds can undergo oxidative addition to transition metal complexes, this reaction has appeared inoperable with aliphatic substrates. We report the addition of C(sp(3))-F bonds (including alkyl-F) to an iridium center via the initial, reversible cleavage of a C-H bond. These results suggest a distinct strategy for the development of catalysts and promoters to make and break C-F bonds, which are of strong interest in the context of both pharmaceutical and environmental chemistry.  相似文献   

16.
Yan S  Wu YT  Zhang B  Yue XF  Liu K 《Science (New York, N.Y.)》2007,316(5832):1723-1726
The influence of vibrational excitation on chemical reaction dynamics is well understood in triatomic reactions, but the multiple modes in larger systems complicate efforts toward the validation of a predictive framework. Although recent experiments support selective vibrational enhancements of reactivities, such studies generally do not properly account for the differing amounts of total energy deposited by the excitation of different modes. By precise tuning of translational energies, we measured the relative efficiencies of vibration and translation in promoting the gas-phase reaction of CHD3 with the Cl atom to form HCl and CD3. Unexpectedly, we observed that C-H stretch excitation is no more effective than an equivalent amount of translational energy in raising the overall reaction efficiency; CD3 bend excitation is only slightly more effective. However, vibrational excitation does have a strong impact on product state and angular distributions, with C-H stretch-excited reactants leading to predominantly forward-scattered, vibrationally excited HCl.  相似文献   

17.
Rate constants for the dissociation of highly vibrationally excited ketene (CH(2)CO) have been measured at the threshold for the production of CH(2)((3)B(1)) and CO((1)Sigma(+)). The rate constant increases in a stepwise manner with increasing energy, consistent with the long-standing premise that the rate of a unimolecular reaction is controlled by flux through quantized transition-state thresholds. The data give the energies of the torsional and C-C-O bending vibrations of the transition state.  相似文献   

18.
Two diphosphonates containing the P-C-P bond, CH(3)C(OH)(PO(3)HNa)(2) and H(2)C(PO(3)HNa)(2), inhibit the crystallization of calcium phosphate in vitro and prevent aortic calcification of rats given large amounts of vitamin D(3). The diphosphonates therefore have effects similar to those described for compounds containing the P-O-P bond but are active when administered orally.  相似文献   

19.
花生壳生物炭对硝态氮的吸附机制研究   总被引:9,自引:3,他引:6  
以花生壳为原料,300℃热解条件下制得生物炭。通过批量平衡吸附试验,结合吸附前后FTIR、XPS图谱表征分析探索硝态氮(NO-3-N)在生物炭表面的吸附机制。结果表明,生物炭对NO-3-N的吸附显著受溶液pH值影响,当pH6时有利于吸附的进行。随溶液初始NO-3-N浓度增加,生物炭对其吸附量逐渐增加,在初始浓度800 mg·L-1的吸附体系中,最大吸附量达40 mg·g-1,Freundlich方程可较好地拟合(R2=0.975)生物炭对NO-3-N等温吸附过程,吸附为非均一的多分子层吸附;生物炭对NO-3-N的吸附可在30 min达到平衡,伪二级动力学方程能够较好地描述吸附动力学过程,表明吸附以化学吸附为主。FTIR、XPS图谱分析表明,生物炭表面分布的羟基(-OH)、芳香环羰基(-C=O)及脂肪族醚类(-O-)等官能团参与了吸附过程,且与之相连的C原子结合能均增加。结合生物炭表面金属离子分布状况,综合分析认为,通过氢键形成和金属桥键作用是生物炭对NO-3-N吸附的主要机制。  相似文献   

20.
Impact of nanocrystalline alkali-halide clusters against solid surfaces causes them to fission exclusively into low surface-energy fragments. In time-of-flight scattering experiments, this process appears at an impact energy so low that it must result from a single-step cleavage of the nanocrystal along low surface-energy cleavage planes. At higher energies (more than 1 electron volt per atom), a crossover occurs to an entirely different behavior-evaporative cascades that proceed irrespective of the structureenergetic properties of the fragments. These cascades, and the approximately linear scaling of the crossover energy with cluster size, are characteristic of impact-induced transformation of the cluster to a molten state. Collision with the high-rigidity surface of silicon gives a substantially greater cleavage probability than the soft basal-plane surface of graphite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号